Article Dans Une Revue NeuroImage Année : 2016

An A Contrario Approach for the Detection of Patient-Specific Brain Perfusion Abnormalities with Arterial Spin Labelling

Résumé

In this paper, we introduce a new locally multivariate procedure to quantitatively extract voxel-wise patterns of abnormal perfusion in individual patients. This a contrario approach uses a multivariate metric from the computer vision community that is suitable to detect abnormalities even in the presence of closeby hypo- and hyper-perfusions. This method takes into account local information without applying Gaussian smoothing to the data. Furthermore, to improve on the standard a contrario approach, which assumes white noise, we introduce an updated a contrario approach that takes into account the spatial coherency of the noise in the probability estimation. Validation is undertaken on a dataset of 25 patients diagnosed with brain tumors and 61 healthy volunteers. We show how the a contrario approach outperforms the massively univariate General Linear Model usually employed for this type of analysis.
Fichier principal
Vignette du fichier
Maumet_NeuroImage_A_Contrario.pdf (4.27 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

inserm-01291748 , version 1 (29-03-2016)
inserm-01291748 , version 2 (07-04-2016)

Identifiants

  • HAL Id : inserm-01291748 , version 1

Citer

Camille Maumet, Pierre Maurel, Jean-Christophe Ferré, Christian Barillot. An A Contrario Approach for the Detection of Patient-Specific Brain Perfusion Abnormalities with Arterial Spin Labelling. NeuroImage, 2016, accepted. ⟨inserm-01291748v1⟩
375 Consultations
607 Téléchargements

Partager

More