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Introduction

This manuscript presents a review of our contributions to research in
diffusion magnetic resonance imaging (MRI) methods over the past
decade. It is organized in four chapters presenting original research,
and a concluding chapter in which we discuss the perspectives.

In Chapter 1, we present mathematical methods we developed to
represent and process the signal in q-space as well as B-tensor en-
coding. We show that proposing an adapted, continuous signal ex-
pansion is important since it may provide a compact representation
useful for denoising, inverse problem solving and efficient sampling.
In continuation, observing that commonly used metrics are derived
from rotation-invariant features, we also proposed a mathematical
framework to systematically characterize a family of such invariants.

In Chapter 2, we consider biophysical models, which are non-
linear models relating tissue properties to the diffusion signal. The
estimation of model parameters is in general ill-posed; however the
accuracy of estimated parameters can be improved with a proper ac-
quisition design. The use of generalized diffusion-encoding gradient
waveforms have shown promising results in this context. The opti-
mization of these waveforms is however tedious due to the possibly
infinite dimension of the space of admissible gradient waveforms.
We developed two family of methods, based on discrete sampling
and sparse representation in the one hand, and on an optimization
framework that increases the sensitivity to specific microstructure
parameters compared to using the pulsed gradients as in the origi-
nal Stejskal-Tanner sequence in the second hand.

In Chapter 3, we were interested in the reconstruction of brain
structural connectivity using tractography. We believe validation is
key to a larger endorsement by the community and its translation
towards clinical applications. We have organized several competi-
tions gathering international teams to exchange and compare their
solutions to some of the many challenges raised by tractography
and ultimately the reconstruction of a quantitative, microstructure-
informed connectome. As a by-product of these competitions, we
have released several open-source softwares and datasets to provide
the community with easily accessible tools to validate their methods,
using simulated data with a ground truth.

In Chapter 4 we present two clinical applications to which we
contributed. The first application is related to diffusion MRI trac-
tography in patients with brain tumour. We proposed estimation
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method of the diffusion tensor to mitigate the effect of edema sur-
rounding certain brain tumours. The second application concerns
diffusion MRI of the spinal cord in patients with multiple sclerosis.
We compared pre-processing methods for the correction of image
distortions and evaluated the test-retest repeatability of quantitative
diffusion MRI of the spine, an important feature for the longitudinal
analysis of tissue changes induced by multiple sclerosis (MS).

Last, in Chapter 5, we present some perspectives and their as-
sociated challenges in the field of microstructure imaging and struc-
tural connectivity with MRI. The rapid uptake of machine learning in
this area has provided successful practical response to some of these
problems; this has also brought legitimate questions on the poten-
tial biases or inaccuracies that may be introduced by an inadequate
model or training. We propose to contribute to this emerging field,
building upon our expertise in simulation and mathematical repre-
sentations in diffusion MRI. We will also develop rotation invariant
reconstruction methods in microstructure, taking into account the
full information in the spherical diffusion signal. Last, in order to
fully benefit from the many degrees of freedom in gradient wave-
forms, we will propose a mathematical framework for the represen-
tation of this acquisition domain and facilitate acquisition design.



1
Adapted representation and sampling

The diffusion-weighted signal attenuation depends on the encoding
gradient and is related to the diffusion properties of water molecules
and the microscopic organization of biological tissues within which
they diffuse. To exploit information in the signal, different families of
mathematical models have been proposed, some of which aim at esti-
mating general properties such as the ensemble average propagator or
the diffusion tensor distribution. For these methods, we have shown
that proposing an adapted, continuous signal expansion in q-space is
important since it may provide a compact representation useful for
denoising, inverse problem solving and efficient sampling (Caruyer
and Deriche, 2012b; Merlet et al., 2011; Caruyer et al., 2013; Fick et al.,
2016; Truffet et al., 2019). More recently, we have extended these q-
space representations to the context of multidimensional diffusion en-
coding, to study the properties of the signal and give recommenda-
tions for sampling the space of axisymmetric B-tensors (Bates et al.,
2020). Last, observing that commonly used metrics are derived from
rotation-invariant features, we proposed a mathematical framework
to systematically characterize a family of such features (Caruyer and
Verma, 2015), which could be used as building blocks for elaborating
new biomarkers.

1.1 Introduction

Digital signal processing emerged in the second half of the twentieth
century and has found applications in audio, image or video process-
ing to name a few. Each of these applications requires specific adap-
tations due to the mathematical domain on which the signal is de-
fined. The main objectives of signal processing range from harmonic
analysis, filtering to sampling and low dimension (sparse) represen-
tations. Similarly, in diffusion MRI different mathematical domains
need to be considered, depending on the acquisition strategy and
applications. High angular resolution diffusion imaging (HARDI)
makes use of signal and fiber orientation distribution function repre-
sentations on the sphere; the natural dual representation is spherical
harmonics. In continuation, we have worked on natural representa-
tions for the signal in q-space and B-tensor encoding. We present in
this chapter applications to signal regularization and optimal sam-
pling. Last, we show how to take into account the geometry of the
space by defining rotation-invariant features in HARDI.
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1.2 Adapted representations for q-space diffusion MRI

The diffusion properties of water molecules within a voxel V can be
summarized by the so-called ensemble average propagator (EAP)

P(r; τ) =
∫
V

p(r + r0; r0, τ)dr0,

which is the density of the average spin displacement over a time
period τ.

0 TE/2 TE

RF 90° RF 180°

t

magnetic gradient

RF pulses

signal echo

Figure 1.1: Simplified chronogram of
a spin-echo magnetic resonance se-
quence, with a pair of pulsed magnetic
gradients. δ is the pulse duration, while
∆ denotes the pulse separation.

In a spin-echo MRI sequence, a pair of pulsed diffusion-encoding
gradients can be added to measure diffusion (see Fig. 1.1). Under the
short pulse assumption (Callaghan, 1993), the signal attenuation E is
related to the propagator via a Fourier transform

E(q) =
∫

P(r; τ) exp(−2iπq · r)dr, (1.1)

where the diffusion time τ and the wavevector q are defined by

τ = ∆ − δ/3 and q = γδg.

To exploit the link between the signal and the propagator, sev-
eral strategies had been proposed – either based on the discrete
Fourier transform and associated sampling of E(q) on a regular grid
(Wedeen et al., 2005), or by using intermediate continuous represen-
tations (Assemlal et al., 2009; Cheng et al., 2010; Descoteaux et al.,
2011; Özarslan et al., 2013; Hosseinbor et al., 2013; Caruyer and De-
riche, 2012a). We present in this section several contributions to the
latter strategy and their impact on optimal acquisition design.

Laplacian-regularized MAP-MRI

Mean apparent propagator (MAP) MRI is a method based on the pro-
jection of the signal E(q) onto an orthogonal basis of 3 dimensional,
homogeneous Gauss-Hermite polynomials (Özarslan et al., 2013)

Ea(q) =
Nmax

∑
N=0

∑
(n1,n2,n3)∈EN

an1n2n3 ψn1(qx; ux)ψn2(qy; uy)ψn3(qz; uz),
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where a is the vector of coefficients, uj are scale factors and the set
EN = {(n1, n2, n3) s.t. n1 + n2 + n3 = N}. The Gauss-Hermite poly-
nomial of degree n is defined as

ψn(q; u) =
1√

2n+1πn!u
exp

(
− q2

2u2

)
Hn(

q
u
). (1.2)

The basis is adapted (orientation and scale) to the diffusion proper-
ties in each voxel, by first fitting a diffusion tensor model. The prop-
agator, together with quantitative parameters such as the return to
the origin probability (RTOP), return to the axis probability (RTAP)
and return to the plane probability (RTPP), can be directly estimated
from the coefficients a.

Observing that this approach is subject to noise and usually re-
quires a large number of samples for an accurate estimation, we
proposed to add a regularization constraint based on the norm of
the Laplacian operator (Fick et al., 2016), a strategy that had been
used successfully for other types of signal representations in diffu-
sion MRI (Descoteaux et al., 2007; Caruyer and Deriche, 2012a). The
regularized least squares estimation problem is

ã = arg min
a

K

∑
k=1

(E(qk)− Ea(qk))
2 + λ

∫
|∆Ea(q)|2dq.

We show that the Laplacian has an analytical and compact expres-
sion in the coefficients in the basis, which incorporates seamlessly in
the least squares estimation as a quadratic regularization term. In
particular, this can be combined with the reconstruction under pos-
itivity constraint proposed in the original method (Özarslan et al.,
2013).

a b c

Figure 1.2: Example of a synthetic sig-
nal corrupted with Rician noise (SNR =
25) corresponding to a two-tensor
model; the ground truth signal is repre-
sented (a) and the acquisition scheme,
comprising 60 diffusion-weighted mea-
surements over three shells (b =
1000, 2000, 3000 s mm−2) is overlaid. We
compare the reconstruction and inter-
polation with MAP-MRI without (b)
and with (c) Laplace regularization.

The Laplacian-regularized solution is more robust to noise than
the signal reconstructed taking into account the positivity constraint
solely, as illustrated on Fig. 1.2. We also demonstrate that, beyond
the EAP and derived scalar parameters (RTxP), reconstruction with
MAPL can be used as a pre-processing step for denoising, interpo-
lating and extrapolating the signal prior to biophysical model fitting.
With this framework, we show that indices of axon diameter from
the Axcaliber model (Assaf et al., 2008) and the orientation disper-
sion index from the NODDI model (Zhang et al., 2012) can both be
estimated more accurately than fitting these models to the original
data. MAPL is implemented in Dipy1. 1 DiPy, an open-source software library

for medical image processing https://

dipy.org/

https://dipy.org/
https://dipy.org/


12 emmanuel caruyer

1.3 Multi-dimensional diffusion MRI

In the previous section, we saw that the ensemble average propaga-
tor (EAP) can be reconstructed with q-space diffusion MRI. Note that
since it is ensemble average, this description lacks to capture the full
heterogeneity of diffusion properties in a voxel. To circumvent this,
several approaches were proposed to model the micro-environments
in a voxel with a diffusion tensor distribution, f (D), that corre-
sponds to a continuum of diffusive compartments – each of which is
modeled with a diffusion tensor (Jian et al., 2007; Zhang et al., 2012;
Scherrer et al., 2016). The average diffusion tensor, which is the first
order moment of f (D), is equivalent to the diffusion tensor defined
classically. Higher order moments of the distribution give access to
new and useful indices to characterize this heterogeneity.

Recently, it was shown that conventional diffusion encoding, us-
ing pulsed magnetic field gradients with constant orientations, are
unable to reconstruct the full covariance of this distribution (Westin
et al., 2016; Topgaard, 2017; Reymbaut et al., 2021). Q-space trajec-
tory imaging, employing gradient waveforms g(t) with time-varying
orientation, was proposed to access these parameters, from which we
can define new indices such as the microscopic fractional anisotropy
(µFA) or the orientation dispersion (OD). Within this framework,
the signal attenuation is related to the diffusion tensor distribution
through a Laplace transform

E(B) =
∫
S+

n

f (D) exp(−B : D)dD,

where the integral is defined on the space of positive semi-definite
matrices S+

n . The matrix B above, generally referred to as the B-
tensor, summarizes the acquisition parameters. It is defined from
the gradient waveform g(t) by

B =
∫ TE

0
q(t)q(t)Tdt, where q(t) = γ

∫ t

0
g(t′)dt′.

In the notations above, TE is the echo time and γ is the proton gyro-
magnetic ratio.

From a numerical perspective, contrarily to the Fourier transform,
the inverse Laplace transform is an ill-posed problem (Topgaard,
2017). Similarly to what we contributed to develop in q-space, we
proposed an orthogonal basis for representing the signal E(B) (Bates
et al., 2020). Observing that most methods proposed for white mat-
ter imaging employ encoding B-matrices with cylindrical geometry
(Westin et al., 2016; Topgaard, 2017), we restricted the representation
to the 4 dimensional space of symmetric positive matrices with cylin-
drical geometry, meaning that two of the three eigenvalues are equal.
The basis we propose can be seen as an extension of the spherical po-
lar Fourier basis (Assemlal et al., 2009):

E(B) =
P

∑
p=0

N

∑
n=0

L

∑
ℓ=0

ℓ

∑
m=−ℓ

cpnℓmXp(b||)Xn(b⊥)Ym
ℓ (θ, ϕ) (1.3)
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where b|| and b⊥ are the axial and radial eigenvalues of B, respec-
tively, and θ, ϕ are the polar and azimuthal angle defining the axis of
symmetry of B. The functions Xn are defined by

Xn(b) =

√
n!

ζ3(n + 2)!
exp(− b

2ζ
)L2

n(
b
ζ
)

where L2
n are the n-th generalized Laguerre polynomials of param-

eter 2, ζ is a scale factor, Ym
ℓ (θ, ϕ) are the real spherical harmon-

ics (SH) of maximum degree L (Descoteaux et al., 2007) and N is the
maximum order. Using quadrature formulas, we also derive a tight
sampling scheme for the truncated expansion (the minimal number
of samples required is equal to the dimension of the basis) and an
analytical reconstruction scheme. This provides an analytical, nu-
merically stable estimation framework for the coefficients cpnlm in
Eq. 1.3.

2

4

6

8

0 2000 4000
0

2000

4000

Figure 1.3: Angular band-limit of
the signal (worst case across all
microstructural substrates considered)
represented versus the eigenvalues of
the B-tensor. The angular resolution
can opportunely be tuned to the shape
of the B-tensor. Adapted from Bates
et al. (2019).

Based on a dataset of Monte-Carlo simulated signals generated
with Camino (Hall and Alexander, 2009), we observe that the trun-
cated representation in this basis to low orders (P = 6 and N = 3
for b|| and b⊥, respectively) provide a close approximation and inter-
polation of the signal. We can also further observe that the angular
bandwidth, L, can be adapted to (b||, b⊥): intuitively, the signal as
a function of (θ, ϕ) has a sharper profile when the B-tensor is ei-
ther linear (b|| ≫ b⊥) or planar (b|| ≪ b⊥); the signal is otherwise
smoother when b = Tr(B) → 0 (see Fig. 1.3). This is an opportunity
to further reduce the number of acquisitions, by adapting the num-
ber of directions to the angular resolution. In total, we show that
a sampling scheme with a minimal number of samples K = 280 is
sufficient for an accurate reconstruction of the signal in this basis, for
B-tensor eigenvalues up to 2000 s mm−2.

1.4 Rotation-invariant measures from diffusion data

Equally important to the proper mathematical representation of the
signal is the ability to extract meaningful information from this rep-
resentation and construct imaging biomarkers. A first step towards
this is the definition of rotation-invariant features; in diffusion ten-
sor imaging, several such measures were developed, such as the
fractional anisotropy (FA), the mean diffusivity (MD) and beyond
(Westin et al., 2002; Ennis and Kindlmann, 2006). When it comes to
characterize complex white matter with high angular resolution dif-
fusion imaging (HARDI), the angular stucture is either represented
using higher order tensors (Barmpoutis et al., 2012; Özarslan and
Mareci, 2003) or spherical harmonics (Frank, 2002; Descoteaux et al.,
2007). Some groups had proposed to extract rotation invariant mea-
sures from HARDI (Gur and Johnson, 2014; Schwab et al., 2013;
Ghosh et al., 2012a,b), but there had been no systematic search for an
independent set of invariants.

We introduced a method to derive all rotation-invariant features
expressed as an order-t polynomial in the coefficients of the rank-L
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Figure 1.4: Rotation invariant polyno-
mials of different degrees, t, computed
from the SH coefficients at different
ranks, L. Here, the SH coefficients rep-
resent the apparent diffusion coefficient
(ADC) profile; note that the first invari-
ant (L = 0, t = 1) is similar to the mean
diffusivity. Adapted from Caruyer and
Verma (2015).

spherical harmonics representation (Caruyer and Verma, 2015). We
show that finding such polynomials is equivalent to solving a large
system of equations; solutions were found numerically with an effi-
cient implementation taking advantage of the sparse structure of the
linear system of equations. From the set of solutions, using a pruning
algorithm, we isolated a family of 12 (respectively 25) algebraically
independant invariants for the spherical harmonics representation
up to rank L = 4 (respectively L = 6). These invariant features show
unique contrast in white matter (see Fig. 1.4). On a test-retest dataset,
we showed that these new measures are reproducible across repeti-
tions of the same subject, and exhibit subject-specific features. This
set of invariants offers a new rotation-invariant representation of the
HARDI signal, from which biomarkers could be constructed.

1.5 Conclusion

In this chapter, we have shown that understanding the structure of
the signal is important, irrespective of the application. This has a
positive impact on acquisition design, pre-processing and interpre-
tation of the diffusion signal. The methods we derived are based on
very general concepts (band-limitedness of the diffusion signal, reg-
ularity, rotation invariance). This prevents the rapid obsolescence of
data acquired or processed using these concepts.



2
Microstructure-driven acquisition design

Biophysical modeling methods in diffusion MRI propose to relate the
diffusion signal to microscopic tissue properties within the voxel. This
family of methods therefore promise to provide very specific biomark-
ers and have been increasingly employed in clinical research for this
reason. The estimation of model parameters is however in general
ill-posed and the accuracy of estimated parameters can be improved
with a proper acquisition design. The use of optimized diffusion-
encoding gradient parameters and in particular generalized gradient
waveforms have shown promising results in this context. This opti-
mization is however tedious due to the possibly infinite dimension of
the space of admissible gradient waveforms. In a first attempt to bet-
ter characterize this space of gradient waveforms, we have proposed
a dictionary learning and optimal sampling scheme, showing that we
could successfully sub-sample the signal acquired for a set of gradient
waveforms and yet recover the full signal as in the original dictionary
(Truffet et al., 2019). For the specific problem of biophysical modeling,
we have proposed in continuation an optimization framework (Truffet
et al., 2020), showing that we can increase the sensitivity to specific
microstructure parameters compared to using the pulsed gradients as
in the original Stejskal-Tanner sequence. Being based on Monte-Carlo
simulations, this framework is general and can be adapted to a large
family of models and parameters of interest.

2.1 Introduction

When the diffusion is restricted, the expression of the spin-echo at-
tenuation is relatively well known for simple confining geometries
such as parallel planes, spheres or cylinders. While analytical formu-
las are known for pulsed gradients (Neuman, 1974; Callaghan, 1995),
computing the response to generalized gradient encoding waveforms
is done either via the matrix formalism (Callaghan, 1997) or the mul-
tiple correlation function approach (Grebenkov, 2007). For the hin-
dered, extra-cellular space though, except in specific, periodic con-
figurations (Moutal et al., 2020), the only method to predict the diffu-
sion signal is usually via Monte-Carlo simulations (Hall and Alexan-
der, 2009; Rafael-Patino et al., 2020). Besides, for arbitrary gradients,
the acquisition domain is complex since the space of admissible gra-
dient waveforms is virtually infinite dimensional. This makes the
notion of regularity of the signal harder to capture than for paramet-
ric acquisition domains such as q-space or B-tensor encoding.
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In this section, we first present a work that constructs a represen-
tation of the signal corresponding to non parametric gradient wave-
forms; this makes use of sparse transform and dictionary learning.
Then, using Monte-Carlo simulations, we propose a framework to
optimize gradient waveforms towards a higher Fisher information
for specific microstructure parameters of interest.

2.2 Sparse dictionary learning & optimal waveforms selection

-80

0

80

g(
t)

(m
T/

m
)

-80

0

80

0 TE/2 TE
-80

0

80

Figure 2.1: Example of the pseudo-
random gradient waveforms used for
the training and testing of sparse repre-
sentation with dictionary learning. As a
proof-of-concept, we propose to look at
the signal response for piecewise con-
stant gradient waveforms, taking values
in the set {−gmax, 0, gmax}.

In this work, we proposed to start from a discrete set of K pseudo-
random gradient waveforms (see Fig. 2.1) and evaluate the possi-
bility to sub-sample the corresponding signal, while being able to
predict the unseen data (Truffet et al., 2020). Using a set of ex-
ample microstructure configurations modeling white matter fibers,
that consist on parallel cylinders with random packing and gamma-
distributed radii, we built a testing and training dataset of Monte-
Carlo simulated signals using Camino (Hall and Alexander, 2009).
The training dataset was used to learn a sparse representation (Mairal
et al., 2010), D, by optimizing

arg min
xn ,D

N

∑
n=1

(
1
2
||yn − Dxn||22 + λ||xn||1

)
, (2.1)

where yn is the K-dimensional signal vector corresponding to the
microstructure configuration n, D is the K × M learnt dictionary and
xn is the M-dimensional vector of coefficients, the sparsity of which
is promoted with the ℓ1 regularization penalty term in Eq. 2.1. The
regularization weight was fixed to λ = 0.15 and the number of atoms
(the size of the dictionary) was set to M = 200.

As a proof-of-concept, we propose to consider gradient waveforms
gk defined with a constant direction, uk, modulated by a pseudo-
random piecewise constant function, taking values in {−gmax, 0, gmax}
(see Fig. 2.1). We generated 65 such temporal functions; combined
with 40 directions uniformly spread on a sphere (Jones et al., 1999;
Caruyer et al., 2013) this makes a total of K = 2600 gradient wave-
forms. We then find the best subset of measurements, Ω ⊂ {1, . . . , K}
minimizing the correlation between lines of the dictionary:

arg min
Ω

f (Ω) = ∑
k,l∈Ω

(
M

∑
m=1

D̃kmD̃lm

)2

,

where D̃ is the dictionary D with its lines centered and reduced.
With this sub-sampling strategy, we show on our testing data that

the coefficients x estimated with a fraction of the original measure-
ments, |Ω| ≪ K, and the corresponding, extracted dictionary DΩ,
can be used to reconstruct the full signal with y = Dx with high
accuracy. The root mean squared error (RMSE) is about 0.005 for
the signal reconstructed using a number of |Ω| = 30 measurements.
These results suggest that, despite the apparent complexity of the
sampling domain and the diffusion-weighted attenuation, a sparse
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dictionary learning based representation can represent the regular-
ity of the signal.

2.3 Optimization of microstructure-sensitive waveforms

Besides representing the signal, an important problem is that of opti-
mizing gradient waveforms for the estimation of biophysical model
parameters. In this work, we separated the orientation from the
diffusion encoding by proposing a rotation-invariant method based
on a genetic algorithm to maximize the sensitivity of the signal to
specific microstructure features of interest (Truffet et al., 2020). We
constructed microstructural substrates ready for Monte-Carlo simu-
lation (Rafael-Patino et al., 2020) so that partial derivatives with re-
spect to microstructure parameters, such as the mean axon radius or
the intra-axonal volume fraction (IAVF), can be approximated using
finite differences. From these derivatives, we can in turn compute
the Fisher information associated to a specific acquisition protocol.

Figure 2.2: Example of a substrate that
allows simulation of both intra-axonal
and extra-axonal compartments. The
procedure to study the local depen-
dence (partial derivative) with respect
to the IAVF is illustrated: the base con-
figuration is transformed by scaling the
voxel and the position of the cylinders,
but without scaling the cylinder’s radii.
Adapted from Truffet et al. (2020)

Previous studies had targeted the same objective (Alexander, 2008;
Drobnjak et al., 2010; Drobnjak and Alexander, 2011; Drobnjak et al.,
2016); a major difference is that these prior studies were based on
analytical models of the diffusion signal (Assaf and Basser, 2005; As-
saf et al., 2008), where the diffusion in the extra-axonal compartment
is approximated by an anisotropic Gaussian diffusion. In contrast,
Monte-Carlo simulations offer greater flexibility on the definition of
the substrate and a more realistic signal model (Rensonnet et al.,
2019; Rafael-Patino et al., 2020).

(a) (b) (c)

(d)

Figure 2.3: The cross-over is an impor-
tant operation of the genetic algorithm;
here we illustrate the result of the cross-
over between two gradient waveforms,
g1(t) and g2(t). NB: only the part of
the waveform for t ∈ [0, TE/2] is rep-
resented, the second part is simply de-
fined by symmetry. Adapted from Truf-
fet et al. (2020).

The objective was to optimize a set of diffusion encoding gradi-
ent waveforms, g(t) = g(t)u, defined in a constant direction, u.
The set of directions were chosen to spread the sphere uniformly
(Jones et al., 1999), and the optimization was performed uniquely
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on the gradient waveforms g(t). Since the optimization domain is
high dimensional, we anticipated a high probability of local minima;
we therefore performed a stochastic optimization based on a genetic
algorithm. Waveforms can be generated pseudo-randomly using a
Markov chain (see for instance Fig. 2.3). For the genetic evolution of
the algorithm, cross-overs (generation of a new waveform as a "mix-
ture" of two parent waveforms) are defined as illustrated on Fig. 2.3.

Interestingly, the b-value associated to the waveforms provides a
first approximation on the optimality of the waveform (see Fig. 2.4);
but there also remains a large variability of Fisher information for a
given b-value. We decided to limit the search in the b-value range
[1500, 3100] s mm−2. The genetic algorithm consisted in "genera-
tions" of 100 waveforms; the first generation contains only random
waveforms, while starting from generation 2, most waveforms are
obtained via cross-over of pairs of waveforms from the previous gen-
eration. After only 30 generations, we observe that the distribution
of Fisher information stabilizes. The best candidate waveforms pro-
vide significantly higher Fisher information (around 1900) than the
best PGSE acquisitions (around 1300).

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0
0

2 0 0

4 0 0

6 0 0

8 0 0

Figure 2.4: Fisher information as a func-
tion of the b-value; the bars correspond
to the spread in Fisher information over
100 randomly generated waveforms for
each b-value. Adapted from Truffet
et al. (2020).

These results show that we can optimize waveforms and obtain, as
a result, a better sensitivity to the IAVF than what was possible with
PGSE. Since the waveforms are pseudo-randomly generated, inter-
preting the resulting optimized waveforms is somewhat complicated
though; a local search optimization (gradient descent) would be in-
teresting to further the optimization in this respect.

2.4 Conclusion

While representing the signal as a function of diffusion-encoding
gradient waveforms or trajectories is complex, we have proposed a
method using dictionary learning offering a compact representation
of the signal. With this dictionary-based representation, we show
that the signal acquired for a pseudo-random set of waveforms can
be optimally sub-sampled, in such a way that unseen data can be
predicted with good precision. In continuation, we have proposed a
framework for the generation of diffusion encoding gradient wave-
forms optimized for the estimation of microstructure parameters of
interest. The method is illustrated for the estimation of the IAVF in
a model of white matter fibers; but since the framework makes use
of Monte-Carlo simulations it can be generalized to a large family of
substrates and microstructure parameters.
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Validation of diffusion MRI-based tractography

We believe validation of tractography is key to a larger endorsement
by the community and its translation towards clinical applications.
We have organized several competitions gathering international teams
to exchange and compare their solutions to some of the many chal-
lenges raised by tractography and ultimately the reconstruction of a
quantitative, microstructure-informed connectome. As a by-product
of these competitions, we have released several open-source softwares
and datasets to provide the community with easily accessible tools to
validate their methods, using simulated data with a ground truth.

3.1 Introduction

The reconstruction of major white matter fiber bundles using trac-
tography was first proposed 30+ years ago (Mori et al., 1999); since
then, the technique had a major impact on our knowledge of brain
anatomy (Mori et al., 2005) and how it is affected by pathology. This
method relies on the indirect relationship between the local, voxel-
wise diffusion-weighted measurements and the axonal bundles path-
ways connecting distant grey matter regions. The reconstruction of
these pathways is the result of a complex processing pipeline, the
major steps of which are summarized in Fig. 3.1.

Local diffusion/fiber modeling

Acquisition design

DWI preprocessing

Tractography

Figure 3.1: A typical diffusion MRI-
based tractography pipeline; only the
major steps are represented here. There
is a large variability in tractography
outcomes.

Due to the many steps involved in a tractography pipeline, there
is a large variability in the reconstructed tractograms, which raises a
question of reproducibility and reliability of the technique (Jones and
Cercignani, 2010; Thomas et al., 2014; Maier-Hein et al., 2017; Rheault
et al., 2020; Schilling et al., 2021). In this context, several validation
methods have been proposed, either relying on physical phantoms
(Fillard et al., 2011; Campbell et al., 2005; Guise et al., 2016), nu-
merical models (Close et al., 2009; Neher et al., 2014; Caruyer et al.,
2014), biological tracers (Delettre et al., 2019; Girard et al., 2020) or
postmortem dissection (Zemmoura et al., 2014; Hau et al., 2017), see
(Drobnjak et al., 2021) for a detailed review.

Over the last decade, we have contributed to this effort by orga-
nizing several competitions gathering international teams; we also
released open-source software and datasets to provide the commu-
nity with flexible validation methods and tools for the reconstruction
of structural connectivity. This chapter proposes a tour of these con-
tributions, putting them in perspective.
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3.2 Diffusion MRI reconstruction challenges

Following the success of previous editions (MICCAI Fibercup chal-
lenge (2009) (Fillard et al., 2011), MICCAI DTI tractography chal-
lenge (2011 and 2012) (Pujol et al., 2015), IEEE ISBI Workshop on
HARDI reconstruction (2012) (Daducci et al., 2014a)), we co-organized
several diffusion reconstruction challenges1,2,3 in a collaborative ef- 1 The HARDI reconstruction chal-

lenge (2013), http://hardi.epfl.ch/

static/events/2013_ISBI/
2 The ISMRM tractography challenge
(2015) http://tractometer.org/

ismrm_2015_challenge/
3 The MICCAI diffusion-simulated
connectivity (DiSCo) challenge (2021)
http://hardi.epfl.ch/static/

events/2021_challenge

fort to evaluate tractography algorithms. A common objective of
these challenges was to propose a collection of simulated datasets
with a known ground truth. Concomitant to the shift of interest of
the community and the progress made in simulation, the focus of
these three editions evolved towards the evaluation of quantitative,
microstructure-informed tractography. We summarize in this section
the organization and conclusions of these three challenges.

The HARDI reconstruction challenge (ISBI 2013)

The objective of the 2013 HARDI reconstruction challenge was to
evaluate the effects of the estimation accuracy of intra-voxel fiber
configurations on the quality of subsequent connectivity analyses.
We created a digital phantom of spherical shape comprising 27 fiber
bundles, connecting 53 regions together (see Fig. 3.2). Participants
requested diffusion-weighted data customized to their own acqui-
sition scheme within a predefined budget, the diffusion weighted
images were simulated using a multicompartment diffusion model
(see Section 3.3 for a detailed description) and corrupted with Rician
distributed noise.

Figure 3.2: The 27 fiber bundles geome-
try of the ISBI 2013 HARDI reconstruc-
tion challenge and the "cortical" con-
nected regions (outlined in white).

In total, the challenge received 17 submissions from 8 different
groups; the task was to detect and estimate intra-voxel fiber orien-
tations. We evaluated the impact on the quality of subsequent con-
nectivity analyses using the Tractometer4 (Côté et al., 2013). In a

4 The Tractometer – a tractography eval-
uation tool http://tractometer.org/

nutshell the strategy is to perfom tracking with standard algorithms
in the literature, and compute statistics (average, best/worst case) on
the computed tractograms, such as the number of valid/invalid bun-
dles. We also computed two scores measuring the local accuracy of
the fiber orientation estimates: the correct estimation of the number
of estimated fiber compartments and their angular precision.

One of the main findings (Houde et al., 2014) of this edition is that
we cannot predict the performance of tractography looking solely at
the average score in local reconstruction. This suggests that more
than an average performance in local fiber direction, deciphering lo-
cal fiber orientation in key areas is critical for tractography. When
comparing the different strategies of reconstruction, we also noticed
that denoising had a positive impact on tractography. Another im-
portant conclusion of this challenge is that even using ground truth
fiber orientation distributions (FOD) as an input, all tractography
pipelines find a ratio of nearly 3 invalid bundles reconstructed per
valid bundles.

The 2013 challenge was based on artificial fiber geometries. This

http://hardi.epfl.ch/static/events/2013_ISBI/
http://hardi.epfl.ch/static/events/2013_ISBI/
http://tractometer.org/ismrm_2015_challenge/
http://tractometer.org/ismrm_2015_challenge/
http://hardi.epfl.ch/static/events/2021_challenge
http://hardi.epfl.ch/static/events/2021_challenge
http://tractometer.org/
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has provided a valuable feedback on the weaknesses of current trac-
tography method, however the applicability of these findings to in
vivo white matter tractography needed to be confirmed.

The ISMRM 2015 tractography challenge

To get an evaluation of tractography in a more realistic scenario, we
proposed in the 2015 edition to simulate images starting from white
matter fiber trajectories obtained with tractography in a real subject
(Maier-Hein et al., 2017). After a full brain tractography of one of the
HCP subject (Sotiropoulos et al., 2013), 25 fiber bundles were man-
ually segmented by an anatomical expert (see Fig. 3.3), by defining
inclusion and exclusion regions of interest (ROI). From these, T1-
and diffusion-weighted images were simulated with Fiberfox (Neher
et al., 2014).

Figure 3.3: The ground truth fibers
of the ISMRM 2015 tractography chal-
lenge, comprising projection, associa-
tion and commisural fibers. A focus is
shown on (from left to right) the left
frontopontine tract (sagittal view), the
left uncinate fasciculus (axial view) and
the anterior commissure (coronal view).

This challenge gathered 20 team who submitted 96 tractography
results in total. In line with the findings of the previous edition, the
main outcome of the challenge was that most tractography methods
were able to detect the 25 ground truth bundles, at the cost of a very
large number of false positives. In trying to explain these false posi-
tives, we identified several regions where more than 3 fiber bundles
were gathering – something which has later been referred to as the
bottleneck effect (Schilling et al., 2022).

This challenge has exhibited several weaknesses in tractography
as a detection problem. In the meantime, in a connectomics ap-
proach, there has been a growing interest in quantifying the con-
nection strength between two regions, taking advantage of the mi-
crostructure information embedded in the MRI signal.

The 2021 DiSCo (diffusion-simulated connectivity) challenge

In order to evaluate quantitative connectivity reconstruction meth-
ods, we designed a collection of 3 phantoms (for training, valida-
tion and testing respectively) comprising in the order of 12 000 nu-
merical tubular hollow fibers, with diameters ranging from 1.4 to
4.2 µm. From this model of microscopic fibers with macroscopic con-
nections (each phantom fits in a 1 mm diameter sphere) connections
(see Fig. 3.4, diffusion-weighted images of dimension 40 × 40 × 40
were synthesized using Monte-Carlo simulation (Rafael-Patino et al.,
2021).
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Figure 3.4: The ground truth "cortical"
regions, connectivity matrix and fibers
of the DiSCo challenge testing data.3.3 Phantomas: simulated diffusion MR phantom for the eval-

uation of structural connectivity pipelines

For the needs of the ISBI 2013 challenge, we needed a flexible so-
lution to create user-defined fiber geometries with some degree of
control and simulate corresponding diffusion-weighted images. In
contrast, existing solutions, such as the numerical fiber generator
(NFG) (Close et al., 2009), had been designed to provide a fully au-
tomated solution to the creation of phantom geometries. After the
challenge, we decided to make the code open-source: Phantomas
(Caruyer et al., 2014) was first released in January 2014.

In Phantomas, a fiber bundle is defined as a tubular-shape object
wrapped around its centerline; the trajectory of the centerline is fully
specified by a set of control points using piecewise polynomials. A
web application5 was also implemented to help define fiber bundle 5 A web interface to help de-

fine fiber bundle trajectories
http://emmanuelcaruyer.com/

phantomas-web/

trajectories with a graphical interface and mouse interaction. We also
defined isotropic regions, to simulate contamination with cerebro-
spinal fluid (CSF) or free water, such as edematous regions that may
surrounding brain tumor in patients (Parker et al., 2020).

a b c d

Figure 3.5: Digital phantom in dif-
fusion MRI: fiber geometries (a), T1-
weighted image (b), ground truth fiber
orientation distribution (c), an example
of fiber tracking result (d). Adapted
from Caruyer et al. (2014).

From a collection of fiber trajectories and isotropic regions, T1-
and T2-weighted images can be simulated, along with diffusion-
weighted images. In every voxel, the diffusion is modeled by a dis-
tribution of Gaussian compartments. It is also possible to compute
the ground truth fiber orientation distribution (FOD); a summary of
these output is presented on Fig. 3.5.

3.4 Conclusion

We contributed to the field of validation of diffusion MRI tractog-
raphy with the development of simulation methods to synthesize

http://emmanuelcaruyer.com/phantomas-web/
http://emmanuelcaruyer.com/phantomas-web/


habilitation thesis 23

diffusion-weighted images together with ground truth structural con-
nectivity. The software and datasets derived from this work are open-
source and have already been extensively used by the community.
With DiSCo, the dataset that is created is unique since it combines
macro-scale connectivity with the micro-scale complexity of interwo-
ven axons. We believe this has contributed to expand our knowledge
of current limits in tractography. In the future, we can expect this
simulation field will also benefit from recent progress made possible
by electron microscopy and synchrotron X-ray imaging.





4
Applications in clinical research

In the previous chapters, we have presented methods towards a better
understanding of the measurement of diffusion in MRI and its vali-
dation in neuroimaging. In this chapter we present two clinical ap-
plications to which we contributed. The first application is related to
diffusion MRI tractography in patients with brain tumour. We pro-
posed estimation method of the diffusion tensor to mitigate the effect
of edema surrounding certain brain tumours. The second application
concerns diffusion MRI of the spinal cord in patients with multiple
sclerosis. We compared pre-processing methods for the correction of
image distortions and evaluated the test-retest repeatability of quanti-
tative diffusion MRI of the spine, an important feature for the longitu-
dinal analysis of tissue changes induced by multiple sclerosis (MS).

4.1 Free water elimination in peritumoral edema and improed
tractography using clinical diffusion MRI

Characterization of healthy versus pathological tissue in the peritu-
moral area is confounded by the presence of edema, making free
water estimation the key concern in modeling tissue microstructure
(Pierpaoli and Jones, 2004; Pasternak et al., 2009). In these areas, we
rely on a two-compartment model, for which the predicted signal is

E(b, u; D, f ) = f exp(−buTDu) + (1 − f ) exp(−bd),

where b is the diffusion weighting factor, u is the encoding gradient
direction, D is the diffusion tensor modeling the tissue compartment
and f is the tissue volume fraction.

One of the difficulties in fitting this model from clinical data is
that estimating a two compartment model is an ill-posed problem if
the acquisition consisted only in a single shell with a unique b-value
(Pasternak et al., 2009; Scherrer and Warfield, 2010). This under-
scores the need for a robust free water elimination (FWE) method
that estimates free water in pathological tissue but can be used with
clinically prevalent single-shell diffusion tensor imaging data.

The solution to free water elimination (FWE) requires optimiza-
tion, which relies on an initialization step. We proposed a novel
initialization approach for FWE (Parker et al., 2020), called Free-
water estimatoR using iNtErpolated iniTialization (FERNET), which
improves the estimation of free water in edematous and infiltrated
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peritumoral regions, using single-shell diffusion MRI data. The first
strategy for the initialization of f , as found in the original paper
(Pasternak et al., 2009), was solely based on the T2-weighted infor-
mation in the non diffusion-weighted (b = 0) image. We completed
this with a second strategy, that uses the orientation average infor-
mation in the diffusion-weighted signal and the prior information
that the mean diffusivity in the white matter tissue compartment is
expected around 0.6× 10−3 mm2 s−1. The initialization which is pro-
posed in FERNET is an interpolate between these two strategies.

FWW FA FAFWW

T2 FLAIRFERNETOriginal initialization

Figure 4.1: Comparison of the free wa-
ter weight (FWW) and the FA of the
tissue tensor obtained with the orig-
inal initialization in (Pasternak et al.,
2009) and FERNET in a patient with
a metastatic brain tumor. The cor-
rected FA map obtained with FERNET
shows better agreement between the
peritumoral region and the contralat-
eral, healthy white matter compared
to the original initialization. Adapted
from Parker et al. (2020).

The method has been extensively investigated on data simulated
with Phantomas (Caruyer et al., 2014) and healthy dataset. Addi-
tionally, it has been applied to clinically acquired data from brain
tumor patients (see Fig. 4.1) to characterize the peritumoral region
and improve tractography in it.

4.2 Diffusion MRI within the cervical spinal cord in patients
with multiple sclerosis

Multiple sclerosis (MS) is a neuro-inflammatory disease and a major
source of disability in young adults. The disease is associated with
a range of clinical symptoms and progressive physical impairment.
While brain imaging is now a standard diagnosis tool in clinical rou-
tine, there has been a recent interest in evaluating the extent of tissue
damage in the spinal cord associated with the progression of symp-
toms in MS. Diffusion MRI using echo-planar imaging is challenging
in the spinal cord; local changes in magnetic susceptibility due to the
vicinity of air and bones cause strong field inhomogeneities, source
of imaging artefacts.

Comparison of distortion correction methods

Post-processing methods were developed to reduce the impact of
distortion, using a pair of images acquired with reverse phase en-
coding directions. However, these methods were mainly validated
on brain images, more scarcely on spinal cord images. In this work
(Snoussi et al., 2019, 2021), we compared the results of 3 distortion
correction methods: HySCO (Ruthotto et al., 2012) as implemented
in ACID/SPM Toolbox1, Topup (Andersson et al., 2003) as imple- 1 ACID - Artefact correction in diffusion

MRI – http://www.diffusiontools.

org/
mented in FSL2, Voss (Voss et al., 2006) (in-house implementation)

2 FMRIB Software Library (FSL),
https://fsl.fmrib.ox.ac.uk/fsl/

fslwiki

http://www.diffusiontools.org/
http://www.diffusiontools.org/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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and block-matching () as implemented in Anima3. The result of ap-

3 Anima, an open-source library
for medical image processing
https://github.com/Inria-Empenn/

Anima-Public

plying each of these methods on a sample subject is illustrated on
Fig. 4.2.

HySCO Topup Voss Uncorrected T2-weighted

Figure 4.2: Result of different distortion
correction methods applied to the same
dataset. We overlay the spinal cord
mask computed from the T2-weighted
image rigidly registered to the diffusion
image.

We evaluated the performance of distortion correction algorithm
with different, complementary metrics. Diffusion-weighted images
(DWI) were acquired on a group of N = 95 subjects (29 controls and
66 MS patients); the protocol consists in thirty non-collinear DWI
at b = 900 s mm−2; six non-DWI measurements and one non-DWI
with an opposite phase encoding direction were also acquired. The
resolution is 2 × 2 × 2 mm3 and the acquisition is sagittal.

The first score measures the local alignment of the apparent cen-
terline of the spine with the principal direction of diffusion. Anatom-
ically, it is expected that the microscopic fiber direction is aligned
with the macroscopic geometry of the spine. By expressing the prin-
cipal axis of the diffusion in the local Frenet frame of the centerline,
we can compute a concentration parameter (Mardia et al., 2000),
which is a normalized measure in the range [0, 1]. The higher the
concentration, the better the centerline of the spine is aligned with
the diffusion direction. We also computed a cross-correlation score
with the co-registered T2-weighted image. Last, 3 experts were asked
to rank the corrected images for each subject (blind assessment), pre-
sented along with the uncorrected image. HySCO and Voss perform
best in terms of subjective evaluation, followed with BM and last
Topup. All methods improve the realignment of the centerline of the
spine with the diffusion direction; improvement is most significant
with BM and Voss. Last, cross-correlation with the T2-weighted im-
age is improved (p < 0.05) with HySCO and BM. Based on these
results, we would recommend HySCO for images acquired with a
similar protocol.

Reproducibility of diffusion MRI scalar measures in spinal cord

One of the objectives of the EMISEP project4 was to monitor the 4 Early Spinal Cord Lesions and Late
Disability in Relapsing Remitting
Multiple Sclerosis Patients (EMISEP)
project, https://clinicaltrials.

gov/ct2/show/NCT02117375

changes in spinal cord damage associated with the progression of
motor deficit in MS. Reproducible measurements are the crux of lon-
gitudinal analyses; in this study (Snoussi et al., 2022) we investigated
on a test-retest dataset the reproducibility of scalar measurements on
regions of interests defined as intervertebral levels. Being based on a
clinical dataset, we focused on the diffusion tensor and ball-and-stick
models. For the former, we estimated the fractional anisotropy (FA),

https://github.com/Inria-Empenn/Anima-Public
https://github.com/Inria-Empenn/Anima-Public
https://clinicaltrials.gov/ct2/show/NCT02117375
https://clinicaltrials.gov/ct2/show/NCT02117375
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axial, radial and mean diffusivities (AD, RD, MD); for the latter, we
estimated the intrinsic diffusivity (ID), defined as the only positive
eigenvalue of the stick, and the free water weight (FWW).

Intervertebral levels were segmented on the T1-weighted image
using the spinal cord toolbox5 (De Leener et al., 2017) and the PAM50

5 The spinal cord toolbox https://

spinalcordtoolbox.com/template (De Leener et al., 2018); the labels were then co-registered
to the diffusion images. The first observation is that there is a larger
inter-subject variability in all metrics over vertebral levels at both
ends of the imaging window when centered on the cervical spinal
cord (C1-C2 and C6-C7); in continuation we decided to focus on
the central part of the image (C3-C5). On the set of control sub-
jects (N = 8), we computed the Bland-Altman plots and the 95%
confidence interval, which enables to detect significant evolutions in
patients between the baseline image (M0) and the follow-up scan
(M12). Using these confidence intervals, we can therefore follow the
longitudinal evolution of the same metrics for each patient, and iden-
tify abnormal trajectories associated with the pathology. Comparing
metrics based on DTI and Ball-and-Stick suggests that both mod-
els provide complementary information. This suggests that even for
clinical data, multi-compartment models provide novel information
about the evolution of tissue microstructure, and should be included
in the processing workflow.

4.3 Conclusion

We have presented in this chapter two clinical applications of the
methods we developed for diffusion MRI. The first method, which
is related to multi-compartment modeling, has a direct application
for brain tumors since it provides better free water elimination using
clinical diffusion images. The maps generated and the subsequent
tractography provide a valuable improvement in the context of pre-
surgical planning. The second set of methods aim at improving dif-
fusion MRI of the spinal cord, in terms of pre-processing and sta-
tistical analysis. In the context of MS, images of the cervical spinal
cord offer complementary biomarkers, which may predict physical
impairment better than when using brain lesions solely.

https://spinalcordtoolbox.com/
https://spinalcordtoolbox.com/


5
Perspectives

We have presented in this manuscript a summary of our research ac-
tivity in the past decade. We have developed applied mathematical
methods for the acquisition design, signal regularization, microstruc-
ture modeling and quantitative connectivity with diffusion MRI. We
also translated some of these methods to clinical applications, mainly
for brain tumors and spinal cord imaging in MS. Many challenges re-
main in the field of microstructure imaging and structural connectivity
with MRI. The rapid uptake of machine learning in this area has pro-
vided successful practical response to some of these problems; this has
also brought legitimate questions on the potential biases or inaccura-
cies that may be introduced by an inadequate model or training. We
propose to contribute to this emerging field, building upon our exper-
tise in simulation and mathematical representations in diffusion MRI.
We will also develop rotation invariant reconstruction methods in mi-
crostructure, taking into account the full information in the spherical
diffusion signal. Last, in order to fully benefit from the many degrees
of freedom in gradient waveforms, we will propose a mathematical
framework for the representation of this acquisition domain and facil-
itate acquisition design.

5.1 Introduction

As in many scientific domains, there has been a rapid rise of ma-
chine learning for estimating microstructure parameters, detect ab-
normalities related to pathology, or drive tractography. This can be
partly explained by the improvement of simulation tools, which have
become more realistic and more efficient. Yet, there is a pressing
need to develop machine learning methods which are adapted to the
constraints of diffusion MRI. One of these constraint is rotation in-
variance: we ambition to develop algorithms that leverage machine
learning to identify a minimal set of rotation invariant features to
estimate microstructure parameters of interest. In continuation, to
take advantage of our expertise in simulation of large substrates that
mimic brain connectivity (Caruyer et al., 2014; Rafael-Patino et al.,
2021), we ambition to create a training dataset of such configura-
tions and train a quantitative connectivity predictor using machine
learning. Last, understanding the appropriate structure of the sam-
pling domain is difficult for complex acquisitions that make use of
B-tensor and gradient trajectories encoding. We will develop repre-
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sentations of these sampling domains, taking into account their geo-
metrical properties, defined by the invariance properties of diffusion
measurement with MRI.

5.2 Microstructure parameters and rotation invariants

The diffusion tensor distribution (DTD) describes the intra-voxel dif-
fusion as a continuum of isolated micro-environments, each of which
characterized by a Gaussian diffusion. Although this method is not
novel (Jian et al., 2007), the recent development of multi-dimensional
diffusion encoding gave fresh impetus to the DTD (Topgaard, 2017;
Westin et al., 2016) since the former provides unique access to specific
properties such as the microscopic fractional anisotropy (µFA) or the
orientation dispersion (OD). An estimation method commonly used,
called the spherical mean technique or powder averaging (Kaden
et al., 2016; Topgaard, 2017), consists in first computing the rotation-
invariant spherical mean of the signal and use it to estimate these
statistics of the DTD. The same method has also been applied to
the estimation of microstructure parameters such as the intra-axonal
volume fraction (Li et al., 2019) or the (Afzali et al., 2020; Andersson
et al., 2022).

Provided that the original sampling scheme contains a sufficient
number of directions, adapted to the angular band limit of the signal
and that these directions form a spherical design (Caruyer and De-
riche, 2012b), there is a guarantee that the spherical mean (or powder
average) of the signal is invariant to rotations, which is a desirable
property. However, this is arguably just one of the many invariants
of a spherical signal (Caruyer and Verma, 2015); for this reason the
spherical mean may not be a sufficient statistic for the estimation of
the parameters of interest. As a result, this estimation technique may
be suboptimal, in that it does not take advantage of all the relevant
information contained in the acquired signal. We propose to system-
atically search for the existence of sufficient statistics for parameters
of interest in the DTD and microstructure models, and consequently
propose minimal acquisition requirements for the estimation of these
parameters.

This will benefit to a better acquisition and modelling in white
matter and gray matter. Among the applications, we plan to in-
vestigate imaging biomarkers of gray matter neurodegeneration in
Alzheimer’s disease.

5.3 Towards a more quantitative tractography

Tractography filtering methods such as SIFT (Smith et al., 2013), LiFE
(Caiafa and Pestilli, 2017) or COMMIT (Daducci et al., 2014b) have
significantly improved connectivity estimation by reducing the num-
ber of false-positive connexions typically found by tractography al-
gorithms. Yet a number of confounding factors remain for tractogra-
phy to be truly quantitative and we believe that machine learning is
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an interesting lead towards improving structural connectivity.
The recent development of efficient simulation methods provides

a unique tool for the generation of arbitrary complex, microscop-
ically realistic configurations of fiber bundles and their associated
simulated diffusion-weighted images (Rafael-Patino et al., 2021). We
ambition to create a supervised training/testing dataset and use it
to train a network in order to predict structural connectivity. Due to
the computational cost of simulation, one of the challenges will be
to robustly train a model with a limited number of examples. We
will also try to propose a hybrid approach, in which only part of the
tractography pipeline will be trained. We will need to find a stan-
dardized way to represent the inputs of the tractography filtering
method, so that this can be abstracted in a large dataset of training
examples.

5.4 Acquisition design and quantitative tractography

In voxel-wise analysis, we have shown in the previous chapters that
acquisition design needs to be adapted to the reconstruction problem
at hand, in particular for microstructure modelling. Recently, the use
of B-tensor encoding was also shown to be useful in the estimation
of the fiber orientation distribution (Rensonnet et al., 2021; Jeurissen
and Szczepankiewicz, 2021). Similarly, downstream the processing
pipeline, the quantification of structural connectivity is impacted by
acquisition parameters; however to our knowledge few groups have
systematically investigated sampling strategies optimized for con-
nectivity estimation. One of the advantages of dictionary-based rep-
resentation methods such as COMMIT (Daducci et al., 2014b) is the
direct relationship between the diffusion signal and the fiber bun-
dles in the tractogram. We will evaluate the impact of different ac-
quisition protocols on the accuracy of the reconstructed connectome.
Extending our preliminary work in Truffet et al. (2019), our search
for an optimized solution will be driven by properties of the dic-
tionary necessary for a stable reconstruction in the theory of sparse
reconstruction.

Figure 5.1: Example of the harmonic
analysis on a discretely sampled sphere
(N = 60 samples) represented as
a graph; the 6 first eigenvectors of
the graph Laplacian are illustrated.
Adapted from an image courtesy of
Constance Bocquillon.

For this optimization to be as exhaustive as possible, we will also
work on efficient representation of gradient waveforms. The dif-
fusion signal as a function of diffusion gradient encoding exhibit
symmetries which need to be considered (shift invariance, antipodal
symmetry). We will incorporate these in the definition of a metric
in the space of gradient trajectories. Complementary to the discrete
approach taken in Truffet et al. (2019), we propose to investigate sig-
nal processing on graphs (see illustration on Fig. 5.1) using the novel
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metric we will define. We anticipate to lay the basis of an optimiza-
tion of diffusion encoding towards a better estimation of the struc-
tural connectivity.

5.5 Conclusion

We conclude this manuscript with a research project, which aims
at improving the clinical benefits of measuring water diffusion with
MRI. Our project will focus on the development of new methods for
quantitative tractography, both in terms of acquisition design and
reconstruction. We will use data-driven approaches, combined with
mathematical methods embedding the natural structure of the signal
and the acquisition domain.
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