Optimal selection of diffusion-weighting gradient waveforms using compressed sensing and dictionary learning - Inserm - Institut national de la santé et de la recherche médicale
Communication Dans Un Congrès Année : 2019

Optimal selection of diffusion-weighting gradient waveforms using compressed sensing and dictionary learning

Résumé

Acquisition sequences in diffusion MRI rely on the use time-dependent magnetic field gradients. Each gradient waveform encodes a diffusion-weighted measure; a large number of such measurements are necessary for the in vivo reconstruction of microstructure parameters. We propose here a method to select only a subset of the measurements while being able to predict the unseen data using compressed sensing. We learn a dictionary using a training dataset generated with Monte-Carlo simulations; we then compare two different heuristics to select the measures to use for the prediction. We found that an undersampling strategy limiting the redundancy of the measures allows for a more accurate reconstruction when compared with random undersampling with similar sampling rate.
Fichier principal
Vignette du fichier
3487.pdf (183.44 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

inserm-02015394 , version 1 (12-03-2019)
inserm-02015394 , version 2 (21-06-2019)

Identifiants

  • HAL Id : inserm-02015394 , version 2

Citer

Raphaël Truffet, Christian Barillot, Emmanuel Caruyer. Optimal selection of diffusion-weighting gradient waveforms using compressed sensing and dictionary learning. ISMRM 2019 - 27th Annual Meeting & Exhibition, May 2019, Montréal, Canada. pp.1-3. ⟨inserm-02015394v2⟩
297 Consultations
247 Téléchargements

Partager

More