Probabilistic One Class Learning for Automatic Detection of Multiple Sclerosis Lesions
Abstract
This paper presents an automatic algorithm for the detec- tion of multiple sclerosis lesions (MSL) from multi-sequence magnetic resonance imaging (MRI). We build a probabilistic classifier that can recognize MSL as a novel class, trained only on Normal Appearing Brain Tissues (NABT). Patch based intensity information of MRI images is used to train a classifier at the voxel level. The classifier is in turn used to compute a probability characterizing the likelihood of each voxel to be a lesion. This probability is then used to identify a lesion voxel based on simple Otsu thresholding. The pro- posed framework is evaluated on 16 patients and our analysis reveals that our approach is well suited for MSL detection and outperforms other benchmark approaches.
Domains
Neurons and Cognition [q-bio.NC]Origin | Files produced by the author(s) |
---|
Loading...