Exploring the EVolution in PrognOstic CapabiLity of MUltisequence Cardiac MagneTIc ResOnance in PatieNts Affected by Takotsubo Cardiomyopathy Based on Machine Learning Analysis - Inserm - Institut national de la santé et de la recherche médicale
Article Dans Une Revue (Article De Synthèse) Journal of Thoracic Imaging Année : 2023

Exploring the EVolution in PrognOstic CapabiLity of MUltisequence Cardiac MagneTIc ResOnance in PatieNts Affected by Takotsubo Cardiomyopathy Based on Machine Learning Analysis

Jean-Nicolas Dacher
  • Fonction : Auteur
  • PersonId : 868848

Résumé

Purpose: Takotsubo cardiomyopathy (TTC) is a transient but severe acute myocardial dysfunction with a wide range of outcomes from favorable to life-threatening. The current risk stratification scores of TTC patients do not include cardiac magnetic resonance (CMR) parameters. To date, it is still unknown whether and how clinical, trans-thoracic echocardiography (TTE), and CMR data can be integrated to improve risk stratification. Methods: EVOLUTION (Exploring the eVolution in prognOstic capabiLity of mUlti-sequence cardiac magneTIc resOnance in patieNts affected by Takotsubo cardiomyopathy) is a multicenter, international registry of TTC patients who will undergo a clinical, TTE, and CMR evaluation. Clinical data including demographics, risk factors, comorbidities, laboratory values, ECG, and results from TTE and CMR analysis will be collected, and each patient will be followed-up for in-hospital and long-term outcomes. Clinical outcome measures during hospitalization will include cardiovascular death, pulmonary edema, arrhythmias, stroke, or transient ischemic attack.Clinical long-term outcome measures will include cardiovascular death, pulmonary edema, heart failure, arrhythmias, sudden cardiac death, and major adverse cardiac and cerebrovascular events defined as a composite endpoint of death from any cause, myocardial infarction, recurrence of TTC, transient ischemic attack, and stroke. We will develop a comprehensive clinical and imaging score that predicts TTC outcomes and test the value of machine learning models, incorporating clinical and imaging parameters to predict prognosis. Conclusions: The main goal of the study is to develop a comprehensive clinical and imaging score, that includes TTE and CMR data, in a large cohort of TTC patients for risk stratification and outcome prediction as a basis for possible changes in patient management.
Fichier non déposé

Dates et versions

inserm-04127422 , version 1 (13-06-2023)

Identifiants

Citer

Riccardo Cau, Giuseppe Muscogiuri, Francesco Pisu, Marco Gatti, Birgitta Velthuis, et al.. Exploring the EVolution in PrognOstic CapabiLity of MUltisequence Cardiac MagneTIc ResOnance in PatieNts Affected by Takotsubo Cardiomyopathy Based on Machine Learning Analysis. Journal of Thoracic Imaging, 2023, pp.Publish Ahead of Print. ⟨10.1097/RTI.0000000000000709⟩. ⟨inserm-04127422⟩
15 Consultations
0 Téléchargements

Altmetric

Partager

More