LOCUS: local cooperative unified segmentation of MRI brain scans - Inserm - Institut national de la santé et de la recherche médicale
Communication Dans Un Congrès Année : 2007

LOCUS: local cooperative unified segmentation of MRI brain scans

Résumé

We propose to carry out cooperatively both tissue and structure segmentations by distributing a set of local and cooperative models in a unified MRF framework. Tissue segmentation is performed by partitionning the volume into subvolumes where local MRFs are estimated in cooperation with their neighbors to ensure consistency. Local estimation fits precisely to the local intensity distribution and thus handles nonuniformity of intensity without any bias field modelization. Structure segmentation is performed via local MRFs that integrate localization constraints provided by a priori general fuzzy description of brain anatomy. Structure segmentation is not reduced to a postprocessing step but cooperates with tissue segmentation to gradually and conjointly improve models accuracy. The evaluation was performed using phantoms and real 3T brain scans. It shows good results and in particular robustness to nonuniformity and noise with a low computational cost.
Fichier principal
Vignette du fichier
MICCAI2007_bscherrer.pdf (442.53 Ko) Télécharger le fichier
inserm-00402276_edited.pdf (603.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

inserm-00402276 , version 1 (07-07-2009)

Identifiants

Citer

Benoît Scherrer, Michel Dojat, Florence Forbes, Catherine Garbay. LOCUS: local cooperative unified segmentation of MRI brain scans. MICCAI07 - 10th International Conference on Medical Image Computing and Computer Assisted Intervention, Oct 2007, Brisbane, Australia. pp.219-227, ⟨10.1007/978-3-540-75757-3_27⟩. ⟨inserm-00402276⟩
567 Consultations
463 Téléchargements

Altmetric

Partager

More