An optical fiber-based gating device for prospective mouse cardiac MRI. - Inserm - Institut national de la santé et de la recherche médicale Access content directly
Journal Articles IEEE Transactions on Biomedical Engineering Year : 2014

An optical fiber-based gating device for prospective mouse cardiac MRI.

Abstract

Prospective synchronization of MRI acquisitions on living organisms involves the monitoring of respiratory and heart motions. The electrocardiogram (ECG) signal is conventionally used to measure the cardiac cycle. However, in some circumstances, obtaining an uncorrupted ECG signal recorded on small animals with radio frequency (RF) pulses and gradient switching is challenging. To monitor respiratory motion, an air cushion associated with a pressure sensor is commonly used but the system suffers from bulkiness. For many applications, the physiological gating information can also be derived from an MR navigated signal. However, a compact device that can simultaneously provide respiratory and cardiac information, for both prospective gating and physiological monitoring, is desirable. This is particularly valid since small volume coils or dedicated cardiac RF coil arrays placed directly against the chest wall are required to maximize measurement sensitivity. An optic-based device designed to synchronize MRI acquisitions on small animal's respiratory and heart motion was developed using a transmit-receive pair of optical fibers. The suitability of the developed device was assessed on mice ( n = 10) and was based on two sets of experiments with dual cardiac and respiratory synchronization. Images acquired with prospective triggering using the optical-based signal, ECG, and the pressure sensor during the same experiment were compared between themselves in the first set. The second set compared prospective technique using optical-based device and ECG to a retrospective technique. The optical signal that was correlated to both respiratory and heart motion was totally unaffected by radiofrequency pulses or currents induced by the magnetic field gradients used for imaging. Mice heart MR images depict low-visible motion artifacts with all sensors or techniques used. No significant SNR differences were found between each series of image. Full fiber-optic-based signal derived from heart and respiratory motion was suitable for prospective triggering of heart MR imaging. The fiber optic device performed similarly to the ECG and air pressure sensors, while providing an advantage for imaging with dedicated cardiac array coils by reducing bulk. It can be an attractive alternative for small animal MRI in difficult environments such as limited space and strong gradient switching.
Fichier principal
Vignette du fichier
TBME_Optical_Device_SABLONG_R.pdf (781.32 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

inserm-00921893 , version 1 (07-07-2014)

Identifiers

Cite

Raphaël Sablong, Adrian Rengle, Anoop Ramgolam, Hervé Saint-Jalmes, Olivier Beuf. An optical fiber-based gating device for prospective mouse cardiac MRI.. IEEE Transactions on Biomedical Engineering, 2014, 61 (1), pp.162-70. ⟨10.1109/TBME.2013.2278712⟩. ⟨inserm-00921893⟩
519 View
746 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More