Validity of summary statistics-based mixed-effects group fMRI
Résumé
Statistical analysis of multi-subject functional Magnetic Resonance Imaging (fMRI) data is traditionally done using either: 1) a mixed-effects GLM (MFX GLM) where within-subject variance estimates are used and incorporated into per-subject weights or 2) a
random-effects General linear model (GLM) (RFX GLM) where within-subject variance estimates are not used. Both approaches are
implemented and available in major neuroimaging software packages including: SPM (MFX analysis; 2nd-Level statistics), FSL (FLAME; OLS) and AFNI (3dMEMA; 3dttest++). While MFX GLM provides the most efficient statistical estimate, its properties are only guaranteed in large samples, and it has been shown that RFX GLM is a valid alternative for one-sample group analyses in fMRI [1]. We recently showed that MFX GLM for image-based meta-analysis could lead to invalid results in small-samples. Here, we investigate whether this issue also affects group fMRI.
Domaines
Neurosciences [q-bio.NC]
Fichier principal
Maumet_OHBM2018_validity_summary_stat.pdf (337.58 Ko)
Télécharger le fichier
Camille_Maumet_2018_OHBM2018_groupfMRI.pdf (1.32 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|