Analysis of electrodes' placement and deformation in deep brain stimulation from medical images
Résumé
Deep brain stimulation (DBS) is used to reduce the motor symptoms such as rigidity or bradykinesia in patients with Parkinson's disease (PD). The Subthalamic Nucleus (STN) has emerged as prime target of DBS in idiopathic PD. However, DBS surgery is a difficult procedure requiring the exact positioning of electrodes in the pre-operative selected targets. This positioning is usually planned using patients' pre-operative images, along with digital atlases, assuming that electrode's trajectory is linear. However, it has been demonstrated that anatomical brain deformations induce electrode's deformations resulting in errors in the intra-operative targeting stage. In order to meet the need of a higher degree of placement accuracy and to help constructing a computer-aided-placement tool, we proposed to study the electrodes' deformation in regards to patients' clinical data (sex, mean PD duration and brain's atrophy index). Firstly, we presented an automatic algorithm for the segmentation of electrode's axis from post-operative CT images, which aims to localize the electrodes' stimulated contacts. To assess our method, we applied our algorithm on 25 patients who had undergone bilateral-STN-DBS. We found a placement error of 0.91±0.38mm. Then, from the segmented axis, we quantitatively analyzed the electrodes' curvature and correlated it with patients' clinical data. We found a positive significant correlation between mean curvature index of the electrode and brain's atrophy index for male patients and between mean curvature index of the electrode and mean PD duration for female patients. These results help understanding DBS electrode' deformations and would help ensuring a better anticipation of electrodes' placement.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...