Nonnegative Joint Diagonalization by Congruence Based on LU Matrix Factorization - Inserm - Institut national de la santé et de la recherche médicale
Article Dans Une Revue IEEE Signal Processing Letters Année : 2013

Nonnegative Joint Diagonalization by Congruence Based on LU Matrix Factorization

Résumé

In this letter, a new algorithm for joint diagonalization of a set of matrices by congruence is proposed to compute the nonnegative joint diagonalizer. The nonnegativity constraint is imposed by means of a square change of variables. Then we formulate the high-dimensional optimization problem into several sequential polynomial subproblems using LU matrix factorization. Numerical experiments on simulated matrices emphasize the advantages of the proposed method, especially in the case of degeneracies such as for low SNR values and a small number of matrices. An illustration of blind separation of nuclear magnetic resonance spectroscopy confirms the validity and improvement of the proposed method.
Fichier principal
Vignette du fichier
NJDiagonalization-Congruence-Based-on-LU-Matrix-Factorization.pdf (895.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

inserm-00841128 , version 1 (07-07-2013)

Identifiants

Citer

Lu Wang, Laurent Albera, Amar Kachenoura, Huazhong Shu, Lotfi Senhadji. Nonnegative Joint Diagonalization by Congruence Based on LU Matrix Factorization. IEEE Signal Processing Letters, 2013, 20 (8), pp.807 - 810. ⟨10.1109/LSP.2013.2267797⟩. ⟨inserm-00841128⟩
393 Consultations
601 Téléchargements

Altmetric

Partager

More