Communication Dans Un Congrès Année : 2015

Spectral Clustering of Time-Intensity Signals: Application to Dynamic Contrast-Enhanced MR Images Segmentation

Résumé

In this paper, we propose to apply a spectral clustering approach to analyse dynamic contrast-enhance magnetic resonance (DCE-MR) time-intensity signals. This graph theory-based method allows for grouping of signals after space transformation. Grouped signals are then used to segment their related voxels. The number of clusters is automatically selected by maximizing the normalized modularity criterion. We have performed experiments with simulated data generated via pharmacokinetic modelling in order to demonstrate the feasibility and applicability of this kind of unsupervised approach.
Fichier principal
Vignette du fichier
ACTES-RITS2015-HAL-p116-7.pdf (628.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

inserm-01154783 , version 1 (23-05-2015)

Licence

Identifiants

  • HAL Id : inserm-01154783 , version 1

Citer

Guillaume Tartare, Denis Hamad, Mustapha Azahaf, Philippe Puech, Nacim Betrouni. Spectral Clustering of Time-Intensity Signals: Application to Dynamic Contrast-Enhanced MR Images Segmentation. Journées RITS 2015, Mar 2015, Dourdan, France. pp.116-117. ⟨inserm-01154783⟩
112 Consultations
69 Téléchargements

Partager

More