VarioML framework for comprehensive variation data representation and exchange. - Inserm - Institut national de la santé et de la recherche médicale Access content directly
Journal Articles BMC Bioinformatics Year : 2012

VarioML framework for comprehensive variation data representation and exchange.

Myles Byrne
  • Function : Author
  • PersonId : 933284
Ivo Fokkema
  • Function : Author
  • PersonId : 933285
Owen Lancaster
  • Function : Author
  • PersonId : 933286
Tomasz Adamusiak
  • Function : Author
  • PersonId : 933287
Anni Ahonen-Bishopp
  • Function : Author
  • PersonId : 933288
David Atlan
  • Function : Author
  • PersonId : 933289
Michael Cornell
  • Function : Author
  • PersonId : 933290
Raymond Dalgleish
  • Function : Author
  • PersonId : 919967
Andrew Devereau
  • Function : Author
  • PersonId : 919979
George Patrinos
  • Function : Author
  • PersonId : 886251
Morris Swertz
  • Function : Author
  • PersonId : 933291
Peter Taschner
  • Function : Author
  • PersonId : 933292
Gudmundur Thorisson
  • Function : Author
  • PersonId : 933293
Anthony Brookes
  • Function : Author
  • PersonId : 933295


ABSTRACT: BACKGROUND: Sharing of data about variation and the associated phenotypes is a critical need, yet variant information can be arbitrarily complex, making a single standard vocabulary elusive and re-formatting difficult. Complex standards have proven too time-consuming to implement. RESULTS: The GEN2PHEN project addressed these difficulties by developing a comprehensive data model for capturing biomedical observations, Observ-OM, and building the VarioML format around it. VarioML pairs a simplified open specification for describing variants, with a toolkit for adapting the specification into one's own research workflow. Straightforward variant data can be captured, federated, and exchanged with no overhead; more complex data can be described, without loss of compatibility. The open specification enables push-button submission to gene variant databases (LSDB's) e.g., the Leiden Open Variation Database, using the Cafe Variome data publishing service, while VarioML bidirectionally transforms data between XML and web-application code formats, opening up new possibilities for open source web applications building on shared data. A Java implementation toolkit makes VarioML easily integrated into biomedical applications. VarioML is designed primarily for LSDB data submission and transfer scenarios, but can also be used as a standard variation data format for JSON and XML document databases and user interface components. CONCLUSIONS: VarioML is a set of tools and practices improving the availability, quality, and comprehensibility of human variation information. It enables researchers, diagnostic laboratories, and clinics to share that information with ease, clarity, and without ambiguity.
Fichier principal
Vignette du fichier
1471-2105-13-254.pdf (493.12 Ko) Télécharger le fichier
1471-2105-13-254.xml (80.54 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Format : Other

Dates and versions

inserm-00758018 , version 1 (27-11-2012)



Myles Byrne, Ivo Fokkema, Owen Lancaster, Tomasz Adamusiak, Anni Ahonen-Bishopp, et al.. VarioML framework for comprehensive variation data representation and exchange.. BMC Bioinformatics, 2012, 13 (1), pp.254. ⟨10.1186/1471-2105-13-254⟩. ⟨inserm-00758018⟩
351 View
328 Download



Gmail Facebook X LinkedIn More