Multiblock analysis of omics and imaging data with variable selection - Inserm - Institut national de la santé et de la recherche médicale
Communication Dans Un Congrès Année : 2015

Multiblock analysis of omics and imaging data with variable selection

Résumé

Sparse generalized canonical correlation analysis (SGCCA) has been proposed to combine RGCCA with an ℓ 1-penalty in a unified framework. Within this framework, blocks are not necessarily fully connected, which provides flexibility. The versatility and usefulness of SGCCA are illustrated on a 3-block dataset which combine Gene Expression, Comparative Genomic Hybridiza-tion and tumor location, determined on RMI at diagnosis. All data were measured on a cohort of 53 children with High Grade Glioma. SGCCA is available on CRAN as part of the RGCCA package.
Fichier principal
Vignette du fichier
ACTES-RITS2015-HAL-p28-29.pdf (510.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

inserm-01145569 , version 1 (24-04-2015)

Licence

Identifiants

  • HAL Id : inserm-01145569 , version 1

Citer

Cathy Philippe, Arthur Tenenhaus, Vincent Guillemot, Jacques Grill, Vincent Frouin. Multiblock analysis of omics and imaging data with variable selection. Journées RITS 2015, Mar 2015, Dourdan, France. pp.P28-29 Section imagerie génétique. ⟨inserm-01145569⟩
435 Consultations
432 Téléchargements

Partager

More