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Abstract

We propose to carry out cooperatively both tissue and structure segmentations by distributing a set of  and  models inlocal cooperative

a unified MRF framework. Tissue segmentation is performed by partitionning the volume into subvolumes where local MRFs are

estimated in cooperation with their neighbors to ensure consistency. Local estimation fits precisely to the local intensity distribution

and thus handles nonuniformity of intensity without any bias field modelization. Structure segmentation is performed via local MRFs

that integrate localization constraints provided by  general fuzzy description of brain anatomy. Structure segmentation is nota priori

reduced to a postprocessing step but cooperates with tissue segmentation to gradually and conjointly improve models accuracy. The

evaluation was performed using phantoms and real 3T brain scans. It shows good results and in particular robustness to

nonuniformity and noise with a low computational cost.
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Introduction

MRI brain scan segmentation is a challenging task and has been widely addressed in the last 15 years. Difficulties in automatic

segmentation arise from various sources including the size of the data, the low contrast between tissues, the limitations of available a priori

knowledge, local perturbations such as noise or global perturbations such as intensity nonuniformity. Current approaches share three main

characteristics: first, tissue and structure segmentations are considered as two separate tasks whereas they are clearly linked. Second, for a

robust to noise segmentation, the Markov Random Field (MRF) probabilistic framework is classically used to introduce spatial

dependencies between voxels , . Third, tissue models are generally estimated globally through the entire volume and do not reflect[1 2]
spatial intensity variations within each tissue, due mainly to biological tissue properties and to MRI hardware imperfections. Only the

latter is generally addressed, modeled by the introduction of an explicit so called bias field  model to estimate. Local segmentation is an“ ”
attractive alternative. The principle is to compute models in various subvolumes to fit better to local image properties. However, the few

local approaches proposed to date are clearly limited: they use local estimation as a preprocessing step only to estimate a bias field model [
, a training set for statistical local shape modelling , redondant information to ensure consistency and smoothnesss between local3] [4]

estimated models , , or an atlas providing a priori local spatial information  greedily increasing computational cost. We present in[5 6] [7]
this paper an original LOcal Cooperative Unified Segmentation (LOCUS) approach which 1) performs tissue and structure segmentation

by distributing a set of cooperating local MRF models through the volume, 2) segments structures by introducing prior localization

constraints in a MRF framework and 3) ensures local models consistency and tractable computational time via specific cooperation and

coordination mechanisms.

Method
MRF Segmentation

We consider a finite set of N voxels   1,  on a regular 3-D grid. Our aim is to assign each voxel  to one of  classesV = { …N} i K

considering the observed greylevel intensity at voxel . Both observed intensities and unknown classes are considered to be randomy  i i

fields denoted respectively by      ,  and      , . Each random variable takes its value in  , ,  where isY = {Y 1 , … Y  N } Z = {Z 1 , … Z  N } Z  i {e 1 … e  K } e  k

a -dimensional binary vector corresponding to class . Only the component of this vector is non zero and is set to 1. In a traditionnalK k k  th

Markov model based segmentation framework, it is assumed that the conditional field  given    is a Markov random field,  Z Y = y ie.

, where  (  | , ) is an energy function depending on some parameters   ( , ) and given by:H z y Φ Φ =  Φy  Φz
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This energy is a combination of two terms: the first term is a regularization term that accounts for spatial dependencies between

voxels. Denoting by

( ) the neighbors of voxel  and by the transpose of vector , we will consider a Potts model with external field:i i  z  t
i z  i

The second summation in (2) tends to favor neighbors that are in the same class when  is positive. This  parameter accounts for theβ β
strengh of spatial interaction. Other parameters are the s that are K-dimensional vectors defining the so-called external field. In this casev  i ’

  , , . The s can be related to  weights accounting for the relative importance of the  classes at site . The Φz = {v 1 … v , N β} v  i ’ a priori K i

introduction of these extra parameters in the standard Potts model enables us to integrate  knowledge on classes. The second term ina priori

(1) is a data-driven term based on intensities. For MRI we generally consider Gaussian probability density functions for each  ( |  k, p y  i z  i = e

, )  ( ), with    1 . Segmentation is then performed according to the Maximum A Posteriori principle k  Φy = g   μk σk
y  i  Φy = { , , kμk σk = …K}

(MAP) by maximizing over  the probability  ( | , ). This requires the evaluation of an intractable normalizing constant  and thez p z y Φ W  y  , Φ
estimation of the unknown parameters . A standard approach is to use EM-based algorithms to globally estimate the parameters throughΦ
the entire volume. We propose in the next subsection a LOcal and Cooperative version of EM (LOG-EM) for local segmentation

approaches.

Local Cooperative Tissue Segmentation (LOCUS-T)

We partition the volume into a set of  non-overlapping local subvolumes    and distribute one local MRF model perC V , cc ∈ C M  c

subvolume. We consider   3 tissue classes:  (Cephalo-Spinal Fluid),  (Grey Matter) and  (White Matter). The hidden tissueK = CSF GM WM

classes s take their values in  ,  ,   respectively for classes . Each local MRF model is defined by the Gibbst  i ’ {e 1 e 2 e 3} {e , e , e  CSF GM WM } M  c

distribution of energy (see Section 2.1):

where the parameters  have to be estimated. However, the external field denoted by  is not estimated but used to

incorporate information coming from structure segmentation to perform cooperation.  reduces then to , while  are the estimated{  βc }
parameters of the local Gaussian tissue intensity models. The MRF model introduces spatial dependencies between voxels in itsM  c

subvolume , providing  Because the estimation is local, some tissue classes are likely to beV  c consistent neighboring labels.

under-represented in some subvolumes, leading to poor model estimations with a classical EM scheme. We propose a LOcal and

Cooperative version of EM (LOC-EM) for spatially organized subvolumes to ensure a  We denote byglobal consistency of local models.

( ) the set of MRF models neighbouring and introduce in EM a set of cooperation and coordination mechanisms as follows:M  c M  c

Cooperation between andM  c

(M )C

-  we compute for each a model averaging the models ofModel Checking: M  c M  ̃c
( ). Then, for each class  we compute the KullBack-Leibler distance  between intensity models of and .M  c k, M  c M  ̃c

-  if  is larger than a given threshold, we compute the corrected mean and variance of class  from a linearModel Correction: k

combination of intensity models in and using  to determine the linear coefficients.M  c M  ̃c

-  from local estimations in neighbouring subvolumes we get then one intensity model per voxel by using cubicModel Interpolation:

splines interpolation between corrected models of and ofM  c

( ). This results in a non-stationary field-like approach and has the advantage to ensure smooth model variation betweenM  c

neighboring subvolumes and to intrinsically handle nonuniformity of intensity inside each subvolume.

Coordination between MRF models

-  each local EM enters in idle mode after its local initialization. A global intensity model is computed using the FuzzySystem starting:

C-Mean algorithm and then only the MRF models closest to the global model are activated.

-  when the EM algorithm for is stabilized, its neighbors are activated to perform estimation in turn. ForKnowledge spreading: M  c

already stabilized EM, model checking is performed. If it results in model correction and model interpolation, the corresponding EM are

restarted to take into account the updated models modifications.

Cooperative Tissue and Structure Segmentation (LOCUS-TS)
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We extend the approach above to segment both tissues and structures. We currently consider   9 subcortical structures: theL =
ventricular system, the Frontal Horns, the Caudate Nuclei, the Thalamus, and the Putamens. For each target structure  we define a locall

Markov model that labels voxels of its subvolume in   2 classes referred to as  and  Denoting by     M  l V  l K = structure background. s = {s , ii ∈ Vl

 the hidden classes, the energy function of is given by:} M  l

with  and   ,     for a voxel of the background or a voxel belonging to structure .s  i ∈ {e 1 e 2} = {e , e  B S } l

Integration of prior localization constraints in the MRF

Automatic structure segmentation cannot rely only on radiometry information because intensity distributions of grey nuclei are largely

overlapping.  knowledge should be introduced. A recent way to provide it is to describe brain anatomy with generic fuzzy spatialA priori

relations , . Three kind of relations are generally considered: distance, symmetry and orientation relations. They are expressed as 3D[8 9]
fuzzy maps to take into account the generic nature of the provided knowledge. Each subcortical structure is described by a set of such

generic fuzzy spatial relations provided by a brain anatomist. Fusion operators between fuzzy sets are then used to combine the knowledge

provided by each spatial relation and provide a generic Fuzzy Localization Map (FLM) of the structure in the volume. The FLM off  l

structure  is used in two ways: first it dynamically provides the structure subvolume containing the structure  by a simple thresholding.l V  l l

Second, it can be integrated as an  anatomical knowledge in the MRF framework via the external field    We denote by a priori { , iαi ∈ V  l }

the value of at voxel  and propose to introduce the prior fuzzy knowledge of the FLM as relative prior weights for each voxel , byf  l i i

setting  to , where  > 0 adjusts the influence of the external field. When , voxel  is unlikely to belongγ i

to the structure. It follows  which favors in (4) the  class. When , voxel  is likely to belong to the structure. Inbackground i

that case  and the class  is favored.structure

Cooperation and coordination mechanisms between MRF models

Let

 ( ) (resp. T →  S l

 (c)) denotes the tissue (resp. structure) subvolumes that overlap with the structure subvolume (resp. tissue subvolume ). S →  T V  l V  c

 ( ) denotes structures using  as a reference in a spatial relation. MRF models cooperate to make the segmentations gradually S →  S l l

more accurate as described below.

-  Structure models wait for their corresponding tissue models convergence to start their segmentationStructure segmentation starting:

with sufficient reliable tissue knowledge.

-  each structure  being composed of a single tissue  , we do notUpdating structure models via tissue models: l T  l ∈ {e , e , e  CSF GM WM }

estimate intensity models of class  and class  We rather compute them from tissue intensity models by setting for   structure background. i ∈
:V  l

so that improvements in tissue intensity models estimation are dynamically taken into account by structure models.

-  conversely, results from structure models are integrated in the tissueFeedback of Structure Segmentation on Tissue Segmentation:

model via the external field (see Eq. 3). We express it as the disjunctive fusion over  of posteriori probabilities  ( |  ) coming from λc l p s y ,  Ψl

structures  ofl

 (c). It follows that structure segmentation is not reduced to a second step but is combined to tissue segmentation to improve their S →  T

performances.

-  when the segmentation of structure  is updated the structure models ofUpdating Fuzzy Maps: l

 ( ) take it into account by re-computing their spatial relations with respect to , making the knowledge gradually more accurate. S →  S l l

A synthetic view of our approach is given in .Fig 1

Results
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The evaluation was performed using both phantoms and real 3T brain scans. We choose not to estimate the  parameter but consideredβ
it as   1/  with T a decreasing temperature. Experimentally  : 10  5 provided good results. We first quantitatively comparedβ = T T →
LOCUS-T to two well known approaches, FAST  of FSL and SPM5 , with the Dice similarity metric on the BrainWeb phantoms[2] [10]
with 40  of nonuniformity and different noise values (see ).  shows a visual evaluation on a very high bias field real 3T brain% Fig. 2 Fig. 3

scan .  shows that SPM5 failed, probably due to the use of a priori information hard to match with a surface coil brain acquisition.4 Fig. 3

Next, we evaluated the cooperative tissue and structure segmentations. Three experts have manually segmented on BrainWeb the left

caudate nucleus, the left putamen and the left thalamus, from which we computed a ground truth segmentation using STAPLE . [11] Fig. 4

illustrates the gradual improvements of tissue and structure segmentations provided by LOCUS-TS. At the first convergence (time  ) oft 0

EM, the Dice index is respectively 0.76, 0.77 and 0.72 for the caudate nucleus, the putamen and the thalamus. At the end, it reaches 0.76,

0.79 and 0.80.  shows qualitative evaluation of LOCUS-TS on a real 3T brain scan.Fig. 5

Discussion

Classical global approaches require to estimate an explicit bias field model to take into account the tissue intensity inhomogeneities [10

,  due to MRI hardware imperfections. This model relies on the non realistic assumption of a single multiplicative bias field affecting all12]
tissue classes equally. In contrast, the local estimation of MRF parameters in different subvolumes intrinsically handles the different

sources of tissue intensity inhomogeneities. Our approach, with specific cooperation mechanisms between local models, appears to be an

elegant and time efficient way to ensure global consistency of local models for tissue segmentation. It shows a significantly higher

robustness to noise when compared to SPM5 (see ), and more generally comparable results for a reduced computing time, namely,Fig. 2

approximately 4min for LOCUS-T and respectively 8min and 14min for FSL and SPM5 on a 4Ghz Pentium, 1Go RAM. It illustrates that

easy-to-segment subvolumes converge quickly, allowing the system to focus on other areas. LOCUS-T appears to be robust to very high

intensity inhomogeneities as well (see ), while SPM5, which uses an a priori atlas, fails in the segmentation and FSL does notFig. 3

estimate a correct bias field. In addition, instead of considering structure segmentation as a postprocessing, we propose to combine tissue

and structure segmentations in a cooperative way: tissue and structure models are mutually updated, making both models gradually more

accurate and providing optimal results (see  and ). Improvements are particularly significant for structures such as thalamus orFig. 4 5

putamen for which contrast to noise ratio is low (see Dice index improvement in Section 3). As regards the additional use of a priori

anatomical knowledge, standard structure segmentation approaches rely on a global atlas. Atlas warping methods are classicaly time

consuming and more or less limited due to inter-subject variability.  introduced an atlas knowledge via the interaction energy term in a[7]
MRF. To be tractable, this solution considers that only the first order conditional dependence is important. This simplifying assumption,

which reduces the Markov property, is not required with our approach. We consider instead an  description of brain anatomy baseda priori

on fuzzy spatial relations. This was introduced in  with a region-based approach, while it is used in  in a deformable model[8] [9]
framework. However, the image preprocessing steps required make this approach difficult to apply on high field images, with high

intensity nonuniformity, or on non homogeneous structures such as putamen. Our solution consists in introducing fuzzy localization

constraints as relative prior weights for each voxel in the MRF framework via an external field term. It does not suffer from such

difficulties as can be illustrated on structures such as putamen, and is still time efficient (10 to 15min). Note that currently LOCUS

segments only a subset of the 37 structures segmented by the method proposed in . To conclude, the robustness and modularity of our[7]
LOCUS approach appear as interesting features when handling complex segmentation tasks. Efficiency is improved both in term of results

quality and computing time.

Footnotes:
4

This image was acquired with a surface coil which provides a high sensitivity in a small region (here the occipital lobe) for functional imaging

applications.
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Fig. 1
Cooperative LOCUS-TS approach: for tissues (left), a LOG-EM cycle is distributed to each subvolume. For structures (right), each structure

subvolume is associated to an EM cycle which cooperates with tissues.

Fig. 2
Comparison of LOCUS-T, FSL and SPM5 on the BrainWeb phantoms.

Fig. 3
Tissue segmentations provided by SPM5 (b), FSL (c) and LOCUS-T (d).

Fig. 4
Segmentation by LOCUS-TS on BrainWeb(a), 3D reconstruction(b), gradual improvement of putamen segmentation(c) and corresponding

tissue segmentation(d).

Fig. 5
Segmentation by LOCUS-TS on a real 3T image(a), 3D structure reconstruction(b), gradual improvement of thalamus segmentation(c) and

tissue segmentation(d).


