Communication Dans Un Congrès Année : 2019

Optimal selection of diffusion-weighting gradient waveforms using compressed sensing and dictionary learning

Résumé

Acquisition sequences in diffusion MRI rely on the use time-dependent magnetic field gradients. Each gradient waveform encodes a diffusion-weighted measure; a large number of such measurements are necessary for the in vivo reconstruction of microstructure parameters. We propose here a method to select only a subset of the measurements while being able to predict the unseen data using compressed sensing. We learn a dictionary using a training dataset generated with Monte-Carlo simulations; we then compare two different heuristics to select the measures to use for the prediction. We found that an undersampling strategy limiting the redundancy of the measures allows for a more accurate reconstruction when compared with random undersampling with similar sampling rate.
Fichier principal
Vignette du fichier
ismrm_abstract_truffet.pdf (177 Ko) Télécharger le fichier
poster_3487.pdf (581.96 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

inserm-02015394 , version 1 (12-03-2019)
inserm-02015394 , version 2 (21-06-2019)

Identifiants

  • HAL Id : inserm-02015394 , version 1

Citer

Raphaël Truffet, Christian Barillot, Emmanuel Caruyer. Optimal selection of diffusion-weighting gradient waveforms using compressed sensing and dictionary learning. ISMRM 2019 - 27th Annual Meeting & Exhibition, May 2019, Montréal, Canada. pp.1-3. ⟨inserm-02015394v1⟩
298 Consultations
250 Téléchargements

Partager

More