Automation of dry eye disease quantitative assessment: A review - Inserm - Institut national de la santé et de la recherche médicale Access content directly
Journal Articles Journal of Clinical & Experimental Ophthalmology Year : 2022

Automation of dry eye disease quantitative assessment: A review

Abstract

Dry eye disease (DED) is a common eye condition worldwide and a primary reason for visits to the ophthalmologist. DED diagnosis is performed through a combination of tests, some of which are unfortunately invasive, nonreproducible and lack accuracy. The following review describes methods that diagnose and measure the extent of eye dryness, enabling clinicians to quantify its severity. Our aim with this paper is to review classical methods as well as those that incorporate automation. For only four ways of quantifying DED, we take a deeper look into what main elements can benefit from automation and the different ways studies have incorporated it. Like numerous medical fields, Artificial Intelligence (AI) appears to be the path towards quality DED diagnosis. This review categorises diagnostic methods into the following: classical, semi-automated and promising AI-based automated methods.
Fichier principal
Vignette du fichier
Brahim I et al. 2022.pdf (2.44 Mo) Télécharger le fichier
Origin : Publication funded by an institution

Dates and versions

inserm-04012304 , version 1 (02-03-2023)

Identifiers

Cite

Ikram Brahim, Mathieu Lamard, Anas‐alexis Benyoussef, Gwenolé Quellec. Automation of dry eye disease quantitative assessment: A review. Journal of Clinical & Experimental Ophthalmology, 2022, 50 (6), pp.653-666. ⟨10.1111/ceo.14119⟩. ⟨inserm-04012304⟩
9 View
22 Download

Altmetric

Share

Gmail Facebook X LinkedIn More