FAM65B controls the proliferation of transformed and primary T cells
Abstract
Cell quiescence is controlled by regulated genome-encoded programs that actively express genes which are often down-regulated or inactivated in transformed cells. Among them is FoxO1, a transcription factor that imposes quiescence in several cell types, including T lymphocytes. In these cells, the FAM65B encoding gene is a major target of FOXO1. Here, we show that forced expression of FAM65B in transformed cells blocks their mitosis because of a defect of the mitotic spindle, leading to G2 cell cycle arrest and apoptosis. Upon cell proliferation arrest, FAM65B is engaged in a complex containing two proteins well known to be involved in cell proliferation i.e. the HDAC6 deacetylase and the 14.3.3 scaffolding protein. In primary T cells, FAM65B is down-regulated upon T cell receptor engagement, and maintaining its expression blocks their proliferation, establishing that the decrease of FAM65B expression is required for proliferation. Conversely, inhibiting FAM65B expression in naive T lymphocytes decreases their activation threshold. These results identify FAM65B as a potential new target for controlling proliferation of both transformed and normal cells.
Fichier principal
11438-173039-1-PB.pdf (2.54 Mo)
Télécharger le fichier
Suppl Fig Legends Oncotarget2016-File011.pdf (10.82 Mo)
Télécharger le fichier
Origin : Publisher files allowed on an open archive
Origin : Files produced by the author(s)
Loading...