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Most of diffusion MRI studies rely on Pulsed
Gradient Spin Echo sequences. However,
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gradient waveforms offers many degrees of
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Signal undersampling and reconstruction Algorithm

i i ® choose an initial subset Q.
Several techniques for the selection of measurements choosean Initialsubs

® while the correlation score
2 : decreases: find the line j in () the
D; 1.D; i i
® Minimizing redundancy of gradient response by minimizing Z (Z i,k s, k‘) 5 {n;os'fso”e:ate?‘ WIththhe Othzr.s in
: , and replace it with the gradient
not in Q the less correlated with the
remaining gradients. '

® Randomly

where () is the set of chosen samples and D isthe dictionary with center reduced lines

[(Da.i, Do)
[Daill2]|Pa,jll2

® Minimizing the coherence of the dictionary by minimizing max

, ith
where Dg ; is th it column of the dictionary restricted to the lines of {) ® return the subset €.

Reconstruction from a smaller sample

undersampled signal I
£ 1-minimization

(LARS-Lasso*)

restricted dictionary E sparse signal

4. Bradley Efron et al. "Least angle regression”. 2004.
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Concluding remarks and further work

Results

® Encouraging results that show an efficient reconstruction.

® Our gradient selection heuristic gives a better generalization of the signal than randomness that is often used in compressed

sensing.
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® Selecting only waveforms instead of selecting couples [waveform + direction] and obtain a rotation invariant scheme.

® Studying the consequences on the microstructure estimation.



