<sup>18</sup>F-FDG PET maximum intensity projections and artificial intelligence: a win-win combination to easily measure prognostic biomarkers in DLBCL patients - Inserm - Institut national de la santé et de la recherche médicale Access content directly
Journal Articles Journal of Nuclear Medicine Year : 2022

18F-FDG PET maximum intensity projections and artificial intelligence: a win-win combination to easily measure prognostic biomarkers in DLBCL patients

Abstract

Background: Total metabolic tumor volume (TMTV) and tumor dissemination (Dmax) calculated from baseline 18F-FDG PET/CT images are prognostic biomarkers in Diffuse Large B-cell lymphoma (DLBCL) patients. Yet, their automated calculation remains challenging. Purpose: To investigate whether TMTV and Dmax features could be replaced by surrogate features automatically calculated using an artificial intelligence (AI) algorithm from only two maximum intensity projections (MIP) of the whole-body 18F-FDG PET images. Methods: Two cohorts of DLBCL patients from the REMARC (NCT01122472) and LNH073B (NCT00498043) trials were retrospectively analyzed. Experts delineated lymphoma lesions from the baseline whole-body 18F-FDG PET/CT images, from which TMTV and Dmax were measured. Coronal and sagittal MIP images and associated 2D reference lesion masks were calculated. An AI algorithm was trained on the REMARC MIP data to segment lymphoma regions. The AI algorithm was then used to estimate surrogate TMTV (sTMTV) and surrogate Dmax (sDmax) on both datasets. The ability of the original and surrogate TMTV and Dmax to stratify patients was compared. Results: 382 patients (mean age, 62.1 years ±13.4 [standard deviation]; 207 men) were evaluated. sTMTV was highly correlated with TMTV for REMARC and LNH073B datasets (Spearman r=0.878 and r=0.752 respectively), and so were sDmax and Dmax (r=0.709 and r=0.714 respectively). The hazard ratios (HR) for progression free survival of volume and MIP-based features derived using AI were similar, e.g., TMTV: 11.24 (95% confidence interval (CI): 2.10-46.20), sTMTV: 11.81 (95% CI: 3.29-31.77), and Dmax: 9.0 (95% CI: 2.53-23.63), sDmax: 12.49 (95% CI: 3.42-34.50). Conclusion: Surrogate TMTV and Dmax calculated from only 2 PET MIP images are prognostic biomarkers in DLBCL patients and can be automatically estimated using an AI algorithm.
Fichier principal
Vignette du fichier
Girum2022.pdf (2.19 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

inserm-03872916 , version 1 (26-11-2022)

Identifiers

Cite

Kibrom Berihu Girum, Louis Rebaud, Anne-Ségolène Cottereau, Michel Meignan, Jérôme Clerc, et al.. 18F-FDG PET maximum intensity projections and artificial intelligence: a win-win combination to easily measure prognostic biomarkers in DLBCL patients. Journal of Nuclear Medicine, 2022, pp.jnumed.121.263501. ⟨10.2967/jnumed.121.263501⟩. ⟨inserm-03872916⟩
28 View
25 Download

Altmetric

Share

Gmail Facebook X LinkedIn More