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Titre :  Arterial spin labeling performance in resting-state functional MRI: the effect of scan duration 

Mots clés :  Arterial spin labeling, resting-state functional MRI, scan duration 

Résumé :  L’arterial spin labeling en resting-
state (rsASL) dans la routine clinique et la 
recherche universitaire reste confidentiel par 
rapport à l'état de repos BOLD. Cependant, 
contrairement au BOLD, l'ASL permet un accès 
direct au flux sanguin cérébral (CBF), ce qui 
pourrait conduire à une application clinique 
importante à l'échelle du sujet, car l'ASL est une 
mesure non invasive du CBF (suivi des 
maladies avec déficience du CBF, études 
longitudinales de sujets sains, etc.). Malgré 
l'implication croissante de tous les acteurs de 
l'IRM dans l'ASL au cours de la dernière 
décennie, la question de la durée d'acquisition 
(DA) en rsASL semble n'avoir jamais été 
abordée dans la littérature, malgré ses fortes 
conséquences pratiques (mise en œuvre 
clinique et maintien de l’état de repos du sujet) 
et son impact sur la représentation des réseaux 
fonctionnels.   

Dans cette thèse et comme travail préliminaire 
sur le sujet, nous discuterons tout d’abord de la 
manière d'étudier le rôle de la DA en rsASL avec 
des méthodes simples qui modélisent ce qu'un 
chercheur en rsMRI pourrait expérimenter. Nos 
résultats montrent que la représentation des 
réseaux fonctionnels se stabilise après une 
certaine durée d'acquisition pour des réseaux 
fonctionnels communs. Dans une deuxième 
partie, nous étudions les performance de l’ASL 
en resting-state par rapport au resting-state 
BOLD, tout en conservant la DA comme 
paramètre. Nous montrons que le rsBOLD 
surpasse la rsASL sur la plupart des aspects, 
mais pas sur tous. La possibilité de quantifier le 
CBF, contrairement au BOLD, tend à confirmer 
que le rsASL en particulier et l'ASL en général 
méritent encore plus d'implication de la part de 
la communauté de l’IRM fonctionnelle.   
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Abstract :   Resting-state Arterial Spin Labeling 
(rsASL) in clinical routine and academic 
research remains confidential compared to 
resting-state BOLD. However, unlike BOLD, 
ASL provides with direct access to cerebral 
blood flow (CBF). This could lead to significant 
clinical subject scaled application as ASL is a 
non-invasive measurement of CBF (disease with 
CBF impairment follow-up, longitudinal studies 
of healthy subjects, etc.). Despite the significant 
increasing involvement of all MRI stakeholders 
is ASL over the past decade, the question of the 
acquisition duration (AD) in rsASL seems to 
have never been addressed in the literature, 
despite its strong practical consequences and its 
impact on functional networks representation.  

In this thesis, and as a preliminary work on the 
subject, we will first discuss how to study the 
role of AD in rsASL with simple methods that 
model what a researcher in rsMRI might 
experience. Our results show that the 
representation of functional networks stabilizes 
after a certain acquisition time for common 
functional networks. In a second part, we study 
the performance of the ASL in resting-state 
compared to the BOLD resting-state, while 
keeping the AD as a parameter. We show that 
the rsBOLD outperforms the rsASL on most 
aspects, but not on all. The ability to quantify 
the CBF, unlike the BOLD, tends to confirm 
that rsASL in particular and ASL in general 
deserve even more involvement from the 
functional MRI community.  
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Résumé 

Dans cette section nous proposons un résumé en français du manuscrit. Nous conservons 

autant que possible la structure du document. Ce travail aborde l’effet de la durée 

d’acquisition sur les performances de l’arterial spin labeling (ASL) en imagerie par 

résonance magnétique (MRI) à l’état de repos. Le contexte de ce travail est présenté dans 

le premier chapitre du manuscrit. Le second chapitre est dédié à l’effet de la durée 

d’acquisition en resting-state ASL (rsASL), avec une attention toute particulière sur la 

méthodologie. Le troisième chapitre s’intéresse aux performances du rsASL par rapport 

à la technique actuelle de référence, le resting-state BOLD (Blood-Oxygen-Level-

Dependent). Nous concluons dans le quatrième et dernier chapitre. 

  



 
 

Introduction 
En imagerie fonctionnelle, l’utilisation du resting-state ASL dans la routine clinique et 

pour la recherche académique reste limitée par rapport au resting-state BOLD. 

Cependant, contrairement au BOLD, l'ASL permet de quantifier la perfusion cérébrale. 

Cette caractéristique de l’ASL pourrait conduire à des applications cliniques importantes 

à l'échelle du sujet, car l'ASL est de fait une mesure non invasive du débit sanguin cérébral 

(DSC) : études longitudinales de sujets sains, suivi des maladies avec altération du DSC, 

etc. Malgré l'implication croissante de tous les acteurs de l'IRM dans l'ASL au cours de la 

dernière décennie, la question de la durée d'acquisition en rsASL semble n'avoir jamais 

été abordée dans la littérature, malgré ses fortes conséquences pratiques comme 

l’implémentation clinique, le maintien de l'état de repos par le sujet et, plus important 

encore, l'impact de la durée d'acquisition sur l’estimation des réseaux fonctionnels. 

Ce manuscrit à trois objectifs principaux. Le premier est de confirmer l'ASL en tant que 

technique viable pour l’IRM fonctionnelle à l'état de repos. Le deuxième est d'aborder 

l'effet de la durée d'acquisition sur l’estimation des réseaux fonctionnels. Le troisième 

est de tester les performances du resting-state ASL par rapport au resting-state BOLD, au 

regard de l’effet de la durée d’acquisition. 

Chapitre I 

La section 1 présente un bref contexte historique de l'étude des fonctions cérébrales qui 

a conduit au siècle dernier au développement rapide de technique d’imagerie 

fonctionnelle. Nous présentons également dans cette section le concept clé du couplage 

neurovasculaire. Le couplage neurovasculaire est l'interdépendance biologique qui existe 

entre l'activité électrique des neurones et le débit sanguin cérébral. Bien que le 

mécanisme exact du couplage neurovasculaire ne soit pas totalement élucidé, la réponse 

hémodynamique qui suit une activation neurale a été largement étudiée dans la 

littérature. Le principal avantage de cette connaissance de la réponse hémodynamique 

est que la fonction cérébrale peut être explorée non seulement par l'activation neuronale, 

mais aussi à partir des variations locales du débit sanguin cérébral. Nous terminons cette 

section en présentant des techniques d'imagerie qui, outre l'IRM, permettent d'étudier 

la fonction cérébrale, soit par l'activité électrique des neurones, ou bien par la réponse 

hémodynamique.     

La section 2 présente un aperçu des bases de la résonance magnétique nucléaire (RMN). 

Comme l'IRM est notre technique d'imagerie fonctionnelle d'intérêt, nous présentons 

comment la RMN conduit à l'IRM. Nous introduisons également dans cette section les 

techniques d'IRM fonctionnelle, notamment l'IRM dynamique avec injection de produit 

de contraste (pour la mesure de perfusion cérébrale). Cependant, ce caractère invasif est 

discutable lorsque l'objectif est d'étudier une cohorte de sujets sains, ou encore dans le 

cadre d'une étude longitudinale. 

La section 3 présente une dernière technique d'IRM fonctionnelle : l'imagerie de 

perfusion par marquage de spins du sang artériel, l’arterial spin labeling (ASL). Non 

invasive comme le BOLD, mais permettant la quantification du débit sanguin cérébral 

contrairement au BOLD, l'ASL est une technique d'IRM prometteuse qui 

malheureusement souffre d’une exposition limitée hors de la recherche académique. 



 
 

Nous finissons par présenter avantages et limites de l'ASL en imagerie fonctionnelle, en 

particulier par rapport à la technique de référence qu’est le BOLD. 

La section 4 présente l'IRM fonctionnelle au repos (rsfMRI). Au repos, le cerveau 

demeure actif : de nombreuses activations spontanées des neurones se produisent. La 

connectivité fonctionnelle est définie comme la concomitance de ces activations 

neuronales spontanées. Les zones dédiées à la même fonction montrent une forte 

connectivité fonctionnelle, comme l'a illustré la toute première expérience d'IRM 

fonctionnelle à l’état de repos avec l'aire motrice. L'étude de la connectivité fonctionnelle 

permet de subdiviser le cerveau en petites unités fonctionnellement cohérentes, 

appelées réseaux fonctionnels, et de montrer comment leur architecture globale a la 

propriété de graphe petit-monde chez le sujet sain. Dans cette section, nous définissons 

tout d'abord la connectivité fonctionnelle et présentons l’IRM de repos. Dans un second 

temps, nous présentons le prétraitement des données de rsfMRI ainsi que différents 

modèles de connectivité fonctionnelle qui permettent la reconstruction de réseaux 

fonctionnels. Enfin, nous introduisons brièvement la théorie des graphes, qui est un outil 

particulièrement adapté à la compréhension de l'organisation fonctionnelle du cerveau. 

Au-delà de la compréhension des fonctions cérébrales, l'IRMf au repos trouve également 

des applications cliniques. En effet, la neuropathologie peut affecter la disposition des 

réseaux fonctionnels et défaire l’organisation petit-monde des réseaux, à l'échelle du 

graphe. La section consacrée à l’IRM de repos se termine par une discussion qui guidera 

notre modélisation dans la partie suivante du manuscrit et permettra également de 

commenter les résultats obtenus.  

Chapitre II 

La section 5 motive nos premières contributions. La durée d'acquisition est un paramètre 

pratique essentiel dans une étude rsfMRI. Quelques articles ont déjà étudié directement 

ou indirectement l'influence de la durée en resting-state BOLD [Anderson et al., 2011; 

Birn et al., 2013; Bouix et al., 2017; Laumann et al., 2015; Termenon et al., 2016; Van Dijk 

et al., 2010]. Cependant, à notre connaissance, la question n'a pas encore été abordée 

en rsASL. Dans la deuxième partie de ce manuscrit, nous abordons donc l'influence de la 

durée d'acquisition en resting-state ASL. Afin de confirmer la viabilité de l'ASL comme 

technique d’IRM au repos, nous insistons également sur la faisabilité de la détection des 

réseaux fonctionnels cérébraux avec l’ASL. La plupart des études actuelles sur le resting-

state ASL proposent une durée de 8 à 13 minutes et un TR de 3 à 4 s (soit 120 à 260 

volumes). Intuitivement, on pourrait supposer que plus la durée est longue, plus 

l'échantillonnage de la corrélation des signaux (ou de toute autre mesure sur les signaux) 

dans le cerveau est bon et donc meilleure est l'acquisition. Toutefois, cela nécessite de 

définir ce que signifie réellement une "meilleure" acquisition, et cela ne tient pas compte 

des conditions cliniques et de maintien de l’état de repos du sujet.  

La section 6 présente les paramètres d’acquisitions et le prétraitement des données 

utilisé. Nous nous efforçons de rester aussi proches que possible de ce qu'un chercheur 

en resting-state ASL pourrait classiquement expérimenter, en mettant en œuvre une 

séquence ASL habituelle et un prétraitement des données typique. Comme nous voulons 



 
 

confirmer la faisabilité de l'ASL en tant que technique de rsfMRI, nous nous concentrons 

sur une étude à l'échelle du sujet. 

La section 7 décrit les méthodes utilisées pour détecter les réseaux fonctionnels et 

modéliser leur évolution en fonction de la durée d’acquisition. Pour la modélisation de la 

connectivité fonctionnelle, nous nous appuyons sur une analyse de type « seed-based 

analysis » (SBA) qui facilite la comparaison directe entre les sujets. Afin d'évaluer l'effet 

de la durée d'acquisition sur la qualité des réseaux détectés par resting-state ASL, nous 

imitons le comportement d'une inspection visuelle des données. Un investigateur 

confirmerait qu'un réseau estimé est valide si l'estimation est proche d'une définition 

consensuelle du réseau attendu. Nous modélisons l'énoncé "proche d'une définition 

consensuelle" en associant un score au recouvrement entre un réseau fonctionnel estimé 

et un réseau de référence correspondant, provenant d'un atlas de rsfMRI, l'atlas Multi-

Subject Dictionary Learning (MSDL) [Varoquaux et al., 2011]. Nous utilisons la régression 

locale LOESS pour modéliser l’évolution des scores en fonction de la durée d’acquisition. 

La section 8 est axée sur les résultats. Une analyse approfondie du réseau du mode par 

défaut (DMN) est présentée afin d'illustrer l'évolution des scores sur le réseau le plus 

typique de la rsfMRI. Pour tous les sujets, l'indice de Jaccard et l'aire sous la courbe (AUC) 

se stabilisent après une durée d'acquisition similaire, en adéquation avec l'interprétation 

de l'inspection visuelle. Comme tous les réseaux fonctionnels sont détectés à l'échelle du 

sujet, nos résultats confirment la faisabilité de L’ASL comme technique de resting-state 

MRI. En outre, nos résultats montrent une stabilisation de la qualité de l’estimation après 

un certain nombre de volumes/une certaine durée pour chaque réseau fonctionnel 

d'intérêt. 

La section 9 discute les résultats et conclut ce chapitre du manuscrit. Comme la qualité 

des réseaux fonctionnels se stabilise après une certaine durée pour toutes les graines 

(seeds), la durée optimale peut donc être définie par le début de la stabilisation, 

interprétée comme un compromis entre la mise en œuvre clinique (la durée la plus 

courte possible) et les meilleures estimations de réseaux (couverte par des durées très 

longues). En suivant cette proposition, nous pouvons suggérer, pour notre ensemble de 

paramètres d’acquisition et de prétraitement, un nombre optimal de volumes de 240, 

correspondant à une durée optimale de 14 min. Comme nous avons utilisé un 

prétraitement basique, toute méthode qui améliore la détection des réseaux 

fonctionnels est susceptible de fournir un début de stabilisation plus précoce, c'est-à-dire 

un nombre de volumes plus faible et une durée optimale plus courte. Notre suggestion 

de 240 volumes devrait ainsi suffire pour fournir la meilleure estimation possible des 

réseaux pour la plupart des utilisations de resting-state ASL. 

Chapitre III 

La section 10 introduit la comparaison entre le resting-state ASL et le resting-state BOLD. 

Nous soulignons dans cette section quelques considérations méthodologiques avant de 

passer à la comparaison. Bien que distinctes dans l’approche, les deux techniques d’IRM 

mesurent indirectement une activation neurale, et ainsi les prétraitements sont presque 

interchangeables entre les deux modalités. Cependant, en ce qui concerne l’effet de la 

durée d'acquisition, la question est plus subtile. En effet, comme le signal est traité 



 
 

numériquement, on ne peut pas simplement faire la comparaison par rapport à une 

durée : le nombre d’éléments de l'échantillon utilisé pour estimer une carte fonctionnelle 

n'est pas une durée en minutes, mais correspond en fait au nombre de volumes. Ainsi, 

en comparant les cartes fonctionnelles par rapport au nombre de volumes, si une carte 

est meilleure qu'une autre, ce n'est pas parce qu'elle a été estimée avec une taille 

d'échantillon plus importante. 

La section 11 détaille la comparaison entre ASL et BOLD en appliquant tout d’abord aux 

données resting-state BOLD le cadre d’évaluation que nous avons utilisé pour le resting-

state ASL. Première étape, le prétraitement : il est commun entre le resting-state BOLD 

et le resting-state ASL, mis à part l’étape de soustraction inter-volume propre à l’ASL. 

Deuxièmement, la seed-based analysis est également directement applicable : nous 

utilisons les mêmes graines. Troisièmement, la modélisation et les scores ne dépendent 

pas de la technique d’acquisition utilisée. Par conséquent, dans cette section, les données 

rsBOLD sont analysées en suivant la même méthodologie que celle proposée pour les 

données ASL, puis les résultats sont comparés à ceux obtenus en rsASL dans la partie 

précédente. Dans l'ensemble, la détection des réseaux semble plus facile en BOLD car 

plus de graines parviennent à fournir des estimations satisfaisantes des réseaux 

fonctionnels. Les deux scores de recouvrement par rapport aux références MSDL (indice 

de Jaccard et AUC) sont légèrement meilleurs en BOLD qu'en ASL. Une stabilisation peut 

également être observée en BOLD. Cependant, la variance intra-sujet et inter-sujets est 

beaucoup plus importante en BOLD qu'en ASL : les courbes de régression LOESS sont 

moins corrélées entre les sujets mais surtout moins corrélées entre les scores. Par 

conséquent, il est plus difficile en BOLD de définir avec précision un début de stabilisation 

car l’AUC suggère clairement un nombre plus élevé de volumes, quelle que soit la 

définition de la stabilisation considérée. Si l'on utilise les mêmes considérations qu'en 

ASL, c’est-à-dire un compromis entre la durée la plus courte possible pour 

l’implémentation clinique et la plus longue pour garantir avec le plus de certitude 

possible la stabilisation, la fourchette de valeurs optimales se situe pour le BOLD entre 

250 et 290 volumes (contre 240 en ASL).      

La section 12 présente des méthodes alternatives pour comparer l’ASL et le BOLD en 

resting-state, toujours en fonction du nombre de volumes. En effet, dans la section 

précédente, la comparaison est effectuée par le biais d'un atlas tiers : le MSDL. En 

étudiant une technique seule, l'impact de l'utilisation d'un atlas est limité, car il a un 

impact sur la hauteur des scores, mais pas sur le phénomène de stabilisation. Cependant, 

comme le MSDL dérive de données BOLD, le BOLD est très probablement avantagé. Dans 

cette section, nous comparons directement les cartes fonctionnelles obtenues par 

resting-state ASL et resting-state BOLD à travers quatre mesures. Tout d'abord, nous 

présentons le nombre de voxels actifs. Il s'agit simplement d'une mesure de la taille des 

réseaux fonctionnels correspondants. Nous montrons que quel que soit le nombre de 

volumes, les réseaux fonctionnels BOLD sont toujours 2 à 3 fois plus grands que les 

réseaux fonctionnels ASL correspondants. Ensuite, nous étudions la distribution tissulaire 

des réseaux fonctionnels estimés. En effet, nos réseaux fonctionnels d'intérêt devraient 

avoir la plupart de leurs voxels situés dans la matière grise, un peu dans la matière 

blanche, et aucun dans le liquide céphalorachidien. Malgré la grande différence de taille, 



 
 

la distribution tissulaire des réseaux fonctionnels estimés est en fait extrêmement 

homogène entre l'ASL et le BOLD. Peu importe la graine, le sujet, le nombre de volumes, 

la technique IRM, la distribution tissulaire est pour presque chaque réseau estimé comme 

suit :  55-60% dans la matière grise, 25-30% dans la matière blanche, 10-15% dans le 

liquide céphalorachidien. En d'autres termes, étant donné une distribution tissulaire, il 

n'est pas possible de prédire à quelle technique d’acquisition elle correspond : la 

distribution tissulaire n'a pas de pouvoir discriminant. Troisièmement, nous étudions la 

connectivité fonctionnelle intrinsèque des réseaux fonctionnels estimés. Interprétée 

comme le résultat d’une classification statistique (clustering), on souhaite qu’une 

estimation d'un réseau fonctionnel, c'est-à-dire d'un cluster, ait une variance intra 

minimale, c'est-à-dire une connectivité fonctionnelle intrinsèque maximale. Nous 

montrons que peu importe les graines, les réseaux fonctionnels estimés avec succès ont 

une bien meilleure connectivité fonctionnelle intrinsèque en rsASL qu'en rsBOLD. Nous 

terminons la section en étudiant la corrélation spatiale entre l'estimation en rsASL et en 

rsBOLD. En ce qui concerne le nombre de voxels actifs, nous utilisons les informations 

préalables pour ne considérer que les graines qui sont capables de détecter efficacement 

un réseau fonctionnel. Pour chaque graine, la corrélation spatiale se comporte comme la 

LOESS lui correspondant dans la modélisation précédente : un faible nombre de volumes 

est associé à une faible corrélation spatiale, et il est intéressant de noter qu'après un 

nombre de volumes proche de la fourchette où nous avons détecté la stabilité avec le 

MSDL, la corrélation spatiale entre les cartes fonctionnelles rsASL et rsBOLD atteint ses 

valeurs les plus élevées et reste stable avec un plus grand nombre de volumes. Cela 

confirme que l'impact de l'utilisation d'un atlas est extrêmement limité dans l'apparition 

du phénomène de stabilisation. En effet, on aurait pu objecter que l'estimation des 

réseaux fonctionnels peut osciller autour de sa référence, et qu'une stabilisation du score 

ne traduit pas totalement une stabilisation de la disposition spatiale. Cependant, le cas 

où une estimation de réseau fonctionnel oscille autour d'une référence MSDL par rapport 

à l'indice de Jaccard, et oscille également autour de la référence par rapport à la AUC est 

déjà très difficilement réalisable. Avec ces informations auxiliaires, la stabilisation de la 

corrélation spatiale confirme la stabilisation de l'agencement spatial des réseaux 

fonctionels en rsASL et en rsBOLD après une certaine durée. 

Chapitre IV 

La dernière partie du manuscrit synthétise les résultats du travail effectué au cours de 

cette thèse et propose quelques perspectives. Dans ce manuscrit, nous nous sommes 

concentrés principalement sur les considérations méthodologiques de cette évaluation. 

L'IRM fonctionnelle étant un champ de recherche extrêmement vaste, les facteurs qui 

pourraient affecter le nombre optimal de volumes à utiliser sont nombreux. 

Heureusement, beaucoup de ces paramètres disposent de leur propre littérature. De plus, 

nous avons essayé de mettre en place des séquences et des traitements suffisamment 

généraux de tel sorte que le nombre de volumes que nous proposons couvre presque 

tous les usages de la rsASL. Les séquences et traitements appliqués sont aussi 

suffisamment standards afin de montrer que la rsASL est parfaitement viable en tant que 

technique de rsfMRI. À notre avis, une meilleure compréhension de l’effet de la durée 

d’acquisition est à chercher du côté de deux paramètres de la séquence : le temps de 



 
 

répétition (TR) et le délai post-marquage (PLD). Nous souhaiterions en effet fournir une 

durée optimale d’acquisition en rsASL en minutes, et non en nombre de volumes, 

notamment pour la mise en œuvre clinique. Comme le temps de répétition lie les deux, 

il semble que son rôle spécifique soit le sujet naturel de recherche à approfondir. Le PLD 

peut également jouer un rôle décisif : un PLD plus long favorise une meilleure estimation 

du débit sanguin cérébral tandis qu'un PLD plus court favorise une meilleure estimation 

des réseaux fonctionnels. Comme il n'y a pas de meilleure option à choisir entre les deux, 

nous avons conservé un PLD long car le principal avantage de l'ASL par rapport au BOLD, 

est la possibilité de quantifier le débit sanguin cérébral. Par conséquent, l’effet du PLD 

sur le phénomène de stabilisation des réseaux fonctionnels semble extrêmement 

intéressant à étudier pour le resting-state ASL.  
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Introduction 

Understanding the brain function has been an important area of research for millennia. 

The recent fast development of neuroscience in the last century, and in particular the 

emergence of neuroimaging techniques, has opened the field for in vivo investigations of 

the cerebral activity. In particular, Functional Magnetic Resonance Imaging (fMRI), thanks 

to its non-invasiveness and good spatial resolution, has been widely used to assess brain 

function, through two techniques: task-based fMRI and resting-state fMRI. Task-based 

fMRI confronts the subject to particular stimuli, which are expected to activate a 

corresponding specific functional area. In resting-state fMRI (rsfMRI), the subject does 

not perform any task nor is confronted to any stimuli. However, the similarities in the 

pattern of spontaneous neural activations at rest provide valuable information on brain 

function and define the functional connectivity of the brain. Indeed, brain regions can be 

structurally remote yet have strong a strong functional connectivity, forming what is 

called a functional network. RsfMRI provides a better understanding of the brain function 

and especially the organization of the brain into functional networks. RsfMRI has also 

found numerous clinical applications, as healthy subjects and patients show differences 

in functional connectivity, in common pathologies like Alzheimer’s disease, multiple 

sclerosis and schizophrenia. 

In resting-state functional MRI the gold-standard technique is the Blood-Oxygen-Level-

Dependent (BOLD) fMRI. However, due to the multifactorial nature of the BOLD signal, 

its measure of neural activation is indirect and relative. Arterial Spin Labeling (ASL) is an 

MRI technique which uses magnetically labeled arterial water protons as an endogenous 

tracer. An inversion pulse labels the inflowing blood and after a delay called post-labeling 

delay, a labeled image of the volume of interest is acquired. The subtraction of the 

labeled image from a control image, i.e., non-labeled, reflects the quantity of spins that 

have perfused the imaged volume, producing what is commonly called a perfusion-

weighted (PW) image. The brain perfusion is the biological process that insures the 

delivery of oxygen and nutrients to the cerebral tissues by means of microcirculation. The 
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PW map can be used to quantify the cerebral blood flow (CBF) under some assumptions. 

The quantification of CBF is the main advantage of ASL over BOLD. The absence of 

injection and the possibility to employ this imaging technique to brain function or basal 

perfusion is very attractive. This could lead to significant clinical subject scaled 

application as ASL is a non-invasive measurement of CBF. Even though the principle of 

ASL were introduced around the same time of BOLD fMRI, resting-state ASL (rsASL) 

research has a limited exposure in clinical routine and academic research compared to 

resting-state BOLD (rsBOLD). The main explanation is probably the lower signal-to-noise 

ratio of ASL compare to BOLD and its harder practical implementation. Despite the 

increasing involvement of all MRI stakeholders in ASL over the past decade, much still 

needs to be done to provide standardized implementation and processing. In particular, 

the question of the acquisition duration in rsASL seems to have never been addressed in 

the literature despite its strong practical consequences: clinical implementation, resting-

state upholding by the subject, and more importantly, the impact of acquisition duration 

on the estimation of functional networks. 

This manuscript has three main objectives. The first one is to confirm ASL as a viable 

resting-state fMRI technique. The second one is to address the effect of scan duration on 

the functional networks estimation. The third one is to test rsASL performance against 

rsBOLD with respect to the scan duration. 

 

Plan 

Chapter I – Context 

Section 1 presents an historical background of investigation of the brain functions that 

led in the last century to the rapid development of functional imaging. We also present 

in this section the key concept of the neurovascular coupling and the imaging techniques 

that, besides MRI, allow the investigation of brain function.     

Section 2 presents an overview of the basics in nuclear magnetic resonance (NMR) and 

how NMR leads to MRI. We also introduce in this section functional MRI techniques, 

particularly the gold-standard of functional MRI technique: the blood-oxygen-level 

dependent (BOLD) functional MRI. 

Section 3 presents the technique of interest of this manuscript: arterial spin labeling (ASL). 

Non-invasive as BOLD, but allowing the computation of CBF unlike BOLD, ASL is a 

promising MRI technique for clinical application.  

Section 4 reviews the resting-state functional MRI (rsfMRI). We first define functional 

connectivity and present preprocessing of rsfMRI data, different modeling of the 

functional connectivity that allow the reconstruction of functional networks, and lastly, 

we briefly introduce the graph theory that provides practical insight into the 

understanding of brain functional organization. This rsfMRI section ends with a discussion 

of the definitions and methods, that guides our modeling in the following parts of the 

manuscript and also help to discuss the results afterwards.     



 
 
Introduction [17] 

Chapter II – The effect of scan duration in resting-state ASL 

Section 5 motivates our first contributions on the effect of scan duration in resting-state 

ASL (rsASL) and the feasibility of rsASL.  

Section 6 presents material and preprocessing used in the second chapter of the 

manuscript. We remain as close as what a typical investigator of rsASL might experience, 

by implementing a usual ASL sequence and typical rsfMRI preprocessing and focusing on 

a subject-scaled study, as estimating network on a subject is harder than on a group.  

Section 7 describes the methods. For the modeling of functional connectivity, we rely on 

seed-based analysis (SBA). In order to assess a trend in the duration influence on rsASL 

detected networks quality, we score the overlap between an estimated functional 

network and a corresponding reference network from an atlas of rsfMRI. 

Section 8 focuses on results. After describing the scores used and the modeling of their 

evolution over time using a LOESS, an in-depth analysis for the Default-Mode Network 

(DMN) is presented in order to illustrate scores evolution on the most typical resting-

state network. For all subjects, scores stabilize after a similar scan duration, in adequation 

with visual inspection. Finally, we show results for five additional typical functional 

networks. As all functional networks are detected at a subject scale, our results confirm 

the feasibility of rsASL. Furthermore, our results show a stabilization after a certain 

number of volume/duration for every functional network of interest. 

Section 9 discusses the results and concludes this part of the manuscript. We suggest 240 

volumes / 14 min for rsASL as a sufficient amount of data to obtain stabilized and best 

estimation of functional networks.  

Chapter III – Resting-state ASL performance compared to resting-state BOLD 

Section 10 introduces the comparison between rsASL and rsBOLD. As rsBOLD technique 

is the gold-standard for rsfMRI, the performance of rsASL should be compared to rsBOLD. 

We point out in this section some methodological considerations in the comparison.  

Section 11 details the comparison using the methodological framework we used for rsASL. 

Overall, the detection of networks seems easier in BOLD. Overlap scores are slightly 

better in BOLD than in ASL. A stabilization stage can also be observed with BOLD. If we 

use the same considerations as in rsASL that lead to suggest 240 volumes, the range of 

suggested values for BOLD is between 250 and 290 volumes.      

Section 12 presents alternative methods for comparing rsASL and rsBOLD with respect to 

the number of volumes. In the previous section, the comparison is actually made through 

a third-party atlas. In this section, we directly compare rsASL and rsBOLD functional maps 

through four different measures: the number of active voxels, the tissue distribution, the 

intrinsic functional connectivity and the spatial correlation. 

Conclusion 

The last part of the manuscript gathers the results of the work done in the manuscript 

and suggest area for future investigation. 
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Section 1. Functional imaging 
In this section we introduced an historical background of investigation of the brain 

functions and the concept of neurovascular coupling that leads in the last century to the 

rapid development of functional imaging.     

1.1 A brief history 
Brain depictions could already be found in ancient Egypt, as Figure 1.1 illustrates. Since 

that age, the brain anatomy secrets have been continuously discovered with the 

increasing accuracy of tools, procedures and also accuracy of investigators. However, 

brain functions in the human body have resist the physicians for several millennia. Before 

the recent fast development of neuroscience in the last century, brain functions were 

unfortunately discovered through trauma, like aphasia resulting from a head injury 

already reported in Egyptians papyrus. While eminent thinkers like Aristotle conceived 

the brain as a blood cooling mechanism, the antic philosopher Alcmeon of Croton (5th 

century B.C.) made the first ever reported true assumption about brain functions: “The 

seat of sensations is in the brain. This contains the governing faculty. All the senses are 

connected in some way with the brain; consequently, they are incapable of action if the 

brain is disturbed”  [Gross, 1987]. In order to find a first evidence of Alcmeon hypothesis, 

we need to wait more than two millennia before Legallois’s experiment in 1811. A few 

years after the discovery of the role of electricity in the nervous system, Legallois’s point 

was to show that a tiny lesion in a specific area in the brain could totally block the 

respiratory system [Bruce Fye, 1995]. Legallois corollary showed for the first time that a 

specific cerebral area is used in a specific physiological function. In the end of the same 

Figure 1.1: The Edwin Smith surgical papyrus (-1700 B.C.) and a partial translation 

The partial translation comes from [Breasted, 1930]. As Breasted state, the hieroglyphs 
evoke “organic substance of a viscous or semifluid consistency”. While enigmatic alone, 
its rare occurrences are most often followed by “of his skull”, giving no doubt on his 
meaning. This is the eldest designation of the brain in mankind history.   
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century, in 1881, a capital experiment was made by Mosso, who managed to exhibit a 

link between a cognitive task and variations in blood-flow [Raichle and Shepherd, 2014].  

These historical elements give main objectives of functional imaging: measuring cerebral 

activity, associating areas of the brain with physiological roles, called functions, 

investigating how these areas interact, through the measurement of the electric activity 

of the brain or the cerebral blood supply. By extension, functional imaging is also about 

investigating numerous pathologies since alterations in the brain energy supply or 

electrical activity can lead to physiological impairment.  

1.2 Neurovascular coupling 
In the early 20th century, the rapid development of tools to investigate microanatomy 

(histology), biochemistry and microbiology led to a better understanding of the brain 

energy supply through blood. However, as soon as in 1890, Roy and Sherrington 

described a key principle of functional imaging: the neurovascular coupling [Roy and 

Sherrington, 1890]. Neurovascular coupling is the biological interdependence that exists 

between the neurons electrical activity and the cerebral blood flow (CBF). Figure 1.2 

illustrates this relationship. While the relationship between neural activation, local 

metabolism and CBF increase is factual, the exact underlying mechanism behind the 

coupling is still an active field of research [Huneau et al., 2015]. Numerous functional 

imaging techniques benefit from this coupling. Indeed, they can hence infer variations in 

cerebral activity not only through neuron electrical activity, but also through the 

investigation of the cerebral hemodynamic variations.   

  

Figure 1.2: Neural activation and neurovascular coupling 

When confronted to a stimulation, a neuron releases an electrical signal. The electro-
chemical activity of the neurons increases the local metabolism. Since the metabolism is 
fueled by the blood of the surrounding capillaries, the neuron activation also requires a 
local increase of the cerebral blood flow. 
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1.2.1 Hemodynamic response 

The hemodynamic response function (HRF) represents the expected variation in cerebral 

blood flow (CBF) as a function of time following a neuronal activation. This standard 

(canonical) model admits a high variability according to individuals, spots/stimuli and 

sequences, see [Aguirre et al., 1998; Silvestre et al., 2010] for advanced modeling of the 

HRF. Figure 1.3 shows a generic model of the hemodynamic response. The initial dip 

detected by Buxton [Buxton, 2001], that occurs within the first two seconds after the 

stimulus is generally ignored in models [Poldrack et al., 2011]. Its negative intensity is low 

compared to the maximum hemodynamic response, so it is rarely observed in practice.  

  

Figure 1.3: Canonical shape of the hemodynamic response function 

Abscissa unit is arbitrary. After a neural activation, it takes approximatively twenty 
seconds before the comeback of the basal state.  
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1.2.2 Linear time invariant property 

An important assumed property of the hemodynamic response is its linear relationship 

with the neural activation. This assumption is called the linear time invariant (LTI), and 

greatly simplifies the modeling and interpretation of neuroimaging investigation. Overall, 

the LTI assumption appears to be fairly accurate in most cases [Dale and Buckner, 1997; 

Logothetis et al., 2001]. It shows some limitations when the subject is stressed by the 

stimuli, i.e. when stimuli frequency becomes too high [Wager et al., 2005]. In this case, 

neural responses can saturate, while the cerebral blood flow keeps increasing [Sheth et 

al., 2004]. On the opposite, too short and/or too small neural activations are not 

associated with a CBF increase [Sheth et al., 2004]. The stimuli type can also thwart the 

linearity, like auditive stimuli [Harms and Melcher, 2002]. Nonetheless, the range of 

investigations where the LTI is satisfied is wide. Figure 1.4 illustrates the LTI property. 

  

Figure 1.4: Illustration of the linear time invariant property of the HRF 

The top graph shows how the HRF amplitude depends linearly on the neuron activation 
intensity: halving the activation intensity also halves the hemodynamic response, and 
two identic activations produced two identic responses (from basal state). The bottom 
graph shows more sophisticated neuronal activations and their associated responses. 
Since we assume the linearity, the expected HRF is simply the convolution between the 
canonical HRF and the function that describe the neural activation with respect to time. 
This computation is the core of task-based functional MRI, which is addressed in 
section 2.3. 
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1.3 Imaging techniques 
In this section, we briefly describe some common functional imaging techniques. Thanks 

to the neurovascular coupling, these techniques can measure directly or indirectly either 

the electrical activity of the neurons or associated hemodynamic response parameters. 

1.3.1 Electroencephalography (EEG)  

The communication between the brain neurons is made through synapses with electro-

chemical reactions. One of the most natural way to investigate brain activity is to 

measure this electrical activity. EEG uses electrodes placed on the patient scalp to record 

the variation in voltage between these electrodes resulting from the chemical reaction 

between synapses [Henry, 2006]. Compared to other brain imaging techniques, EEG is 

one of the cheapest, easiest to implement and less invasive methods (apart from its 

intracranial counterpart), which perfectly suits the study of large cohort of healthy (or 

not) subjects. Furthermore, EEG has one of the best temporal resolution with the order 

of the millisecond. The major EEG downside is its poor spatial resolution which does not 

allow an accurate localization of the brain functional activity. However, the increasing 

development of multimodal brain imaging allows to use EEG in combination with a more 

spatially accurate method, typically MRI, to overcome EEG poor spatial source 

localization [Abreu et al., 2018; Bießmann et al., 2011]  

1.3.2 Magnetoencephalography (MEG) 

Magnetoencephalography is the magnetic equivalent of the EEG: instead of recording 

voltages, it uses magnetometers to record the magnetic field induced by the brain 

electric activity [Hämäläinen et al., 1993]. MEG and EEG are similar regarding their 

imaging properties. MEG is can also be used in combination with other brain imaging 

technique, and often with EEG as recording both at the same time is quite 

straightforward [Lopes da Silva, 2013]. 

1.3.3 Near-infrared spectroscopy (NIRS)  

Widely use in chemistry to identify organic molecules, NIRS assess brain activity by 

recording optical transmittance variation caused by the variation in blood hemoglobin 

concentration, in the near-infrared spectrum. Indeed, a neural activation requires energy 

which is drawn from the oxygen stored in the blood hemoglobin, locally modifying its 

concentration [Butler et al., 2017]. As EEG, NIRS is cheap and non-invasive. However, 

NIRS records indirectly the brain activity and only through the cortical surface, which 

hinders its interpretation. 

1.3.4 Positron emission tomography (PET) 

We briefly mentioned in the NIRS section that a neural activation requires chemical 

energy, which is brought to the neurons through the vascular system. Hence, tracing this 

chemical supply would provide direct exhibition of the neural activity, which is the exact 

concept of PET. PET consists in injecting a radioactive component, like O 
15  (called 

radiotracer), and investigating its spreading and accumulation in the brain by tracing its 

radioactivity with a gamma camera [Vaquero and Kinahan, 2015]. The major advantage 

of PET is that it allows to quantify the cerebral blood flow, depending on the radiotracer 
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used. As neural activity is directly related to the oxygen consumption, and oxygen 

consumption to cerebral blood flow (cf. neurovascular coupling in section 1.2), PET scan 

allows a quantitative measurement of the neural activity as well as the investigation of 

disease that have an impairment of cerebral blood flow as biomarker, such as Alzheimer’s 

disease [Marcus et al., 2014]. PET major limitation is the injection of radioactive 

components, which usage is arguable when investigating healthy subjects.  

1.3.5 Computed tomography (CT) 

The CT cast series of X-rays on the subject in different direction. Since each organic 

component has its own level of X-ray absorption, and also because the body absorption 

is not high enough to totally cancel the penetrating ability of X-rays, CT  is able to rebuild 

the head as a three-dimensional volume and also differentiating tissues inside it [Ter-

Pogossian, 1984]. In order to quantify perfusion, an intravenous contrast agent with 

known pharmacokinetic is injected to the subjects. The high contrast of CT, its faster and 

less constraining implementation compared to MRI, has made the technique of choice in 

emergency case and for pathologies related to head trauma However, CT has a major 

downside. The X-rays are energetic enough to interfere with molecular structure, and are 

prone to increase the risk of cancer. Consequently, CT is not suitable for longitudinal 

studies, especially for research purpose on healthy subjects where the benefits of 

examination are highly arguable.  

Note that even though computed tomography usually refers to specifically X-rays, 

tomography is actually every technique that (re-)build a three-dimensional volume from 

a sample of two-dimensional sections. For instance, MRI can somehow be understood as 

a nuclear magnetic resonance tomography. Functional MRI is detailed in next chapter.  

 

 



Chapter I 
Context 
Functional magnetic resonance imaging [25] 

Section 2. Functional magnetic resonance imaging 
The phenomenon of nuclear magnetic resonance has been discovered simultaneously in 

1946 by the respective teams of F. Bloch's in Stanford and E. Purcell at Harvard, and both 

were awarded the Nobel Prize in 1952. Currently, the phenomenon is mainly known for 

its use in the medical field as magnetic resonance imaging (MRI). Beside the detection of 

structural brain abnormalities such as tumors or lesions, the MRI saw in the 1990s the 

development of a new application, so-called functional MRI (fMRI). 

2.1 Introduction to Nuclear Magnetic Resonance 
This section overviews the basic principle of nuclear magnetic resonance imaging (NMR) 

that allows imaging to be made. 

2.1.1 Quantum model 

The human body consists of roughly two third of hydrogen atoms H 
1 . In NMR, we usually 

assimilate the proton H+ 
1  with the hydrogen atom. A proton is a positively charged 

elementary particle that rotates on itself along a free axis, whose guiding vector 𝑆 

represents the spin of the particle.  

Let us give a strong magnetic field B⃗⃗⃗0 of the order of several Tesla: 0.5T to 22T in general, 

less than 11.5T for the medical environment (4.10-5T for the earth magnetic field as a 

comparison). Let this field be oriented according to Oz , in the canonical coordinate 

system of ℝ3, without any loss of generality. The protons spins evolving in this magnetic 

field will align on B⃗⃗⃗0, either in parallel or in antiparallel direction. The quantum mechanics 

guarantees that there will always be slightly more protons in the same direction as B⃗⃗⃗0, 

around two parts-per-million in standard condition for temperature and pressure for 0.5T 

field. This may seem like a small amount, but as a reminder, one gram of hydrogen (i.e. 

one gram of proton) represents one mole of hydrogen, i.e. 6.02×1023 atoms. This 

difference of "excess" protons induces a macroscopic magnetization of the protons 

represented by a vector M⃗⃗⃗⃗ = M⃗⃗⃗⃗z0 along the Oz axis. For a family of N protons indexed by 

𝑖 we have: 

• Without B⃗⃗⃗0 : ∑ S⃗⃗𝑖 = 0⃗⃗
N
𝑖=1  

• Under B⃗⃗⃗0 : (∀𝑖 ≤ N, S⃗⃗𝑖 = ±S⃗⃗ ) ∶ ∑ S⃗⃗𝑖
𝑁
𝑖=1  ≅

N

2
. S⃗⃗ −

N

2
. S⃗⃗ + 2. 10−6. N. S⃗⃗ = M⃗⃗⃗⃗z0  

2.1.2 Electromagnetic pulse 

Precession 

So far, we have considered the protons spins as perfectly aligned with the field B⃗⃗⃗0. In fact, 

this is not exactly true, the axis carried by every spin S⃗⃗𝑖 rotates around B⃗⃗⃗0 at a fixed angle 

with a frequency 𝜔0. This phenomenon is called the precession. This is exactly the exact 

same phenomenon that can be observed when disturbing the rotation of a spinning top. 

The proton revolves around S⃗⃗𝑖  and S⃗⃗𝑖 revolves around B⃗⃗⃗0. 

Resonance 

A new field B⃗⃗1 , orthogonal to B⃗⃗⃗0 and called a radio-frequency pulse (RF), is applied. It 

rotates in the xOy plane, at a frequency ω. When the frequency ω reaches ω0, called in 
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this context Larmor frequency, the field B⃗⃗⃗1 resonates with the precession of the protons. 

This field will force the protons to orient themselves in antiparallel with B⃗⃗⃗0. The protons 

perform this movement with the same phase, which will gradually make the longitudinal 

component M⃗⃗⃗⃗z disappear in favour of a transverse component M⃗⃗⃗⃗xy. When half of the 

"excess" protons have turned around, the longitudinal component has disappeared, and 

‖M⃗⃗⃗⃗xy‖ is maximum (90° RF Pulse). If the RF wave continues to be applied, all the spins in 

excess are turned around, ‖M⃗⃗⃗⃗xy‖ = 0 and M⃗⃗⃗⃗z = −M⃗⃗⃗⃗z0 (180° RF pulse). 

Relaxation 

The state of the protons spin caused by the field B⃗⃗⃗1 is unstable, hence when the RF pulse 

stops, the protons tend to return to the initial state, without a transverse component 

‖M⃗⃗⃗⃗xy‖ and with: M⃗⃗⃗⃗ = M⃗⃗⃗⃗z = M⃗⃗⃗⃗z0 . For an RF pulse of 90°, two characteristic times will 

interest us:  

• T1 characterizing the longitudinal relaxation, when ‖M⃗⃗⃗⃗z‖ =
63

100
‖M⃗⃗⃗⃗z0‖  

• T2 characterizing the transversal relaxation, when ‖M⃗⃗⃗⃗xy‖ =
37

100
‖M⃗⃗⃗⃗xy0‖  

For each hydrogen atom, its proton spin relaxation is impacted by the neighborhood 

molecular layout. Indeed, constraining structures (like in solids, e.g. bones) or extremely 

unrestrictive composition (like in free water, e.g. CSF) will be prone to increase the 

longitudinal relaxation T1 a lot. On the opposite, in-between structure like fat or white 

matter will foster shorter T1.  

2.1.3 Acquisition and contrast weighting 

Proton Density 

A critical organic tissue property is its own hydrogen atoms density 𝜌. Indeed, different 

density  𝜌  imply different number of spins in excess for the region considered. On a 

mesoscopic scale, this means that each tissue under B⃗⃗⃗0 has its own magnetization vector 

M⃗⃗⃗⃗z0 according to its density 𝜌. Hence, the density 𝜌 has also a discriminative power. 

Repetition time  

Over time, the excitation/relaxation phases are sequenced according to a certain period, 

called the repetition time (TR). With a short TR, protons in tissues with a longer 

longitudinal relaxation time T1 will not have enough time to relax to their initial position. 

Consequently, every measurement of this tissue will provide a weaker signal. By corollary, 

protons in shorter T1 regions will be able to get a higher transversal magnetization with 

the next excitation, thus providing a higher signal. 

Spin echo 

As the field B⃗⃗⃗0 is considered fixed, so are its intrinsic inhomogeneities. Because of these 

magnetic flaws, the spins will have different precession frequencies. As soon as in 1950, 

Hahn described the phenomenon of spin echo which allow to cope with magnetic field 

inhomogeneities [Hahn, 1950] by simply using a 180° RF pulse after the orthogonal 

excitation. Figure 2.1 below shows the process of spin echo, and its parameter the echo 

time (TE). 
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Contrast 

The choice of TR and TE directly influences the acquisition by the operator, this is called 

weighting. There are three principal types of weights: 

• Short TR (~500ms) and short TE (~20ms): this is the T1 weighting 

• Long TR (~2000ms) and long TE (~120ms): this is the T2 weighting 

• Long TR (~2000ms) and short TE (~20ms): this is the ρ weighting  

Each weighting modifies the contrasts of the brain components, a summary of which is 

provided in the following Table 2.1 and illustrated in Figure 2.2 

  

Figure 2.1: Spin echo 

A. The spins are first aligned in B⃗⃗⃗0 

B. The 90° RF pulse aligns spins in the xOy plane 

C. Because of the field inhomogeneities, spins precess with different speeds. 

D. After a duration 𝑡, a 180° pulse is applied, reversing the spins order  

E. Because the slower spins are now the first, the fastest ones catch them up  

F. After a duration 2𝑡, called echo time, spins are realigned in the xOy plane.  

Image from Wikipedia: https://en.wikipedia.org/wiki/Spin_echo  
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 T1 weighting T2 weighting  𝜌 weighting 

White matter White Dark grey Dark grey 

Grey matter Grey Light grey Light grey 

Cerebrospinal fluid Black White Darker grey 

Contrast WM>GM>CSF CSF>GM>WM GM>WM>CSF 

Table 2.1 Contrast of T1, T2, 𝜌 weighting  

Figure 2.2: Illustration of the T1, T2 and 𝜌 weighting 
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2.2 Functional MRI techniques 
In this section, we present three of the four main fMRI techniques. The fourth we will 

introduce is Arterial Spin Labeling (ASL). Since ASL is the core technique of this manuscript, 

it has its own dedicated chapter afterwards. 

2.2.1 Dynamic susceptibility contrast imaging (DSC MRI) 

DSC MRI relies on a gadolinium based chelate injected in the subject blood stream. Since 

the gadolinium compound is paramagnetic, its spreading through the vasculature causes 

local drops of the signal in T2 (and T2*) weighting with respect to its concentration. 

Thanks to the kinetic of the gadolinium contrast agent, DSC MRI unlocks the computation 

of the cerebral blood volume and cerebral blood flow [Østergaard, 2005]. DSC MRI has 

benefited from a long-time investment of MRI stakeholders, and is currently widely 

available and easy to use for clinical investigation of the brain perfusion. Less invasive 

than PET scan, DSC may struggle to compute CBF accurately close to physiological artifact, 

whether they are pathological or not [Essig et al., 2013]. Note that DSC MRI is the eldest 

published functional MRI technique [Belliveau et al., 1991]. 

2.2.2 Dynamic contrast-enhanced MR perfusion (DCE MRI) 

Very similar to DSC MRI, DCE MRI also uses gadolinium chelate as contrast agent. 

However, it uses T1 contrast instead of T2 weighting. In this way DCE MRI can access to 

some of the microvasculature structure properties like the blood-brain barrier and the 

vessel permeability. These fine measures of the local perfusion make DCE MRI very 

effective in the investigation of tumors [Gordon et al., 2014]. Principal downside, DCE 

MRI implementation and modeling is complex compared to DSC MRI. 

2.2.3 Blood-oxygen-level dependent functional MRI 

Neural activation leads to a strong local increase in blood flow and an increase in oxygen 

consumption as discussed in section 1.2. However, the increase in cerebral blood flow is 

proportionally much higher than the increase in oxygen consumption. The local 

concentrations of the competing molecules of oxyhemoglobin and deoxyhemoglobin are 

therefore unbalanced in favor of the oxyhemoglobin. When deprived of its oxygen atoms, 

hemoglobin possesses "free" iron atoms, whose paramagnetic properties locally induce 

an increase in the signal (for T2* weighting) due to their decreasing number. It is this 

small variation (roughly 4% in explained variance) in the signal caused by the disruption 

of balance that BOLD fMRI tries to capture [Kim and Ugurbil, 1997]. By nature, BOLD fMRI 

shows its major advantage: it is non-invasive. By allowing therefore the longitudinal 

investigation of large cohorts of healthy subjects, BOLD fMRI has become and remains 

the gold-standard for functional MRI. Note that the first human BOLD fMRI experiment 

was reported just one year after DSC MRI [Ogawa et al., 1992]. However, BOLD fMRI 

shows an important downside. Indeed, the signal variation captured by BOLD fMRI is 

multifactorial: it relies on the interaction between the local oxygen concentration, the 

cerebral blood flow and the cerebral blood volume. Consequently, BOLD fMRI does not 

report directly the cerebral activity, nor does it allow the computation of the brain 

perfusion. 
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2.3 Application: task-based functional MRI 
Thanks to the neurovascular coupling, MRI is able to assess neural activity through the 

hemodynamic response. In the first chapter, we introduced the association between area 

of the brain and function as one of the functional imaging problematics. In task-based 

fMRI, the subject is confronted to particular stimuli and/or asked to perform particular 

tasks, which are called the paradigm in this context. Each stimulus is expected to activate 

a (or some) corresponding functional area to its nature. For instance, a common task is 

when the subject is asked to tap a finger from his right hand. In this case, a neural 

activation in area associated with motor function is expected.  

2.3.1 Defining a functional area 

Thanks to the linear time invariant property (section 1.3), the variation in signal induced 

by the stimuli is a priori known, as it is illustrated in Figure 2.3. In order to locate the area 

of neural activation, task-based fMRI usually models the signal in each voxel as a linear 

combination of the expected activation signal plus some signals of interference [Poldrack 

et al., 2011]. By regression, if the linear component associated with the paradigm 

explains a statistically significant part of the signal variance in the voxel, then the voxel 

can be assumed to be located in the cerebral area which manage the function 

corresponding to the paradigm. Note that numerous models have been developed from 

and beside the widely used linear regression. However, they all involve the expected 

signal at some point, either to define or to identify the functional area that the paradigm 

tries to detect.  

Figure 2.3: Task-based MRI principle – Illustration with motor area 

A subject is exposed to motor stimulus following the black pattern shown in top graph. 
Thanks to the LTI property, the expected signal in blue is computed from the convolution 
between the paradigm and canonical HRF. In case 1, the voxel signal in green matches 
well with the expected signal. It will be considered as belonging to the motor area (in 
red), unlike the voxel in case 2.  
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Section 3. Arterial Spin Labeling 
Introduced in 1992 [Detre et al., 1992], Arterial spin labeling (ASL) is the technique of 

interest of this manuscript. Instead of injecting a radioactive tracer as PET, ASL uses 

magnetically labelled protons of blood water as an endogenous contrast agent. In this 

section, we detail some technical aspect on ASL image acquisition and also the cerebral 

blood flow quantification. 

3.1 General principle and declinations of ASL 
Arterial Spin Labeling is an MRI perfusion technique which uses magnetically labeled 

arterial water protons as an endogenous tracer. An inversion pulse labels the inflowing 

blood and after a certain delay, a labeled image of the volume of interest is acquired. The 

subtraction of the labeled image from a control image, i.e., non-labeled, reflects the 

quantity of spins that have perfused the imaged volume, producing what is commonly 

called a perfusion-weighted (PW) image. The PW map can be used to quantify the 

cerebral blood flow (CBF) under some assumptions [Borogovac and Asllani, 2012; Wang 

et al., 2012]. Figure 3.1 illustrates these steps in a general framework of an ASL image 

acquisition. The construction of a label lasts the same duration as the construction of a 

control, which is called the repetition time (TR)1. The label and control steps are repeated 

in order to get numerous PW maps. Depending on the MRI field of investigation, there is 

two options on how to use the PW maps. On the one hand, one can build an average of 

the PW maps, which is the topic of basal ASL. As basal ASL builds the average perfusion 

of the brain map, it focuses more on detection of CBF abnormalities. On the other hand, 

PW maps can be left as they are, and the investigation can focus on the evolution over 

time. This declination of ASL, our topic of interest, is called functional ASL. The next 

sections describe technical aspects of ASL. Functional ASL (fASL), and more generally 

functional MRI, is also split into two research fields: task-based as we see in in section 

3.3. The other research field, resting-state fMRI, is addressed in next section Section 4. 

  

                                                           
1 Some authors consider the TR as the duration of a label plus a control. The description of the 
sequence parameters is almost always self-explanatory about how TR is defined by authors.  
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Figure 3.1: Arterial Spin Labeling generic scheme for image acquisition 

Image acquisition is split in two parts: “label” and “control”. In the label part, a RF pulse 
first aligns the spins of arterial blood water protons in the neck. The labelled protons 
perfuse then through the brain. After a certain duration called the post-labeling delay, an 
image is acquired. The signal in label image come from the labelled protons plus the 
background signal. In the control part, an image is acquitted without labelled protons. 
Hence, the difference between the labelled image and the control (approximately) 
remove the background signal. Because the protons spreading is ruled by the cerebral 
blood flow, the resulting image of the difference is called perfusion weighted image of 
the brain. 
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3.1.1 Spin labeling strategy 

The labeling consists in sending a RF pulse on the subject neck. It 

inverts every proton spin in its area of effect. As protons in arterial 

blood water will perfuse through the brain, they will act hereafter 

as contrast agent. Mastering this bolus of labelled protons totally 

relies on the labelling strategy. 

Continuous ASL 

The oldest method [Williams et al., 1993], the continuous ASL 

(CASL) strategy consists in the labeling of a thin strip of tissue (1 cm) for a significant 

period of time, between around 2 s and 4 s. CASL offers a higher covered volume than 

the other techniques as it is mimicking a real bolus injection of contrast agent which is 

send to the brain through the vasculature. CASL estimated signal-to-noise ratio is also 

better than pulsed ASL [Wang et al., 2002], it shows a better resistance to relaxation of 

spins during the arterial transit time [Parkes and Detre, 2003]. Two major downsides are 

currently leading to give CASL up for its alternatives. Firstly, the high magnetization 

transfer of the bolus and its corollary misestimation of the brain perfusion. The second 

issue is practical: not every MRI device is able to provide such a long labeling radio-

frequency pulse. 

Pulsed ASL 

The pulsed ASL (PASL) instead labels a wide strip of tissue (10 cm) but for a short period 

duration, around 5 ms. The PASL suffers less from magnetization transfer at the cost of 

lower estimated signal-to-noise ratio compared to CASL [Wong, 2005]. Plenty of PASL 

sequences declination and sub-declinations are available depending on which aspect the 

MRI investigation wants to strengthen: less magnetization transfer (TILT [Golay et al., 

1999]), better estimation of axial brain perfusion (PICORE [Jahng et al., 2003]), less 

sensitivity to arterial transit time (QUIPPS [Wong et al., 1998]). 

Pseudo-continuous ASL 

In order to combine advantages of PASL and CASL, pseudo-continuous ASL (pCASL) seeks 

to mimic a CASL labeling by applying a train of rapid radio-frequency pulses [Dai et al., 

2008; Silva and Kim, 1999]. Implementable on most MRI devices unlike CASL, pCASL also 

benefits from a higher signal-to-noise ratio than PASL. Even though the choice of the ASL 

labeling method can depend strongly on the context, especially when trying to detect 

activation zones [Borogovac and Asllani, 2012], pCASL is the currently recommended 

labeling strategy by the “white paper” [Alsop et al., 2015]. 

  



Chapter I 
Context 
Arterial Spin Labeling [34] 

3.1.2 Time-related parameters 

Timing is critical for ASL image acquisition. Indeed, as Figure 3.2 

shows, readout should happen close to the maximum of ASL signal, 

where SNR is the best. The period of time between the start of 

labelling and the readout is called inversion time (TI) and is equal 

to the labeling duration (LD) plus the post-labelling delay (PLD) for 

the pCASL. However, arterial transit time is not consistent 

throughout the brain [Tsujikawa et al., 2016], for many reasons: 

arterial distance from the labeling area, disease, age, etc.. The general recommendations 

tend to favor long PLD (1500-2000 ms) in order to have the full bolus perfuse through all 

brain tissues, and thus, better CBF quantification [Alsop et al., 2015]. Depending on the 

topic of investigation and population studied, PLD is adapted [Gai and Butman, 2019].        

Figure 3.2: Standard model of ASL signal variation during image acquisition 

We position in a slice of interest where the readout will be made. First, we consider the 
labeling starts exactly at time zero. The next step is the travel of the labelled protons 
toward the slice of interest. The duration between the labeling and the arrival of the first 
labelled proton is called the arterial transit time. During this moment the ASL signal is 
null. When the first labelled proton enters the slice of interest, the ASL signal starts 
increasing. It reaches its maximum directly depending on the bolus width, which itself 
depends on the labeling duration. In order to have the best image by maximizing the SNR, 
the readout should happen close to the maximum. The duration between the end of the 
labeling and the readout is called post-labeling delay (PLD) in pCASL, and inversion time 
(TI) in PASL. Once the whole bolus has reached the area of interest, the signal starts 
decreasing as no additional labelled protons are coming and because of the 𝑇1 relaxation 
of the spins.  
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3.1.3 Readout method 

Regarding the readout techniques, the main question is to acquire 

the image slice by slice (2D sequences) or as an entire volume (3D 

sequences). As the slices in 2D are time shifted from a non-

negligible duration, each slice actually has its own PLD. 3D 

sequences cope with this issue by definition. The most common 

3D sequences, such as multi-echo (RARE), fast-spin echo (FSE), 

gradient and spin echo (GRASE), also provide higher SNR than the 

typical 2D echo-planar (EPI) sequence. Despite more blurring, more distortion, and more 

sensitivity to motion artifacts compared to 2D EPI, 3D sequences are likely to become the 

technique of choice [Alsop et al., 2015; Vidorreta et al., 2013]. However, as for CASL, not 

all MRI devices allow implementation of 3D sequences. Since typical ASL 2D EPI readout 

is very similar to BOLD readout, it is hence available on most devices. Considered as a 

viable alternative to 3D readout [Alsop et al., 2015], 2D EPI is still widely used. 

3.1.4 Subtraction  

In order to get rid of the background BOLD signal and obtain the 

perfusion-weighted map, the label images need to be subtracted 

from the control images. Three main variants of subtraction have 

been suggested in the literature: pairwise, surround and sinc 

interpolation1 subtraction.  

Let (𝑃𝑖)𝑖≤𝑛, (𝑅𝑖)𝑖≤2𝑛 be respectively the PW maps, and the native 

control and label images. Without any loss of generality, let us 

consider that ASL acquisition starts with a control, i.e. each odd 

readout is a control image. The pairwise subtraction is the natural 

subtraction of a label image from the preceding (or following) 

control image: 

𝑃𝑖 ≔ 𝑅2𝑖−1 − 𝑅2𝑖 

The surround subtraction linearly interpolates to the label 𝑖 

(control 𝑖) its two surrounding controls (labels), i.e. estimate the 

control (label) with the same readout time as the label 𝑖 (control 

𝑖) . This way, the surround subtraction twice the temporal 

resolution to 2𝑛 compared to pairwise subtraction as it builds a 

PW maps at each TR. With respect to the parity of 𝑖, we have:  

𝑃𝑖𝑜𝑑𝑑/𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ≔ 𝑅𝑖 −
1

2
(𝑅𝑖−1 + 𝑅𝑖+1) 

𝑃𝑖𝑒𝑣𝑒𝑛/𝑙𝑎𝑏𝑒𝑙 ≔
1

2
(𝑅𝑖−1 + 𝑅𝑖+1) − 𝑅𝑖 

Equation 3.1: The surround subtraction of ASL 

Finally, the sinc interpolation subtraction build a new family of 

controls from the original family. Using sinc interpolation, it estimates the controls at the 

                                                           
1 Formally the Whittaker-Shannon interpolation, which uses a cardinal sinus, hence the name. 
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readout time of the labels, and proceed to pairwise subtraction between the labels and 

the interpolated controls.  

Ideally, we would like to know the BOLD background signal exactly at the same time as 

the label readout. In task-based functional MRI, where timing is most crucial because of 

the external stimuli, the three methods provide very similar CBF estimation compared to 

a PET scan reference [Warnock et al., 2018]. However, with pairwise subtraction the 

control is shifted temporally of one TR from its corresponding label image. Because of 

this conceptual flaw of pairwise subtraction [Wong et al., 1997], surround and sinc 

interpolation are preferred [Liu and Wong, 2005].  

 

3.2 CBF quantification 
Once the label subtracted from the control, the PW map obtained 

unlock an interesting feature of ASL: the quantification of the CBF. 

However, the computation that leads to CBF values involves some 

assumptions to be made. The following sections give an overview 

of the theoretical construction of the customary model that links 

ASL signal with the CBF. 

3.2.1 The general kinetic model 

The core concept of CBF computation is a model proposed by Buxton et al. in 1998 called 

the general kinetic model [Buxton et al., 1998]. It states that the ASL perfusion signal, Δ𝑀, 

results from the combination of three main effects: 

1. The delivery function:   𝐶 ∶ 𝑡 ↦ 𝐶(𝑡) 

It is the concentration of labeled water entering a given voxel at time 𝑡.  

 

2. The residue function:   �̃� ∶ (𝑡0, 𝑡1) ↦ �̃�(𝑡0, 𝑡1) 

At a time 𝑡1, in a given voxel, it is the fraction of labeled water that arrived at 

time 𝑡0 and remains in the voxel at the time 𝑡1.  

 

3. The relaxation function:  �̃� ∶ (𝑡0, 𝑡1) ↦ �̃�(𝑡0, 𝑡1) 

It describes the magnetization relaxation between the times 𝑡0 and 𝑡1 in a given 

voxel. 

If the tissue is assumed to keep its physiological state, the residue and relaxation 

functions can be written such as for all 𝑡0 and for all 𝑡1: �̃�(𝑡0, 𝑡1) = 𝑅(𝑡) = 𝑅(𝑡1 − 𝑡0) 

and �̃�(𝑡0, 𝑡1) = 𝑀(𝑡) = 𝑀(𝑡1 − 𝑡0). Let 𝑀0 be the equilibrium magnetization of arterial 

blood. Let 𝛼 ∈ [0, 1] be the labeling efficiency factor. The general kinetic model of ASL 

proposes to model the signal at time 𝑡 with respect to the CBF as follows: 

Δ𝑀(𝑡) ≔ 2𝑀0𝛼. 𝐶𝐵𝐹.∫𝐶(𝑡). 𝑅(𝑡 − 𝑡0).𝑀(𝑡 − 𝑡0). 𝑑𝑡0

𝑡

0

 

Equation 3.2: Equation of the general kinetic model in ASL 



Chapter I 
Context 
Arterial Spin Labeling [37] 

3.2.2 The standard kinetic model 

In the previous section, we describe with Figure 3.2 the general evolution of ASL signal 

with respect to time during an image acquisition. This shape actually results from a 

specific definition of 𝐶, 𝑅  and 𝑀  which is known as the standard kinetic model. This 

model adds three assumptions [Alsop et al., 2015; Buxton, 2005], one related to each 

function, in order to explicitly define them: 

1. The labeled blood flow in a particular voxel is assumed to be uniform. Let T1b 

ATT, LD be respectively the blood longitudinal relaxation time, the arterial transit 

time and the labeling duration. The delivery function can thus be expressed as: 

 

𝐶(𝑡) ≔ {

0 if   0 ≤ 𝑡 < ATT

exp (−
𝑡

T1b
)    if   ATT ≤ 𝑡 < ATT + LD

0 if   ATT + LD < 𝑡

 

Equation 3.3: The delivery function 

 

2. The water exchange between tissue and blood is described by single- 

compartment kinetics. In particular, the labelled water is assumed to exchange 

between blood and tissues rapidly compared to ATT, and also without any 

outflow. Hence, ATT and tissue transit time can be considered as equal. 

Moreover, the ratio of labelled water concentration between venous and brain 

is then considered as constant, which is rather true [Zhou et al., 2001]. Let be 𝜆 

the brain-blood partition coefficient of water, the residue function 𝑅  is 

expressed as: 

 

𝑅(𝑡) ≔ exp (−
𝑡. CBF

𝜆
) 

Equation 3.4: The residue function 

 

3. The labelled water spins relaxation has the same longitudinal relaxation as blood 

before reaching the tissue, and the same relaxation T1 as the tissue once the 

labelled water has reached it. While not strictly true, the difference have a 

limited impact [Alsop et al., 2015]. Under this assumption, the relaxation 

function simply becomes: 

 

M(𝑡) ≔ exp (−
𝑡

T1
) 

Equation 3.5: The relaxation function 

  



Chapter I 
Context 
Arterial Spin Labeling [38] 

Once included in the general kinetic model, the expressions of the ASL signal ΔM with 

respect to time and depending on the sequence become: 

ΔMPASL(𝑡)

𝑞1(𝑡)
=

{
 
 

 
 
00
0 if   0 ≤ 𝑡 < ATT

2α.M0. CBF. exp (−
𝑡

T1b
) . (𝑡 − ATT)                       if   ATT ≤ 𝑡 < ATT + LD

2α.M0. CBF. exp (−
t

T1b
) . LD  if   ATT + LD < 𝑡

 

Equation 3.6: Pulsed ASL standard kinetic model 

 

ΔMpCASL(𝑡)

𝑞2(𝑡)
=

{
 
 

 
 
00
0 if   0 ≤ 𝑡 < ATT

2α.M0. CBF. exp(−
ATT

T1b
) (1 − exp(−

𝑡 − ATT

T1b
) )   if   ATT ≤ 𝑡 < ATT + LD

2α.M0. CBF. exp(−
𝑡 − LD

T1b
) (1 − exp(−

LD

T1b
)) if   ATT + LD < 𝑡

 

Equation 3.7: Continuous and pseudo-continuous ASL standard kinetic model 

 

The denominators 𝑞1(𝑡)  and 𝑞2(𝑡)  gather relaxation times and venous clearance 

parameters. Both 𝑞1(𝑡)  and 𝑞2(𝑡)  are close to 1 in typical pASL and pCASL 

implementation and are thus usually ignored [Buxton et al., 1998].   

Both equations provide an evolution of signal close to the one presented in Figure 3.2. 

Given these equations, the extraction of CBF is explicit. A priori, every parameter in these 

equations are given or known, expect the arterial transit time. In consequence, in order 

to determine the CBF, we preferably want to refer to the third equality in the equations. 

This is for this very reason that long PLD/TI are recommended as we mentioned in 

section 3.1.2 [Alsop et al., 2015].  

3.2.3 Advanced modelling 

Multiple adjustment and alternatives have been proposed to the standard kinetic model. 

Firstly, we assume that a single PLD/TI method is used. If the hardware allows multiple 

PLD/TI acquisition, then the ATT can also be estimated  [Francis et al., 2008]. 

Consequently, a readout can be safely made in the ascending part of the signal, and 

hence closer to the optimal SNR of ASL signal. Secondly, the standard kinetic model 

second hypothesis (see 3.2.2), assume that the labelled blood water exchange rapidly 

with brain tissues without any outflow. Parkes and Tofts proposed a two compartments 

model that allows to get rid of these two assumptions [Parkes and Tofts, 2002]. However, 

as the white paper states, alternative modelling techniques while appealing are more 

demanding in scan time and expertise, where the standard kinetic model shines by its 

robustness and simplicity. 
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3.3 ASL pro and cons 

3.3.1 Advantages 

Non-invasiveness  

Contrary to DSC MRI, DCE MRI, and PET, ASL is not invasive. The absence of contrast agent 

injection makes ASL well suited particularly for pediatric population or more generally for 

population with poor venous access or contrast agent contraindication. Moreover, the 

non-invasiveness of ASL allow longitudinal studies of healthy subjects, where repeated 

agent injection is arguably questionable. 

White noise  

The PW map voxels signals, obtained after subtraction of label and control images, has 

an estimated noise that can be regarded as white [Wang et al., 2003]. Numerous 

processes of MRI data benefit from the whiteness of the noise of the ASL signal. Whether 

it is for statistical purpose or image preprocessing, plenty typical models assume the 

noise to be white (e.g. linear regression). 

CBF quantification 

As shown in section 3.2, ASL allows a quantitative measurement of the CBF under some 

assumption, unlike BOLD. 

A proximity to neural activity 

Since ASL signal relies on CBF variation, ASL is a more direct measurement of neural 

activity (through neurovascular coupling) compared to BOLD, whose signal variation 

results from complex interaction between CBF, cerebral blood volume, and local oxygen 

concentration. 

A fine localization of functional activity 

Since BOLD fMRI signal is prone to venous contamination, fASL is able to provide a better 

localization of the foci of activation [Duong et al., 2001; Luh et al., 2000; Tjandra et al., 

2005]. Along with this idea, ASL is also read to be more specific than BOLD [Barker et al., 

2013]. 

3.3.2 Drawbacks 

Lower estimated signal-to-noise ratio 

The main drawback of ASL is its lower signal-to-noise ratio compared to BOLD fMRI in 

particular and other perfusion methods in general. Indeed, the perfusion signal 

associated with neural activation obtained after volumes subtraction is estimated to 

explain 1% of the total variance of the total signal.  

Lower spatial and temporal resolution 

ASL spatial resolution is on average 2-3 times smaller than BOLD. In addition, technical 

timing constraints like the post-labeling delay (see section 3.2.2), ASL TR is also usually 2-

3 times longer than BOLD [Liu and Brown, 2007].  
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Impracticability for very long arterial transit times 

If in a damaged cerebral area where the ATT become too long, for example in acute 

stroke, the spin label vanishes before the full bolus is able to perfuse. Indeed, the ATT in 

this case is close or higher to the blood T1. ASL is hence impractical in this case with 

traditional approach [Kim and Bandettini, 2006].  

Sequence variability 

ASL can be implemented through numerous MRI sequences and meta-analyses can be 

difficult to set up, for ASL shows a high sequence parameter dependency [Grade et al., 

2015; Mutsaerts et al., 2015]. The quantification of CBF also depends on the precision of 

the parameters used for the quantification [Parkes and Tofts, 2002]. Nevertheless, 

consensus seems to emerge with years, like for instance the white paper [Alsop et al., 

2015].    

Limited exposure 

Due to the latter ASL flaws mentioned above, BOLD is predominant in clinical usage and 

in academic research, and is therefore considered as the standard technique in fMRI. 

Consequently, ASL has been mostly used for research purposes. However, the recent 

increasing involvement of all MRI stakeholders is highly beneficial in order to further 

develop ASL usage: guide for clinical practitioners [Grade et al., 2015], consensus [Alsop 

et al., 2015], feasibility and viability [Chen et al., 2015].  

3.3.3 Application in clinical research 

Brain function 

First, fASL is naturally able to assess neural activity and detect functional areas 

[Borogovac and Asllani, 2012; Chen et al., 2015; Steketee et al., 2015]. Compared to BOLD, 

the test-retest ability of fASL seems better, whether in inter-subject variance or in inter-

session variance [Luh et al., 2000]. Some direct comparisons with BOLD can be found in 

the literature, from which we have report overall conclusion in these sections on ASL 

aptitudes. Some focus on specific area like motor [Pimentel et al., 2013; Raoult et al., 

2011], speech [Kemeny et al., 2005] or visual [Leontiev and Buxton, 2007] but also on a 

more general comparison [Detre and Wang, 2002; Liu and Brown, 2007; Zhu et al., 2013]. 

Pre-neurosurgical mapping  

Some potential application to tasked-based fASL in clinical practice, the mapping of 

specific functional before neurosurgical intervention area, that helps surgeon to avoid 

damaging patient capacity [Hirsch, 2012; Paya et al., 2018]. 

Brain dysfunction 

As it provides quantification of CBF, fASL can be a serious contender to BOLD when it 

comes to pathologies evaluation, whether it is for diagnostic or longitudinal follow-up. 

The general idea of the study of cerebral dysfunctions through fASL (or functional imaging 

in general) is to compare functional areas of control subjects with those of diseased 

patients. For instance, fASL can be effective for Alzheimer's disease [Alsop et al., 2010; 

Wolk and Detre, 2012; Zhang et al., 2016], where CBF may be a biomarker at early stage 

of the disease. We can also find some fASL studies for schizophrenia [Kindler et al., 2015], 

multiple sclerosis [D’haeseleer et al., 2011] and drug studies [Nordin et al., 2013; Wang 
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et al., 2011]. FASL is also able to investigate a specific set of pathologies with CBF 

impairment, such as acute stroke [Wang et al., 2012] or chronic fatigue syndrome 

[Boissoneault et al., 2016].  
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Section 4. Resting-state functional MRI 

4.1 Introduction 

4.1.1 Tasked-based fMRI limitations 

The brain is a complex network of neurons structurally interconnected, roughly organized 

in units dedicated to specific functions. One main objective of functional imaging is to 

identify these functional units and their roles. We briefly introduce how task-based fMRI 

tackles this problematic by instructing the subject to perform particular tasks. Under 

controlled experimental conditions, task-based fMRI is expected to exhibit the cerebral 

areas implicated in the task, thanks to the neurovascular coupling. One can imagine 

numerous experimental designs and paradigms in order to target explicit functions, e.g. 

motor, language, vision, memory or audition. However, it is difficult to assume that task-

based fMRI can explore numerous brain functionalities. For practical reasons first, as the 

implementation of the task is limited by the MRI device itself. Moreover, some brain 

functions could be too complex to allow a paradigm design to ever exhibit it. Second, 

task-based fMRI can only target one or few functions at a time, and does not inform on 

how the functional areas are working together, where brain can actually combine 

numerous functions at the same time. Task-based fMRI display eventually a fragmented 

information of brain organization. 

In this chapter, we present the second way to explore brain function with MRI without 

exposing the subject to a stimulus. Even at rest, i.e. without performing any particular 

physical or cognitive task, the brain does not enter an idle state: the neural spontaneous 

activity remains intense. This is illustrated by energy consumption: the metabolic activity 

induced by a task consume only 0.5% to 1% of the brain total energy, whereas the resting-

state spontaneous neuronal activity represents 60% to 80% of the energy consumption 

[Raichle and Mintun, 2006]. Communication between brain regions is therefore likely to 

play a key role in the brain’s control over physical and cognitive processes, the question 

is now how to explore it.  

4.1.2 Functional connectivity 

The functional areas in task-based fMRI are constructed by exhibiting voxels that have a 

signal matching an expected signal regarding the paradigm. Corollary, this set of voxels 

are likely to have a similar signal to each other, as they are all similar with the expected 

signal. These signals match because, in these voxels, the neurons activate at the same 

moments, defined by the task. Another interpretation of a functional area in this case is 

that the neurons belong to the same functional area because they activate at the same 

time. In other words, a functional area can be constructed by aggregating voxels with 

similar signals. This relationship between neurons (voxels) is the core concept of resting-

state fMRI: functional connectivity. Exploring functional connectivity in resting-state 

copes with the task-based fMRI issues mentioned above. Indeed, resting-state fMRI 

(rsfMRI) is a global assessment of brain organization, as it can gather every voxel in 

different functional areas through their functional connectivity. On a higher scale, by 

investigating the relationship in terms of functional connectivity of these new functional 

areas, rsfMRI depicts the architecture and the interaction between the functional units 
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of the brain. Eventually, the examination of functional connectivity in the brain can be of 

considerable importance, providing valuable new insights in the core organization of the 

brain.  

Functional connectivity is defined by the temporal interdependence of neural activity 

throughout the brain [Aertsen et al., 1989]. In the context of rsfMRI, functional 

connectivity is investigated by networking voxels which provide a similar signal, in other 

words, by gathering locations that share similar neuronal activation patterns. In the case 

of anatomically separated cerebral areas, the functional connectivity reflects the 

existence of an underlying functional communication between regions. The term 

connectivity can be somewhat misleading: we are talking about similar behaviors, not 

spatial connections. While a spatial connection mandatorily underlies any functional 

connection, functional connectivity cannot be extrapolated from connectome, and 

rsfMRI does not explore this correspondence between function and structure. 

4.1.3 Spontaneous activation and resting-state fMRI 

In 1995, Biswal and colleagues conducted a study in which they first estimated the whole 

motor area of a cohort of subjects, with tasked-based fMRI. They observed that when 

the subjects were at resting-state, i.e. without performing any task, signals from voxels 

in the right and left regions of the estimated motor area were highly correlated [Biswal 

et al., 1995]. Resting-state fMRI was born. Indeed, they both show that, even at rest, the 

signal/activation pattern of a functional area remains homogeneous, and also that left 

and right motor area, while distant, suggest a functional connectivity relationship, 

forming the motor network. From this pioneering study, numerous studies have 

reproduced this result in the motor network [De Luca et al., 2005] and have extended it 

to different functional networks like auditory, language, visual or even subtle functions 

such as salience [Cordes et al., 2002; Damoiseaux et al., 2006; De Luca et al., 2006; Fox 

and Raichle, 2007; Greicius et al., 2009; Lowe et al., 1998]. As resting-state fMRI globally 

investigates activation patterns, the whole brain can be functionally partitioned into 

atlases of networks at different scales [Fan et al., 2016; Varoquaux et al., 2011]. The 

construction of resting-state functional networks is addressed in section 4.3 and 

following. 

Once the functional networks estimated, the next step is to investigate their interactions. 

The functional connectivity at the functional networks scale depicts how these networks 

interact. The key concept is to consider the brain as a unique integrative network of the 

estimated functional networks, assimilated with the mathematical structure of a graph 

[Van den Heuvel and Hulshoff Pol, 2010; Wang et al., 2010]. The graph properties model 

the functional architecture: each node corresponds with a functional network, and edges 

configuration depicts how they interdepends. 

In a nutshell, resting-state fMRI is all about measuring similarities between the signals 

from different voxels. By gathering voxels that share similar signal, it exhibits functional 

networks, i.e. brain region that share similar activation patterns. At a group of voxels 

scale, it models the communication channels between the functional networks, and 

hence, the brain functional architecture. 
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4.2 Preprocessing resting-state fMRI data 
In this section, we address the generic preprocessing of resting-state fMRI data. While  

identifying the best preprocessing is still an open topic in rsfMRI [Gargouri et al., 2018], 

a general routine can be discerned in the literature. Fortunately, most preprocessing 

steps of rsfMRI are shared with task-based fMRI [Cole et al., 2010]. 

Slice timing correction 

Regardless of the MRI sequence, a whole volume is never instantaneously acquired. For 

instance, with the standard 2D EPI sequence (see section 3.1.3), the 3D volume is 

reconstructed from 2D slices acquired at different times. Also known as temporal 

realignment, slice timing correction is the preprocessing step that aims to correct the 

differences in acquisition times [Henson et al., 1999]. The slice-timing correction is 

implemented by temporal interpolation of  available data [Parker et al., 2017]. The slice-

timing correction benefice seems limited in rsfMRI [Gargouri et al., 2018]. However, the 

recent paper from Parker and Razlighi show that even if contribution of slice-timing alone 

is difficult to exhibit, it is beneficial when considering the crossed factorial influence of 

multiple preprocessing steps [Parker and Razlighi, 2019].   

Motion correction  

Also known as spatial realignment, the motion correction is the step that corrects the 

unavoidable motion artifacts caused by subject movements during a fMRI acquisition. 

The inconsistencies caused by motion between consecutive volumes hinder the 

estimation of functional area made after the preprocessing [Muraskin et al., 2013; Power 

et al., 2012]. The usual practice to cope with motion issue is simply to perform a rigid 

registration of every volumes on one volume of reference.    

Registration - Normalization 

In order to compare subjects with each other, the images need to be registered to ensure 

that the structural architecture corresponds. For a cohort of subjects, the registration of 

all subjects on the same reference is called spatial normalization [Friston et al., 1995]. 

The reference is usually made on a brain template like the Montreal Neurosciences 

Institute template MNI152 [Brett et al., 2002]. However, spatial resolution of fMRI 

images is poor compared to MRI anatomical template, especially fASL images for which 

direct registration to template can easily fail. The standard practice is to use a subject 

high-resolution anatomical image as a buffer in the registration of the functional image 

to the template space. The functional image is registered to its corresponding anatomical 

image, then the anatomical image is registered to the template. Last, the two 

transformations are composed to construct the one that registers the functional image 

to the template. The comprehensive review by Gholipour and colleagues details the 

aspects of functional data registration [Gholipour et al., 2007], from which we have 

extracted Figure 4.1.  



Chapter I 
Context 
Resting-state functional MRI [45] 

 

  

Figure 4.1: Generic registration of a functional image 

Illustration and algorithm are from [Gholipour et al., 2007]. First step is usually to register 
subject functional acquisition to subject anatomical acquisition. Then the anatomical 
image is registered on the template, and the transformations are composed to register 
functional image on the template. The algorithm describes the usual four steps of a 
registration: transformation, interpolation, correspondence and optimization. The very 
last step is usually a resampling in the template resolution.   
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Spatial smoothing 

Registration and normalization of functional images can produce small errors. Most if not 

all studies use a spatial smoothing as a correcting procedure. Specifically, the spatial 

smoothing is made through filtering signal in each voxel with gaussian kernel density 

estimation. The smoothing is parametrized by the Gaussian standard-deviation, with 

higher variance giving increased smoothness. Full width at half maximum radius are in a 

range from 3 to 12 mm in rsfMRI, and most of the time between 5 and 6 mm,  [Alakörkkö 

et al., 2017]. 

Temporal filtering 

In task-based MRI, the frequency of the stimuli and this way the expected neural 

activation of interest are controlled. Hence,  the signal interfering with neural activity 

self-signal, such as respiratory or cardiovascular signal,  can be removed by the 

implementation of a high-pass/low-pass filter [Birn et al., 2008; Van Dijk et al., 2010]. In 

resting-state, the functional networks are estimated through spontaneous random 

activations that occur mostly at a frequency between 0.01 – 0.1 Hz [Biswal et al., 1995; 

Damoiseaux et al., 2006]. More precisely, this is the frequency range where spontaneous 

fluctuation are easier to detect, whether it is for ASL or BOLD [Aguirre et al., 2002]. Indeed, 

recent studies manage to perform the extraction of resting-state signal at higher 

frequency [Chen and Glover, 2015; H. L. Lee et al., 2013; Trapp et al., 2018]. Regarding 

lower frequency (<0.01 Hz), they are discarded mostly because of the difficult extraction 

of the signal of interest [Tong et al., 2019], especially in BOLD and less in ASL [Dai et al., 

2016]. There is no consensus in ASL and BOLD on the range of frequency to filter, as a 

narrow filter discards signal of interest [Liang et al., 2012] while larger filter include more 

physiological noise [Gargouri et al., 2018]. 

Additional denoising 

Other sources of physiological noise can also be removed from the time series. For 

instance, respiratory and cardiovascular signal can easily be monitored in MRI device. 

Their signals used as regressors in a (linear) model to explain signal in the voxels allow a 

posteriori to subtract them from the original time-series. The widespread algorithm 

RETROICOR [Glover et al., 2000] is an example of this regression, and it is effective in both 

BOLD and ASL [Restom et al., 2006]. Some voxels display a signal that is most likely to 

have no or barely no functional signal, like the voxels outside the brain, in bones, in CSF 

or in white matter. Beside masking them for further analysis with grey matter map, their 

signals can be accounted in order to denoise images. For instance, the algorithm 

COMPCOR [Behzadi et al., 2007] uses principal component analysis (PCA) on a set of 

voxels that have a high partial volume in CSF or WM. The first components (in terms of 

variance) of the PCA are then used as confound regressors in a linear model to explain 

the signal in voxels of interest. Finally, COMPCOR subtracts the confound regressors from 

the original signal a posteriori. 
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4.3 Detecting functional networks with Seed-Based Analysis 
In the introduction we presented functional connectivity as similarities in neural 

spontaneous fluctuations that can be investigated by measuring similarities between 

voxels time-course. A natural investigation is then to directly compare the linear 

correlation between pairs of voxels to assess their functional connectivity. This is the 

most classic implementation of seed-based analysis (SBA), and the very first method to 

be used [Biswal et al., 1995].  Actually, seed-based analysis is an extremely polymorphic 

method, for which we present below a general step-by-step heuristic.  

Selecting the seeds 

Seeds are a set of subsets of voxels from which we investigate functional connectivity 

and build associated functional networks. The subsets of voxels can be singletons, i.e.  

single voxels, spheres of voxels, ROI given by structural atlas (like Brodmann’s) or also 

tasked-based functional area that are called localizer in this context. ROI are generally 

used when the study is made directly on the graph structure. 

Modeling the functional connectivity  

In parallel with the seed, a measure of similarity between voxels signal that models the 

functional connectivity has to be set. The satisfactory measures of functional connectivity 

are numerous: linear correlation which is the most common one, Spearman’s correlation 

which allows to get rid of signal normality assumption, mutual information which 

translates statistical (in)dependence, spectral coherence that considers the signal from 

the frequency space point-of-view, etc. Most measure of similarity can be directly used 

on single voxels to establish functional connectivity. However, if seed are region-sized, 

the score needs to be adapted into a new variable of interest: for instance, through a 

mean, a weighted mean, an eigen vector, whether it is on signals or scores values. Even 

on singleton, the measure of similarity can also be adapted to extend the definition of 

functional connectivity. The correlation, for example, can be lagged in order to take into 

account of time shifts between neural activation, and this way has found applications in 

rsfMRI [Mitra et al., 2014].    

Thresholding 

Scores do not lead directly to a qualitative assessment of functional networks, but rather 

to a score map that requires a threshold to delimit the spatial layout of functional 

networks. At this point, a statistical test is usually made, depending on the score used, 

and with an adapted implementation/correction (e.g. multiple comparisons). The figure 

below from [Van den Heuvel and Hulshoff Pol, 2010] illustrates the heuristic.  
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Figure 4.2: Detection of the motor area with Seed-based analysis 

Figure comes from [Van den Heuvel and Hulshoff Pol, 2010] and illustrate the first rsfMRI 
experiment of [Biswal et al., 1995]. Resting-state MRI paradigm, from task-based MRI 
point-of-view is identically null (A). By using tasked-based MRI (B), where task was 
alternance of finger-tapping and rest, Biswal and colleagues first delineate a task-based 
motor area, that provide the voxel that will be used as seeds. From this motor area they 
compare voxels signal from the left and right motor area (C) using linear correlation. In 
(D), the voxels that have high correlation with the seed, i.e. that are considered to show 
functional connectivity, i.e. that have similar activation pattern, are part of the same 
functional network: the motor area. It follows the heuristic of SBA: defining seeds, 
defining a measure of similarity that models functional connectivity, selecting a threshold 
(underlying here).   
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4.4 Detecting functional networks with Independent Component Analysis 
The name reminds the Principal Component Analysis (PCA) and this is deliberate: 

Independent Component Analysis (ICA) is also a factor analysis method that builds a new 

basis of variables. However, while PCA expresses the set of observations with variables 

that capture the maximum variance in decreasing order, and also that are decorrelated. 

The objective of ICA is to build a set of statistically independent variables. 

4.4.1 Problematic 

A general formulation of the problem can be constructed as follows: let 𝑌 be a known 

vector (outputs) of size 𝑛 ∈ ℕ, 𝑋 an unknown vector of independent sources of size 𝑝 ∈

ℕ , and a function 𝑀  such as: 𝑌 = 𝑀(𝑋) . Let also 𝐼  be, a measure of the statistical 

dependence. ICA builds a pair (�̂�, �̂�) with �̂� a best estimation of 𝑋 with respect to 𝐼, and 

�̂� a source separation function, such as: 

�̂� ≔ �̂�(𝑌), with �̂� ≔ argmin
�̃�

𝐼(�̃�(𝑌))  

Equation 4.1: General formulation of Independent Component Analysis problematic 

 

4.4.2 Additional hypotheses 

In order to propose resolution algorithms for such problems we must formulate some 

hypotheses. 

Linearity 

Remember that along with the estimation of the source �̂�, we are looking for a function 

�̂� that best estimates 𝑆, with: 𝑆 ∘ 𝑀 = 𝐼𝑑. However, the existence of such a function 𝑆 is 

not guaranteed, and even if 𝑆 exists, there is no general resolution method in this case. 

[Jutten and Karhunen, 2004] address the generic case issue. In order to overcome the 

well-definition issue, we will therefore assume that the dependence of the output signal 

on the sources is linear, i.e. we are looking for a pair (�̂�, �̂�) such as we can write the ICA 

ansatz with matrices: 

�̂� ≔ �̂�. 𝑌, with �̂� ≔ argmin
�̃�

𝐼(�̃�. 𝑌)  

Equation 4.2: Linear formulation of Independent Component Analysis problematic 

 

Under the linearity hypothesis, the model requires two additional assumptions to be 

identifiable [Comon, 1994]: 

1. A traditional assumption of factor analysis method on dimension: the rank of the 

separation matrix 𝑆  must be equal to the number of sources, which requires 

having as many or more output signals as there are sources to find. This allow to 

generally well-define an inverse for �̂�, which is the mixing function �̂�.  

2. At most one source can follow a normal distribution [Hyvärinen, 1999a]. The 

formal demonstration would probably be superfluous here. The key idea lies on 
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the fact that according to the central limit theorem, the sum of independent and 

identically distributed random variables tends to have its average distribution 

getting closer to a Gaussian. Consequently, multiple gaussian sources, or close to 

gaussian sources thwart ICA resolution heuristic, under previous assumptions. 

Indeterminacies: amplitude and order 

Since we are looking for the separation matrix and the vector of the independent 

components at the same time, it is possible to multiply a component (one of the 

estimated sources) by a scalar and also the corresponding column in the separation 

matrix by the same scalar. This results in an indeterminacy on the amplitude of the 

components. In practice, ICA resolution algorithms overcome this issue by setting the 

source variances to 1, i.e.:  ∀𝑖 ∶ 𝑉𝑎𝑟(�̂�𝑖) = 1. The last remaining indeterminacy is the 

same as in PCA, which is on the sign of the components, since: ∀𝑖 ∶ 𝑉𝑎𝑟(�̂�𝑖) = 𝑉𝑎𝑟(−�̂�𝑖).   

However, unlike PCA, ICA does not give an order to the components. Indeed, if 𝑃 is a 

permutation matrix, then under the previous assumptions:  

𝑋 = 𝑆. 𝑌 ⇔ 𝑌 = 𝑀.𝑋 = 𝑀.𝑃. 𝑃−1. 𝑋 = �̇�. �̇� 

Where (�̇�, �̇�) are also a pair of feasible solutions and permutations of 𝑀 and 𝑋.  

4.4.3 Implementation 

In the previous section, we did not specify the measure of statistical independence. The 

implementation of independent component analysis in functional MRI is not unique, and 

it is precisely the choice of the measure that will define the family of the subsequent 

algorithms. The choice of the algorithm is usually adapted to the study being carried out, 

e.g. a subject-scaled study [Calhoun et al., 2001] or a group study [Varoquaux et al., 2010]. 

The subsequent algorithms are numerous. For instance, the Matlab toolbox GIFT with its 

addon ICASSO offers 17 different algorithms [Himberg and Hyvärinen, 2003]. These 

algorithms can be split into two family depending the measure of independence they use 

in their implementation. The minimization of mutual information represents a first class 

of algorithms for ICA, of which the oldest and most famous representative is the Infomax 

algorithm [Sejnowski and Bell, 1995]. Algorithms maximizing negentropy form the 

second class of the most used in ICA. Its most famous representative is the FastICA 

algorithm [Hyvärinen, 1999b]. 

Construction of the functional networks 

Once accomplished, ICA provide a set of signals as independent as possible. In order to 

estimate the functional networks, remember that ICA assumes the voxels signal to be a 

linear combination of the independent signals. As for every statistical linear model, one 

can test if the variance explained by each of the variable (independent component) is 

significantly not null. Hence, each voxel that verifies this hypothesis has a significant part 

of its variance explained by the corresponding independent component. Consequently, 

they all share a similar neural activation pattern, in other words, they belong to the same 

functional networks. Note that, depending on the algorithm used, the method used to 

reconstruct the functional networks varies, and we have mentioned the generic case. 

    



Chapter I 
Context 
Resting-state functional MRI [51] 

4.5 Alternative modeling methods 
Some alternative factor analysis methods to ICA are reported in reviews [Cole et al., 2010; 

Fox and Raichle, 2007; Van den Heuvel and Hulshoff Pol, 2010]. For instance, Principal 

Component Analysis [Friston et al., 1993] as well as Singular Value Decomposition [Hirsch, 

2006] can be used to identify functional networks . These two techniques for changing 

the basis of representation are, however, rarely implemented in the in practice, with the 

ICA being widely preferred.  

Statistical clustering techniques form another family of methods for resting-state MRI. 

Indeed, they seem to be natural investigation techniques if we consider that a functional 

network is a cluster of voxels gathered according to certain conditions of similarity. It 

should be recalled that, in the context of fMRI, only unsupervised classification methods 

make sense, otherwise the fMRI topic would be solved. Typical clustering methods can 

be used in resting-state MRI, such as hierarchical classification (HAC) [Cordes et al., 2002; 

Salvador et al., 2005], and to a much lesser extent, the K-means [M. Lee et al., 2013]. 

With regard to the HAC, the overlap with the ICA and the SBA is satisfactory for the 

classical networks [Raichle et al., 2001], and the HAC overcomes the difficulty of 

interpreting the ICA components. Although being theoretically a global method unlike 

the SBA, the two-by-two comparisons between voxels are not computed directly in 

practice, the data are previously filtered [Cordes et al., 2002] and/or the classification 

operates directly on regions of interest [Salvador et al., 2005]. In addition, the HAC shows 

limited results for intra-group comparisons [Van den Heuvel et al., 2008], even though 

HAC naturally provides an interpretation at different scales of functional connectivity.  
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4.6 Organization of the resting-state networks 
Whatever modeling technique has been used to estimate the functional networks, we 

can now examine their overall organization, using graph theory. We present graph theory 

in introduction, as a welcome theoretical framework to describe the brain function 

architecture. A graph 𝐺 is a pair 𝐺 ≔ (𝑉, 𝐸), where 𝑉 is the set of nodes identifying the 

functional networks, and 𝐸  the edges characterizing their interactions, as Figure 4.3 

shows. The nodes (resting-state networks) are not necessarily defined through a previous 

rsfMRI experiment, and are sometimes defined through task-based MRI or atlas of 

subcortical region. A graph is identical to its adjacency matrix, which tabulates the 

(weighted) connections between functional networks. A natural association can be made 

between the adjacency matrix and a correlation matrix between signals representative 

of each nodes. More generally, any covariance related matrix fits as adjacency matrix 

[Horwitz et al., 1995; Varoquaux and Craddock, 2013]. 

Once constructed, the graph topology will provide in-depth insight of the global brain 

functional organization. Here are some properties of interest [Bassett and Bullmore, 

2017; van den Heuvel et al., 2008]: 

− Node degree: the number of edges connected to a node. The higher the degree 

the more the node corresponding cerebral area is likely to be involved in 

different function. 

 

− Nodes distance: the comparison of the anatomical distance (in mm) with 

distance in number of edge between two nodes informs on the relation between 

structure and function [Salvador et al., 2005]. 

  

Figure 4.3: Construction of a graphs from functional networks 

Left figure shows a simplified case where only five functional networks are considered to 
build the corresponding graph on the right. The edges thickness translates the strength 
of the functional connectivity, as the construction of the edges is made quantitatively, 
e.g. with linear correlation.   
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− Centrality of a node 𝑘: number of distinct pair of nodes (𝑖, 𝑗), such as the shortest 

path from 𝑖 to 𝑗 is through 𝑘. A high centrality indicates the nodes act as a hub in 

functional communication. A drop of centrality can characterizes pathologies like 

Alzheimer’s disease [Sanz-Arigita et al., 2010]. 

      

− Clustering coefficient of a node 𝑘: the ratio of the number of edges between the 

nodes connected to 𝑘 divided by the number of edges that could possibly exist 

in the complete graph formed by 𝑘 and its neighbors. It illustrates how neighbors 

are interconnected.  

 

− Characteristic path length: the average distance (in number of edges) between 

each pair of nodes. A small characteristic length translates a functional 

communication efficiency, and it is fostered by nodes with high centrality. 

  

While all of these scores provide useful insight of functional organization [Bullmore and 

Sporns, 2009; Stam et al., 2016], the two last properties have qualified the brain 

functional architecture. A healthy brain shows a high average clustering coefficient 

combined with a short characteristic path length, which is called a small world network 

[Barrat and Weigt, 2000]. The small world architecture has been exhibited for both BOLD 

[Hayasaka and Laurienti, 2011; M. Lee et al., 2013; Salvador et al., 2005; Wang et al., 

2010] and ASL [Liang et al., 2014, 2013]. Numerous explicit illustrations of small world 

organization are found in human social organization [Leskovec and Horvitz, 2008]. For 

instance, the “six degrees of separation” conjecture states that people are six or less 

social connections away to each other, as a consequence of mankind’s small world social 

organization. 
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4.7 Resting-state fMRI applications 
As the other functional imaging techniques, rsfMRI provides a better understanding of 

the brain function and especially the organization of the functional areas of the brain.  

Resting-state fMRI already benefits from the MRI advantages: good spatial resolution and 

non-invasiveness. It differs from task-based fMRI by its ability to estimate numerous 

networks at once, to depict a global functional organization of the brain. Resting-state 

fMRI is also more inclusive, as the resting-state is easier to achieve compared to tasks, 

especially for pediatric and elderly population, but also for cognitive impaired patients.  

For these reasons, rsfMRI has found some niche clinical applications in pathologies 

investigation, particularly when cognitive impairments are involved. For instance, 

functional connectivity is altered in disease like schizophrenia [Kindler et al., 2015; Lynall 

et al., 2010], major depression [Mulders et al., 2015], Alzheimer’s disease [Agosta et al., 

2012; Sanz-Arigita et al., 2010]. Resting-state fMRI, as a global investigation of function, 

is also adapted for neurodegenerative disease like multiple sclerosis [Cruz-Gómez et al., 

2014; Faivre et al., 2012; Filippi et al., 2013] or amyotrophic lateral sclerosis [Mohammadi 

et al., 2009; Trojsi et al., 2017].  

Despite its lower SNR, but thanks to its closer proximity to neural activation and CBF 

quantification, resting-state ASL has proven to be a serious contender to resting-state 

BOLD in schizophrenia [Zhu et al., 2015] and Alzheimer’s disease [Alsop et al., 2010; 

Zhang et al., 2017]. Resting-state ASL has also found its own clinical applications with 

investigation of chronic fatigue syndrome [Boissoneault et al., 2016] and catatonia 

[Walther et al., 2016].  
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4.8 Discussion 

4.8.1 The resting-state and the default mode network 

 The resting-state is usually defined by the absence of cognitive activity of subject. While 

easier to achieve in general than task-based fMRI conditions, it is also harder to control. 

Table 4.1 shows the instructions given to the subjects to achieve resting-state. The 

instructions differ from authors to authors, and for instance, the “eyes” condition, open, 

closed or fixed, induces small changes in networks estimation [Patriat et al., 2013]. 

 Another potential characterization of the resting-state is in the detection of a specific 

network, called the default-mode network (DMN). The DMN owes its “default” 

attribution, by the fact that it was first associated as a set of regions with an increased 

neural activity when the subject does not perform any task [Raichle et al., 2001]. In other 

word, studies investigating task-based activations found that the neural activation of the 

so called default-mode were anticorrelated with the task paradigm [Broyd et al., 2009]. 

However, posterior research in task-based fMRI found that actually, DMN is related to 

subject self-projection in imaginary situation [Buckner and Carroll, 2007]. This illustrate 

an issue with rsfMRI: without any auxiliary information, rsfMRI cannot qualify to which 

function a set a functional network is dedicate. This shows also how rsfMRI and task-

based fMRI are complementary methods: rsfMRI investigate functions globally without 

qualification, where task-based fMRI qualifies functions, but one at a time.   

Table 4.1: Instructions to achieve resting-state in literature 

We gathered instructions given to subjects in randomly selected paper that perform 

rsfMRI experiment. We split them into four type. Subject can be either ask to close his 

eyes, keep them open or to fix a reticle. Question marks indicate when authors did not 

report instruction regarding the sleep, movements, or cognitive state.    

Instructions Eyes Sleep Movement Cognitive 

[Chuang et al., 2009] Closed Keep awake Lie still Nothing specific 

[Jann et al., 2015] Fixed ? Lie still ? 

[Varoquaux et al., 2011] Closed ? ? ? 

[Braun et al., 2012] Closed ? ? Relax 

[Dai et al., 2016] Closed Try not to ? ? 

[Wang et al., 2009] Closed ? Motionless Relax 

[Storti et al., 2013] Open ? ? Relax 

[Olafsson et al., 2015] Fixed ? Lie still Nothing specific 

[Iraji et al., 2016] Closed Avoid Lie still Relax 

[Smith et al., 2013] Fixed Try not to ? Nothing specific 

[Pruim et al., 2015] Open ? ? Relax 

[Li et al., 2012] Closed ? Lie still Relax 

[Kindler et al., 2015] Closed Stay awake ? ? 

[Zhu et al., 2013] Open ? Lie still Rest 

[Greicius et al., 2009] Closed ? Lie still ? 

[De Luca et al., 2006] Closed Do not fall ? Rest 

[Sanz-Arigita et al., 2010] Closed Do not fall Lie still Nothing specific 
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4.8.2 Preprocessing 

From a statistical point of view, the number of variables that can explain variability in the 

resting-state functional architecture are numerous. The subject gender [Tian et al., 2011], 

age [Achard and Bullmore, 2007], mental state [Greicius, 2008], the number of subjects 

in the study [Termenon et al., 2016], are among many others, source of variability. Some 

of these factors of influence are however interesting, in that sense they can allow to 

discriminate healthy and diseased subject. Besides subject induced variability, the 

preprocessing is also a great source of variability.  

Let us start with a simple but key example. We mention that Gaussian smoothing is used 

to reduces registration and normalization errors. A consequence sometimes beneficial of 

the spatial smoothing, is that the smoothed voxels signal can only be closer to a Gaussian 

distribution, thanks to the central limit theorem (by definition a smoothed signal is the 

weighted average of itself with its neighbors’ signal). While assuming Gaussian 

distribution often allows the use of methods with more statistical power (e.g. linear 

regression in task-based fMRI), we also mentioned that ICA is more efficient with the 

absence of Gaussian distribution, which can question the smoothing. By spreading voxels 

signal, specifically activation signal, spatial smoothing is also prone to trade specificity for 

sensitivity, at best [Bennett and Miller, 2010; Pajula and Tohka, 2014]. At worst, the 

Gaussian smoothing trade specificity for an increasing number of false positive, which 

seems to be the case in numerous fMRI studies that do not take this into account in their 

statistical analysis [Eklund et al., 2016]. While smoothing radius strongly affects the 

spatial layout of functional networks as Figure 4.4 shows, its influence at the graph scale 

does not impair small world property [van den Heuvel et al., 2008; Zalesky et al., 2012], 

besides an overestimation of nodes centrality [Alakörkkö et al., 2017]. We see that even 

for Gaussian smoothing that has only one parameter, the functional area estimation 

shows strong variability, with no obvious values to advise for general usage.  

  

Figure 4.4: Effect of the Gaussian smoothing radius (FWHM) 

Illustration comes from [Poldrack et al., 2011]. With no smoothing (radius=0mm), there 
are many microclusters, and it is difficult to distinguish between those that correspond 
to noise and those that correspond to a real functional area. On the opposite, at 32 mm, 
the clusters are consistent, but because of the high radius, foci of activation are blurred. 
Furthermore, the top left part of the functional area, which looks relevant between 4 mm 
and 16 mm, has been eroded.  
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Since there is no truth functional area in rsfMRI in particular and in fMRI in general, 

finding the best preprocessing is a very challenging topic [Aurich et al., 2015; Bennett and 

Miller, 2010; Gargouri et al., 2018]. Indeed, notwithstanding the numerous fMRI 

sequence and data analysis, even the simplest preprocessing that allow the detection of 

functional networks already include several different modeling, which can each have 

numerous parameters, that each can induce variability in the functional network 

estimation process. 

4.8.3 Functional connectivity modeling 

Functional connectivity has a simple definition: similarity in neural activation patterns. 

However, in literature, the functional connectivity is often confused with how it is 

modeled. In SBA, plenty of similarity measures can be used (see section 4.3). Let us focus 

on the most typical one: linear correlation. Hence, functional connectivity is modeled 

through linear correlation between signals. In ICA, as the name states, this is statistical 

dependence that models functional connectivity. While these two modeling correspond 

well to the actual definition of similarity in neural activation patterns they do not lead to 

the same estimation of neural networks in essence. However, as Varoquaux and 

Craddock stated in [Varoquaux and Craddock, 2013], there is no universally better 

parcellation method, the most important is to keep in mind this methodological nuance 

when analyzing rsfMRI data.  

4.8.4  Seed-based analysis and ICA 

Seed-based analysis strength is that it provides a straightforward approach and simple 

interpretability in the functional connectivity modeling. However, SBA requires an a priori 

in the selection of the seeds, whether it is single voxels or a ROI. As SBA cannot be 

performed on every voxel, the selection of the seeds is never naïve and relies on auxiliary 

information: task-based functional area, expected location, area with unknown 

functionality. This raises a question about the robustness of SBA. Indeed, the seeds 

selection has an influence on the networks estimation as shown in  Figure 4.5. Indeed, 

even close seeds do not share the exact same noise, and the measure of similarity always 

capture a part of this noise. Nonetheless, the SBA is considered as having an average to 

high reliability [Shehzad et al., 2009].          

ICA copes with this issue by definition, as it focuses on reconstructing a set of 

independent signals without prior spatial assumptions. Moreover, the independent 

component can exhibit some non-stochastic signal of interference, which can be used to 

denoise the data [Pruim et al., 2015; Salimi-Khorshidi et al., 2014]. ICA seems also less 

sensitive to noise that SBA [Birn et al., 2008] and is efficient in the construction of group 

scaled functional networks [Cole et al., 2010]. However, ICA absence of spatial 

assumption is also a drawback. Indeed, once the functional networks is reconstructed, it 

can be difficult to determine which one corresponds to actual functional networks 

[McKeown et al., 2003]. As a corollary, ICA struggles with comparison between subjects 

[Van den Heuvel and Hulshoff Pol, 2010]. 
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4.8.5 Scaling - Number of functional networks  

By cross-referencing the issues related to the qualification of functions, the number of 

ICA components, and the use of auxiliary information to select the seeds in SBA, a 

question is raised regarding the brain parcellation scaling in functional networks. The 

usual scale for the functional networks in rsfMRI is close to task-based fMRI functional 

areas. However, with ICA for instance, the number of estimated functional networks can 

either be set arbitrarily or be decided by a goodness of fit criterion (AIC, BIC, MDL…). Even 

with the same goodness of fit criterion, a cohort of subjects can have a wide range of 

estimated functional networks. On the one hand, too large/few functional networks 

would be prone to have a poor consistency, and on the other hand, too tiny/many 

functional networks would lead to computational complexity and poor functional 

discrimination  [Cole et al., 2010; Kiviniemi et al., 2003; Varoquaux and Craddock, 2013]. 

In statistical terms, it is a matter of balancing with the dimensionality of the model (the 

size of functional networks) the within variance of functional networks, i.e. their intrinsic 

functional connectivity, and the between variance, which models their functional 

discrimination. The choice is illustrated below in Figure 4.6. Most typical networks are 

actually composed of distant but functionally connected areas, like for instance Broca’s 

and Wernicke’s area in language or left and right motor areas. It shows there is no optimal 

parcellation, because, regarding the functionality, networks can be composed of 

specialized subnetworks, even the DMN [Kernbach et al., 2018]. 

  

Figure 4.5: SBA robustness – Seed selection 

Illustration is from [Cole et al., 2010]. Three different seeds from literature are used to 
estimate the default mode network, each one providing with either a red, blue or green 
map. The addition of colors exhibits the overlap between the estimation. Bottom line 
shows an ICA estimation. The difference in overlap shows limitation of SBA robustness. 
However, the three seeds provide satisfying detection of the DMN. As there is no truth 
is fMRI, it is difficult to confirm a seed as the best one.   
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Figure 4.6: Model dimensionality balance 

A low dimensionality (left) leads most likely to large and few networks. On the opposite 
high dimensionality leads to numerous small networks. As every model looks for low 
within variance and high between variance, a balance has to be found.   
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Section 5. Motivations 
As discussed in Section 4 resting-state fMRI is an extremely rich topic to investigate. 

Sequences, denoising, registration, functional networks estimation, graph estimation, 

are all still open and active research fields. Regardless the field, the confidence given in 

a result usually increases with the amount of data confirming it. Adding subjects to a 

rsfMRI study is an intuitive way to increase the data volume. From a data analysis 

perspective, the amount of data can also be increased through the sample size of the 

observed population. In rsfMRI, which revolves around modeling the functional 

connectivity, one can consider the observed population is actually not directly the 

subjects, but instead the time courses of the voxels signals, on which correlations are 

estimated, ICA is implemented, etc. Hence, increasing the amount of data, i.e. the sample 

size, can also be increasing the number of time points in the signal, i.e. the number of 

volumes. For a given sequence, the number of volumes is proportional to the acquisition 

duration.  

The acquisition duration is an essential practical parameter in a rsfMRI study. Most 

current rsASL studies operate with a duration from 8 min to 13 min and a TR from 3 s to 

4 s (i.e. 120 to 260 images). Intuitively, one would assume the longer the duration, the 

better the sampling of the signal correlation (or any measure on signal) across the brain 

and thus the better the acquisition. But this requires to define what "better" acquisition 

actually means for rsfMRI and does not consider the practical questions of clinical 

implementation and subject resting-state upholding. Some papers already studied, 

directly or indirectly, the influence of duration in rsBOLD [Anderson et al., 2011; Birn et 

al., 2013; Bouix et al., 2017; Laumann et al., 2015; Termenon et al., 2016; Van Dijk et al., 

2010]. However, it seems that in rsASL the question has not been addressed, at the time 

this manuscript is written.  

In the second chapter, we address the effect of acquisition duration on the estimation of 

functional networks in resting-state ASL. We also focus on the feasibility of detecting 

functionally connected regions of the brain with rsASL. Indeed, ASL remains mostly an 

academic research field, and the contrast in resting-state between BOLD and ASL is even 

stronger. We remain as close as what a typical investigator of rsASL would experience, 

by implementing a usual sequence, typical processing and simple method for functional 

networks detection. We then assess a trend over the influence of duration on rsASL 

detected networks quality. We do not directly assess whether an acquisition is good at a 

given time, but rather how it evolves with longer durations. After describing the scores 

used and the modeling approach, an in-depth analysis for the Default-Mode Network 

(DMN) is presented in order to illustrate the scores evolution on the most typical resting-

state network. Finally, we show results for all the functional networks under 

consideration and discuss an optimal acquisition duration for rsASL. 

 



Chapter II 
The effect of scan duration in resting-state ASL 
Material [62] 

Section 6. Material 

6.1 Subjects 
Seven healthy male right-handed subjects aged from 21 to 28 years (23.5 ± 2.5) were 

involved in this study. All subjects gave informed written consent before participating in 

the study. We have maintained the homogeneity of the population in order to limit the 

influence of factors such as gender or age. 

6.2 MR Acquisition 
The subjects were scanned on a 3.0 T whole body Siemens MR scanner (Magnetom Verio, 

Siemens Healthcare, Erlangen, Germany) with a 32-channel head coil. MRI data 

acquisition was supported by the Neurinfo MRI research facility from the University of 

Rennes I. A 3D anatomical T1-weighted MP2RAGE image was acquired for each subject. 

Subjects were asked to keep their eyes closed, to relax (mind-wandering), to lie still and 

to not fall asleep1.  

Resting-state ASL sequence 

The resting-state ASL imaging was performed using a 2D EPI pseudo-continuous (pCASL) 

sequence. As we mention in section 3.1.3, while 3D GRASE tends to outperform 2D 

acquisition, most investigator can only use 2D EPI as it is available on most MR device 

unlike 3D sequence [Alsop et al., 2015].  We try to stay in line with the literature for 

sequence parameters: FoV = 224 x 224 mm2, TE = 12 ms, LD = 1500 ms, PLD = 1250 ms at 

the first slice. Volumes were made of 24 slices of 64x64 voxels, with 5 mm slice thickness 

and 20% gap for a total resolution of 3.5x3.5x6 mm3. The MRI sequence is given in full in 

appendix. The number of volumes is 420 with TR = 3500 ms, for a total duration of 

24 min 30 s. 

For the PLD, the duration given for the first slice corresponds to 1712.5ms at the median 

slice. Shorter PLD, like 600 ms, seems to give a better functional representation [Liang et 

al., 2014, 2012; Viviani et al., 2011]. We kept the PLD quite long, close to the 1800 ms at 

the median slice, which is recommended by the white paper for best estimation of CBF 

[Alsop et al., 2015]. Indeed, the main advantage of ASL is ultimately to compute CBF 

although we will focus on functional areas representation in this paper. 

  

                                                           
1 “Close your eyes, try your best to lie still, relax, do not think of something in particular, 

and do not fall asleep” – “Fermez les yeux, essayez au mieux de ne pas bouger, détendez-

vous, ne pensez à rien en particulier, et ne vous endormez pas” 
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6.3 Data preprocessing 
For each subject, the raw pCASL series is divided into 46 sub-series. The duration of these 

sub-series ranges from the closest possible to 2 min (34 volumes) to 24 min 30 s (420 

volumes) with a time step of 30 s. For the sake of simplicity, we will only mention rounded 

durations hereafter. All these subdivisions are made before any preprocessing: the 

preprocessing is done independently on each sub-series. For the preprocessing steps and 

their parameters, we chose the most common ones found in bibliography. All steps are 

shown in Figure 6.1. For the preprocessing steps we used Matlab CONN toolbox 1 

[Whitfield-Gabrieli and Nieto-Castanon, 2012].  

 

                                                           
1 www.nitrc.org/projects/conn 

Figure 6.1: Preprocessing steps of the rsASL images 

Preprocessing starts with the realignment of the perfusion weighted-map. All the 

functional volumes are registered with the first one. Second step is the indirect 

normalization of the functional volumes. It starts with registration of the functional data 

on the anatomical 3D T1 (a). Then the anatomical image is registered on the MNI 152 

template (b). After a surround subtraction (c), transformations of (a) and (b) are 

composed to register functional data on the MNI template (d). We then used Gaussian 

smoothing with a typical 6 mm FWHM radius and pass-band filtering with a range from 

0.005 Hz to 0.1 Hz. Final denoising was made with COMPCOR, using 5 regressors from 

WM, 5 for CSF and the 12 from the realignment [Behzadi et al., 2007]. 

http://www.nitrc.org/projects/conn
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Section 7. Modeling 

7.1 Detecting networks with Seed-Based Analysis 
To obtain the mapping of individual functional networks, we rely on seed-based analysis 

(SBA) [Van den Heuvel and Hulshoff Pol, 2010]. As we have seen in section 4.3, SBA is a 

very polymorphic modeling method, we will use its most common form in our work. 

Hence, we consider linear correlation as the similarity measure and use a set of 20 single 

voxels as seeds. Seeds are spread in the expected location of six usual functional 

networks: DMN, Sensori-motor, Language, Salience, Visual and Cerebellum. The exact 

positions of the seeds in the MNI152 space are provided in the appendix section and 

were suggested by the CONN toolbox. To build a functional map for each seed, we 

statistically test whether the signal between the seed and a candidate voxel is positively 

correlated with a risk of 1 % with FWER correction of Bonferroni. This is a tough 

conservative testing compared to most of rsASL (even fMRI in general) studies, but we 

agree with the recommendation of [Eklund et al., 2016] on false positive underestimation 

in fMRI literature, as we detail later in section 10.2. 

7.2 Evaluation scores 
The resting-state BOLD literature suggests extremely different best acquisition durations: 

6 min [Van Dijk et al., 2010], 10 min [Bouix et al., 2017], 12  min [Birn et al., 2013], 25  min 

[Anderson et al., 2011], and even 100 min [Laumann et al., 2015]. [Termenon et al., 2016] 

focus on the tradeoff that can be made between duration and number of subjects in a 

group study. They give as reliable configuration from 14 min for 40 subjects to 7 min with 

100 subjects. The main reason of their apparent discrepancy is the modeling. Indeed, 

there is many ways to properly define a model to assess the role of acquisition duration 

(a fortiori how much duration is enough), even if they lead to different conclusions. 

As a pioneer work on rsASL, we want our modeling to reflect an investigator experience 

with the impact of acquisition duration on functional network estimation. Figure 7.1 

illustrates the investigation of acquisition duration we will model. The DMN estimation is 

validated after 14 min on Figure 7.1 because it matches with how the functional network 

is expected to look like. In modeling terms, it is basically assessing the overlap of the 

estimated network with a reference network. 

In order to investigate a trend afterwards and decide which acquisition duration is 

enough, the individual functional maps will be compared to a reference, like process 

described in Figure 7.1. For that purpose, we rely on the Multi-Subjects Dictionary 

Learning atlas (MSDL) by [Varoquaux et al., 2011]. MSDL is an atlas of 17 resting-state 

functional networks containing our 6 networks of interest, and from which our seeds are 

independent. The key idea is to have functional maps close to what an expert would 

expect to observe when looking for the typical functional areas investigated here. To 

study the quality of the detected networks as a function of the acquisition duration, we 

evaluate the overlap between the SBA estimated functional maps and the MSDL 

references (simply called "reference" hereafter) through two measures: the Jaccard's 

index and the area under curve (AUC). 
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Figure 7.1: Seed-based estimation of the DMN with prefrontal seed 

Four stages can be identified. At 2 min (1), the map shows only false positive noise 
detection. Between 4 min and 8 min (2), the false positive noise has disappeared while 
the frontal component of the DMN starts growing and the posterior starts being 
detected. Between 10 min and 12 min (3), the frontal component is well detected, the 
posterior grows and the lateral components are barely being detected. At 14 min and 
after (4), DMN detection is good and interestingly, stable. 
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Let 𝔼  be a set, let (𝑣𝑖)𝑖≤𝑘∈ℕ  be observations in 𝔼  and (𝑀1;𝑀2) ∈ {0; 1}
𝔼 × {0; 1}𝔼 

binary categorical variables. Let 𝐴, 𝐵, 𝐶, 𝐷 be four sets with respective cardinals 𝑎, 𝑏, 𝑐, 𝑑 

defined by: 

{
 

 
𝐴 ≔ {𝑣𝑖 | 𝑀1(𝑣𝑖) = 1,𝑀2(𝑣𝑖) = 1}

𝐵 ≔ {𝑣𝑖 | 𝑀1(𝑣𝑖) = 1,𝑀2(𝑣𝑖) = 0}

𝐶 ≔ {𝑣𝑖 | 𝑀1(𝑣𝑖) = 0,𝑀2(𝑣𝑖) = 1}

𝐷 ≔ {𝑣𝑖 | 𝑀1(𝑣𝑖) = 0,𝑀2(𝑣𝑖) = 0}

 

Almost all common similarity measures (Sokal’s measures family, Sørenson-Dice, 

correlation etc.) can be defined with 𝑎, 𝑏, 𝑐, 𝑑. If one of the binary categorical variables 

can be considered as the truth, let’s say 𝑀2, therefore 𝑎 becomes the number of True 

Positives, 𝑏  of False Positives, 𝑐  of False Negatives and 𝑑  of True Negatives. We also 

trivially have the Sensitivity: 𝑎/(𝑎 + 𝑐), Specificity: 𝑑/(𝑑 + 𝑏), and the Positive Predicted 

Value (PPV): 𝑎/(𝑎 + 𝑏). In fMRI, the 𝑣𝑖  are the voxels (and not the subjects) and the 

variables 𝑀1,𝑀2 are the functional maps to be compared. Note we defined the variable 

to as binary here, but the definition can easily be extended to probabilistic one. 

7.2.1 Jaccard’s index 

When comparing two spatially distributed data, one of the most obvious measure is the 

Jaccard’s index: the ratio between the size of their intersection and their union. It is 

defined by 𝐽 = 𝑎/(𝑎 + 𝑏 + 𝑐) in our notation system. It provides intuitive and visual 

information about the overlap between one tested correlation map and one reference. 

It is also test-dependent: changing the risk or the multiple comparisons correction at the 

detection step will also change the shape and extent of the functional area, generally 

modifying Jaccard’s index. This may be considered as a drawback but in fact, a statistical 

test is usually used at some point when investigating functional data. 

7.2.2 Receiver operating characteristic analysis 

In this section, we assume that the binary categorical variables are parameterized by at 

least one parameter. For example, in our case, it could be the risk for the statistical test 

of correlation 𝛼.  

Let 𝑟  be our parameter, 𝑎𝑟 ,  𝑏𝑟 , 𝑐𝑟  and 𝑑𝑟  the previously defined cardinals now 

parametrized by 𝑟, and let define a set {(𝑥(𝑟), 𝑦(𝑟)), 𝑟 ∈ [−1; 1]} ⊂ [0; 1]2 by: 

{
 

 𝑥(𝑟) = 1 −
𝑑𝑟

𝑑𝑟 + 𝑏𝑟

𝑦(𝑟) =
𝑎𝑟

𝑎𝑟 + 𝑐𝑟

 

The implicitly defined function 𝑓: 𝑥 ⟼ 𝑦 is called the Receiver operating characteristic 

curve (ROC-curve) and its integral ∫ 𝑓(𝑥)𝑑𝑥
1

0
 is simply called the Area Under Curve (AUC). 

In the case where 𝑀2 is considered to be the truth, 𝑓 is just very informally: 

𝑓: 1 − Specificity ⟼ Sensitivity 
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The AUC has the interesting property to not be test-dependent, as it covers all possible 

values of the threshold parameter (i.e. risk/correlation). It illustrates how a functional 

map can be close to the reference by considering all values of the considered parameter, 

while the Jaccard's index reflects how it is close to the reference by considering one value 

of the given parameter. Hence AUC is a better way to assess the trend of interest from a 

theoretical point of view. However, it is further away from the practical proximity of the 

Jaccard's index modeling offers. We will eventually consider both scores. 

7.3 Modeling trend with respect to the duration                                                                                                                             
Both Jaccard's index and AUC are computed for each subject, each seed, each duration 

and each functional network reference from MSDL. The next step is to model the trend 

of these two scores evolution according to the acquisition duration for all subjects and 

for each combination between one seed and one reference. Let us first check 

assumptions to select a suitable model. Assuming the rsASL sequence lasts long enough 

to cover all usage, extrapolation for a duration longer than 24 min 30 s seems 

superfluous. There is no theoretical model, even in BOLD, on the dependence between 

acquisition duration and quality of functional networks detection: we do not need an 

explicit formula. Even if the sub-acquisitions are processed independently, neighboring 

within-subject time-points estimated functional maps have a strong dependency as they 

come from the same acquisition. Under these conditions, a local non-parametric 

regression is very well-suited. We chose to use the LOESS1 method. LOESS is a local 

polynomial regression on a subset of the whole dataset, the subset being defined by a 

weighted K-nearest neighbors’ algorithm. For a more comprehensive description, see 

[Cleveland and Devlin, 1988]. We used second degree polynomial functions with a 0.8 

span. 

  

                                                           
1 The original name “Loess”, is not an acronym but a reference to a geological structure [Cleveland 
and Devlin, 1988]. The acronym LOESS that stands for “locally estimated scatterplot smoothing”, 
is however common. We use capital letters for easier reading. 
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Section 8. Results 

8.1 How long is enough for the Default Mode Network? 
In this section, we present an in-depth analysis of the DMN. In the set of 20 seeds we 

used, many should not be inspected when used in combination with MSDL DMN. The 

main reason is that most of the combinations has no objective basis for detecting the 

DMN. Otherwise, the seed may have failed to detect precisely the networks it was meant 

to detect, which is expected with very short acquisition duration. A simple way to get an 

idea of the quality of the overlap between the functional maps associated with a seed 

and a reference for all durations is to check the boxplots of the Jaccard's index as in Figure 

8.1. Boxplots give an overview of the results for rsASL: hopefully for the DMN reference, 

Jaccard's indices have higher values for the seeds placed in order to detect it. Prefrontal 

and posterior seeds seem to work well while lateral DMN seeds provide lower scores but 

still higher than any other seeds. Figure 7.1 shows the evolution of the estimated DMN 

with the prefrontal seed and corresponding scores for one subject. The depiction made 

by the scores of the overlap between the estimation of the DMN and the MSDL reference 

match with the four stages identified in Figure 7.1 shows the Jaccard's index, AUC, 

Sensitivity and Predicted Positive Value (PPV), for each subject and at each acquisition 

duration. LOESS on Jaccard's index, as well as on AUC, models quite well what can be 

observed by looking directly at the functional map. Jaccard's index seems to stabilize 

after 12-13 min and AUC at an earlier acquisition duration around 9-10 min. We could 

have expected sensitivity and PPV to follow the same trend. Actually, sensitivity just 

grows over time, but more slowly for longer durations. Interestingly, PPV reaches a peak 

in the second stage mentioned above. The seven subjects show different level of 

response but good correlations (except for the subject 2 with AUC), i.e. the trend is the 

same among subjects, rather than an average effect induced by the LOESS. Moreover, 

results observed for the DMN, can be generalized for almost every combination of seeds 

and references as we will see. 
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Figure 8.1: Distribution of Jaccard’s index for the MSDL DMN 

Each boxplot corresponds to one seed and shows the distribution of Jaccard's index 
between the estimated functional area corresponding to the considered seed on the one 
hand, and the MSDL DMN reference on the other hand, for all subjects and all durations. 
The seeds are grouped by color, each corresponding to one of the six functional areas 
considered. As expected, the seeds located in the expected DMN location (in pink) give 
the best results.  
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Figure 8.2: Evolution of scores with respect to duration for a DMN estimation 

Subject 4 DMN detection (in blue) with prefrontal seed and MDSL DMN reference (in red) 
over a 2 min to 24 min duration with 2 min steps. Maps are shown in MNI152 space. 
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Figure 8.3: Scores evolution with respect to acquisition duration for the DMN 

Jaccard's indices (A), AUC (B), Positive Predicted Value (C) and Sensitivity (D) evolution 
with time with their associated Loess for the seed associated with prefrontal DMN. On 
all subjects, Jaccard's index increases with duration before 10-12 min, then stabilizes. The 
AUC shows the same trend with an earlier stabilization, around 9-10 min. PPV grows 
rapidly, reaches a peak at 8 min, then decreases slowly. Finally, Sensitivity increases with 
time, but more slowly for longer durations. Subjects show different level of response but 
globally good correlations between each other. 
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8.2 How long is enough for all the networks?  

8.2.1 Seeds selection 

Visual inspection of the acquisition data and of the estimated functional networks 

estimation is an efficient quality control [Power, 2017]. However, with more than 6000 

functional maps generated (20 seeds, 7 subjects, 46 acquisition durations), a visual 

inspection of all the maps is not practicable. As seen for DMN, many combinations 

between seeds and references should not be investigated since they are not functionally 

meaningful and will yield to very low overlapping scores (e.g. prefrontal seed with visual 

cortex). For Jaccard's index, we selected combinations for which at least 50% of 

observations have 𝐽 ≥ 0.1. For AUC, the median is also considered, with this time a 

threshold of 0.7. These thresholds on the median values may seem rather low, but let us 

remember that all the acquisition durations are considered, even the shortest ones. 

Figure 8.4 shows the median values for all the combinations between seeds and 

references. The two thresholds lead to an almost identical choice for the selection of 

combinations. All seeds have their best scores with the expected reference, and each of 

the six functional networks are considered to be sufficiently well detected with SBA for 

Jaccard's index in accordance with our selection rules. The AUC suggests as good enough 

one more seed for cerebellum but consider that salience is not detected well enough 

with our set of seeds. 

 

 

Figure 8.4: Seeds selection 

Median values of Jaccard's indices and AUC for all combinations of seeds/references. Green circles 
show where seeds/reference combinations are selected with respect to our thresholding rules (0.1 
for the Jaccard median and 0.7 for the AUC median). 
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8.2.2 LOESSs colormaps 

Figure 8.5 shows the range of durations where scores are not significantly different from 

their maximum values (5% risk) for each selected reference/seed combination. Colors on 

heatmap are scaled between minimum and maximum values of the corresponding score 

and matches with the stages already described for DMN in the previous section. Indeed, 

for every combination between seeds and references, both scores rapidly increase, and 

start to stabilize after a certain duration. However, for both measures, the 95% 

confidence interval around the maximum suggests a later start in the stabilization than 

suggested directly by the LOESS curve values. While some combinations scores look 

already stabilized at 12 min, almost all of them are close to their maximum value at 

16 min.  Figure 8.6 shows a collection of functional areas obtained at a duration of 14 min. 

While language seed struggles to detect spatial components far from the seeds, all the 

other ones provide good detection of expected functional networks. 
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Figure 8.5: LOESSs colormaps for all selected seeds and corresponding references 

This figure shows the range of durations where scores are not significantly different from 
their maximum values (5% risk) for each selected reference/seed combination. Colors on 
heatmap are scaled between minimum and maximum values of the corresponding score 
and matches with the stages already described for DMN in the previous section. Indeed, 
for every combination between seeds and references, both scores rapidly increase, and 
start to stabilize after a certain duration. However, for both measures, the 95% 
confidence interval around the maximum suggests a later start in the stabilization than 
suggested directly by the Loess curve values. While some combinations scores look 
already stabilized at 12 min, almost all of them are close to their maximum value at 
16 min. 
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Figure 8.6: Collection of functional areas obtained at 14 min of acquisition 

While language seed struggles to detect spatial components far from the seeds, all the other ones provide 
good detection of expected functional networks. The two bottom rows show the same subjects and the 
same reference, but estimated through with different seeds. The visual seeds show an extremely good 
robustness in this case.  
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Section 9. Discussion and conclusion 

9.1 ASL feasibility 
Our two objectives were to confirm the feasibility of resting state ASL and to evaluate the 

influence of the acquisition duration on the estimation of functional areas. Figure 7.1 and 

Figure 8.6 with corresponding scores in Figure 8.4 and in Figure 8.5 confirm that, even 

with the basic preprocessing and straightforward methodology we used, ASL is fully 

viable as a resting-state method. 

9.2 Acquisition duration 
Regarding the impact of acquisition duration, the most important result is the 

stabilization of the functional areas representation after a certain duration for both 

measures, Jaccard's index and AUC, with a strong inter-subjects correlation (i.e. not a 

mean-effect induced by the LOESS modeling). Since the acquisition should have the 

shortest duration possible for clinical implementation, the recommended duration 

eventually corresponds to the start of the stabilization stage. Strict definitions of the 

stabilization stage lead to longer duration since they would rely heavily on the LOESS 

maximum by considering as stable just a narrow interval around of the maximum. 

However, since after 12 min to 14 min the score variations are low, a slight change in 

preprocessing or in the population could also lead to unstable maximum, without 

changing the trend. Relaxed definitions would keep optimal duration stability, but they 

may consider a functional area as good enough when a human investigator would not. 

Actually, early stages of acquisition are associated with poor representation of functional 

areas disconnected from the seed. Based on our different results, 14 min seems to be an 

interesting compromise.   

9.2.1 A posteriori definition of stabilization 

Since all LOESS share similar tendency, a better definition of the start of the stabilization 

would basically be the preimage of the maximum curvature point of the LOESS curve. In 

order to identify it, we suggest a simplified Multiple Adaptative Regression Splines (MARS) 

model, where the position of the only node of the regression will define the optimal 

number of volumes.  

�̂� = 𝑎. 𝑥. 𝟙𝑥≤𝐿(𝑥) + 𝑎. 𝐿. 𝟙𝑥>𝐿 (𝑥) 

Equation 9.1: Simple MARS model to estimate optimal number of volumes 

For every 𝐿,  �̂� is a least squares estimator since it is a simplified MARS: we just enforce 

the power of the predictors to 1 and 0. We could build a whip model by allowing the 

degree of first monomial to be free, and constrain the node to be at least a 𝐶1 junction 

in order to well-define the curvature of node and hence better modeling the maximum 

curvature of the LOESS. However, the increasing complexity of the model seems 

superfluous considered we do not need that much accuracy in the estimation of the 

optimal number of volumes. In order to select 𝐿, we would like to avoid the demanding 

computation of automatic node selection algorithm such as the Myopic or Fullsearch 

[Ruppert, 2002]. Since the model is extremely simple and not demanding in computation, 

we can exhaustively compute the regression for a wise set of 𝐿, given a certain precision 

in number of volumes, let us say between 20 and 50. 
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9.3 Methodological considerations 
In order to estimate functional networks, the two most common methods are SBA and 

Independent Component Analysis (ICA). We did not work with ICA because the 

association between independent components and functional areas of the brain is 

intrinsically tedious, as we mentioned in section 4.8.4 [Cole et al., 2010; McKeown et al., 

2003], especially when it comes to comparison between subjects. Moreover, in order to 

investigate the relationship between quality and duration for all subjects, we must 

estimate the functional areas in the same way for each subject. Indeed, keeping the same 

seeds and the same test for SBA is trivial, while keeping the same number of independent 

components is equivocal, since it should be decided by a goodness of fit criterion.  

We chose to report the positive predicted value rather than specificity for two main 

reasons. On the one hand, true negatives can have multiple definitions in fMRI, since it 

depends on the voxels considered: the whole volume, only the brain or any smaller ROI 

like grey matter. Although it is logical to consider only brain voxels for functional activity, 

this implies an extremely high number of true negatives, since the volume of a functional 

network is ten to a hundred times smaller than the one of the whole brains. Therefore, 

the specificity reaches values too high to provide relevant information on similarity 

between functional areas. On the other hand, like specificity, PPV plays a similar role with 

respect to sensitivity: specificity gives a complementary information to sensitivity in the 

totality of voxels whereas PPV gives a complementary information in the union of the 

reference and the estimated functional area. 

Note that the DMN, the sensori-motor cortex, and the cerebellum have an almost 

consensual spatial definition among the authors, unlike language, visual and salience, 

which show a greater spatial variability (see for example http://neurosynth.org/). As we 

provide an evaluation only with one set of references (from the MSDL), one could have 

expected this to be a limitation of our work. However, the spatial variability of the areas 

of interest in atlases is low enough to change only the scores but not the trend observed 

in this paper.  

Preprocessing influence should also be considered as positive: since we use typical and 

basic preprocessing, more advanced techniques should provide the same or an earlier 

stabilization, still keeping our suggestion as a sufficient duration. The same is true for ASL 

readout approach. Using a 3D readout is probably an improvement with respect to our 

sequence, as it tends to provide higher SNR compared to 2D EPI, but not every 

investigator has access to 3D sequence [Alsop et al., 2015].  

9.3.1 Duration and number of volumes 

Since we are studying the influence of acquisition duration for a given set of parameters, 

the optimal duration of 14 min could be strongly influenced by the sequence parameters. 

Although the influence of each of them is to be kept in mind, most of them have a specific 

bibliography that goes well beyond the issue of the optimal acquisition duration, as we 

see in section 3.1. However, two of them may have a deep impact on our results: post-

labeling delay and repetition time (TR). As mentioned in section 6.2, we already have 

some clues on how the PLD can influence functional networks representation. The critical 

http://neurosynth.org/
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parameter in our opinion is repetition time. It defines the sample frequency of the 

resting-state signal and turning our 14 min suggestion into 240 volumes since we only 

work numerically on the signal. 

Its variation may shift the stabilization step toward a higher/lower number of volumes 

and hence a longest/shortest duration, without changing the stabilization of the 

functional networks representation after a certain number of volumes (i.e. same signal 

but different sampling frequency). 

Moreover, in rsASL, TR values are typically between 3 s and 5 s, which is too wide to 

assume the locally linear dependence between TR and optimal duration. As a preliminary 

work on optimal duration in rsASL, we focus more on the modeling rather than 

investigating the influence of the TR. However, a specific study on the relationship 

between repetition time, number of volumes and quality of acquisition as [Wu et al., 

2014] did for BOLD, would be, in our opinion, highly beneficial to better define the 

optimal duration and also would be useful when an investigator sets up a sequence.  

9.3.2 Influence of internal parameters 

Last, we work on a homogeneous sample of subjects. While it greatly limits the influence 

of variables related to the population description and not included in our modeling, it 

also narrows the population represented by our sample of subjects. Hence, a natural 

perspective is to include new subjects in order to extend the population represented and 

checks if the influence of variables like gender, age, laterality could be excluded from the 

population variability. It should be noted that geriatric, pediatric and pathologic 

populations should be treated separately rather than included. Indeed, these populations 

can show extreme differences in average (or local) perfusion, which possibly hinders the 

functional networks estimation, and hence, when the stabilization starts. 

9.4 Conclusion 
We model and process data in order to get results as close as an investigator would do. 

All the considered functional areas were well detected by rsASL. Our results show a 

quality stabilization after a certain number of volume/duration for both scores in all but 

one combination between seeds and references: very long sequences should not hence 

be considered. While we can suggest, for our set of sequence parameters, the optimal 

number of volumes of 240 / optimal duration of 14 min, any methods that improves the 

detection of functional networks are likely to provide an earlier stabilization start, i.e. 

optimal number of volume/duration. Since we use a basic and typical sequence, 

preprocessing and estimation, 240 volumes / 14 min even if not optimal should be 

enough for most rsASL usage. Last, the exploration of the impact of the TR and PLD on 

the optimal acquisition duration was beyond the scope of this article but would be highly 

beneficial for sequence implementation, since we forecast they are the two parameters 

that may be able to shift the stabilization start toward higher number of volumes. 
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compared to resting-state BOLD 
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Section 10. Motivations and problematic 

10.1 Motivation 
In the previous chapter, we focused on a dual objective: confirming ASL as a viable 

method to detect functional networks in resting-state and investigating the effect of scan 

duration. As mentioned in the state of the art, ASL remains mostly an academic research 

field. As BOLD is the gold-standard technique for functional MRI, assessment of ASL 

performance involves a comparison with BOLD at some point. The objective of this part 

of the manuscript is to perform this comparison. Firstly, we benefit from the 

methodological framework we developed when investigating ASL alone, and adapt it to 

rsBOLD data. In a second stage, we will discard the third-party atlas used in this 

framework as a reference for functional networks and directly compare rsASL and rsBOLD 

data through various scores. 

10.2 Methodological consideration 
Before going any further, we would like to point out some considerations regarding the 

comparison between rsASL to rsBOLD. From a statistical point of view, each functional 

network estimation is an individual of a big dataset. On these individuals, we want to 

investigate the influence of factors on quantitative variables, for instance if the variable 

“diseased” has an effect on a score measured on the functional networks. In the last 

chapter, we discussed issues in regards to the comparison of ICA-based functional 

networks between subjects. What was appropriate for comparing subjects is still valid 

when comparing the two modalities. Since we want now to consider the modalities, we 

simply add to our dataset the functional networks estimated from BOLD, and a new 

categorical variable with two levels: ASL and BOLD. The question that actually stands is: 

what is the influence of the factor “modality”?  

In order to capture the influence of the factor “modality”, the idea is to limit at best the 

influence of other potential confounding factors, source of uncontrolled variability. The 

standard method is to work on the same cohort of subjects, as it greatly reduces the 

inter-subject variability. In order to at least ease the comparison ASL and BOLD, and at 

best avoid influence of external factors, the most important method is probably to use 

the exact same method of functional networks estimation. Under methods, we include 

preprocessing steps and parameters associated to preprocessing as we have seen in 

section 4.8.2. We also include functional connectivity modeling, and parameters 

associated, especially those that are used as threshold. For instance, Figure 10.1 

illustrates how the significance level of a statistical test and the multiple comparison 

correction have a deep impact on the size and consequently the shape of estimated 

functional networks. Besides the obvious impact on the size of functional networks, it 

also shows, by extension, how confusing the comparison of functional networks can be, 

when they have not been estimated through the same method. While the lack of multiple 

comparisons correction (case [A] in the figure) would actually be a terrible mistake, 

Eklund et al. report that 40 % of fMRI studies do not even report using one [Eklund et al., 

2016]. We will give careful attention to these considerations in our comparison between 

ASL and BOLD. 
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Figure 10.1: DMN estimation through different statistical test parameters 

All estimations are made on the same subject with 274 volumes (16 min of ASL, 6 min 23 s 
of BOLD) through SBA with the seed in the prefrontal cortex. The top two rows show ASL 
estimations of the DMN and the bottom two rows show BOLD estimations. Each column 
shows estimations computed with different test parameters for a canonical test of 
correlation, such as: 

[A] 𝛼 = 1% with no multiple comparison correction 

[B] 𝛼 = 5% with FWER correction 

[C] 𝛼 = 1% with FDR correction 

[D] 𝛼 = 1% with FWER correction 
 

It shows how even the usual statistical testing can deeply impact the estimation of 
functional networks, and by the way, how difficult it can be to compare networks. 
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Section 11. Comparing ASL and BOLD using MSDL references  
The first comparison of ASL and BOLD can naturally be made using the methodological 

framework we developed in Chapter II. Its application on rsBOLD data is quite 

straightforward as, beside the ASL volumes subtraction, each processing step can be 

shared between ASL and BOLD. We first investigate an optimal scan duration for BOLD, 

in number of volumes or in minutes.  

11.1 Material and methods 

11.1.1 MR acquisition 

The rsBOLD acquisition were performed on the same cohort of 7 subjects, with the same 

3.0T scanner from Neurinfo MRI research facility. The acquisitions were performed right 

after the rsASL one with the exact same resting-state instruction: eyes closed, without 

moving, and without performing particular cognitive task. 

11.1.2 Resting-state BOLD sequence 

The resting-state BOLD imaging was performed using a 2D EPI sequence with following 

parameters: FoV = 192 x 192 mm2, TE = 30 ms, TR = 1400 ms. Volumes were made of 24 

slices of 64x64 voxels, with 4 mm slice thickness and 50% gap for a total resolution of 

3x3x6 mm3. The MRI sequence is given in full in appendix. The number of volumes is 514 

for a total duration of 11’48 min. 

11.1.3 Data preprocessing 

As we mention in previous section 10.2, in order to limit sources of variability in the 

comparison between ASL and BOLD, we must apply as close as possible preprocessing to 

rsBOLD data as rsASL ones. Fortunately, besides the ASL volumes subtraction, the 

preprocess of rsASL and BOLD can be shared, as we detailed in section 4.2. Figure 11.1 

below details the preprocessing we use. As rsASL data, the raw rsBOLD data are divided 

into sub-series before any preprocessing. One first set contains 21 sub-series of duration 

ranges from the closest possible to 2 min (88 volumes) to 11 min 48 s (514 volumes) with 

a time step of 30 s. The second set contains 23 sub-series with number of volumes equal 

to the number of volumes of rsASL sub-series that corresponds to each minute between 

2 min and 24 min of rsASL. E.g. 10 min of rsASL corresponds to 171 rsASL volumes, hence 

the second set of rsBOLD has a sub-series of 171 volumes.  

11.1.4 Networks detection 

In order to detect the functional networks, we implemented a common form of SBA for 

rsASL. As for preprocessing, our SBA trivially adapts to rsBOLD: we use the exact same set 

of twenty seeds, the linear correlation as similarity measure and statistically test whether 

the signal between the seed and a candidate voxel is positively correlated with a risk of 

1 % FWER-corrected. 
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11.1.5 Evaluation scores and modeling 

We keep the same overlap scores, Jaccard’s index and AUC, and the MSDL atlas is also 

used as a set of functional networks reference. In order to discard seeds that are not able 

to effectively detect their corresponding network, we use the same empirical criterion: 

for Jaccard's index, we select combinations between seeds and MSDL for which at least 

50% of observations have a Jaccard’s index above 0.1, and for AUC above 0.7. In order to 

model the evolution of scores with respect to the scan duration, we also use the non-

parametric local regression LOESS with second order polynomial and a span equal to 0.8. 

 

  

  

Figure 11.1: Preprocessing steps of the rsBOLD images 

Besides the subtraction of ASL volumes, we used the same preprocessing as for rsASL. It 
starts with the realignment of the volumes to the first one. The second step is the indirect 
normalization of the functional volumes. It starts with the registration of the functional 
data on the anatomical 3D T1 (a). Then the anatomical image is registered on the MNI 
152 template (b). The transformations of (a) and (b) are composed to register functional 
data on the MNI template (c). We then used Gaussian smoothing with the same 6 mm 
FWHM radius as ASL and the same pass-band filtering with a range from 0.005 Hz to 
0.1 Hz. Final denoising was made using COMPCOR [Behzadi et al., 2007], with the same 
parameters as for ASL. 
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11.2 Results for BOLD only 
Both set of rsBOLD sub-series are used in this section to investigate the effect of scan 

duration on rsBOLD data. On the set of twenty seeds used, two are discarded by the both 

Jaccard’s index and AUC criterion: the language frontal gyrus right seed and the language 

temporal gyrus right seeds. The criterion on Jaccard’s index discard the cerebral posterior 

seed, and the criterion on AUC discard the salience prefrontal left seed. Figure 11.2 shows 

heatmaps of scaled values of Jaccard’s index and AUC LOESS between minimum and 

maximum, with respect to the seeds considered effective by both criteria. Figure 11.2 

also shows the range of durations where scores are not significantly different from their 

maximum values (5% risk) for each selected reference/seed combination.  

Globally, both scores have a fast increase at start until 3 min of acquisition duration, and 

most reach stabilization after a certain duration. However, Jaccard’s index and AUC start 

behave differently just after 3 min. Most Jaccard’s index LOESSs reach close value to the 

maximum value earlier than AUC, where LOESSs after 3 min keeps increasing very slowly. 

Providing an optimal duration in BOLD depends a lot on the definition of stabilization. 

First, Jaccard’s index suggest earlier values than AUC, and with strict definition of 

stabilization, AUC stability is harder to assess as maximum LOESSs values are reached 

close to the maximum duration. 
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Figure 11.2: LOESSs colormaps for all selected seeds and corresponding references for 
rsBOLD data 

Colors on heatmap are scaled between minimum and maximum values of the 
corresponding score. Almost all combinations have an early fast-increasing score. While 
variations of score behave quite similarly between AUC and Jaccard’s index, AUC LOESSs 
have slower increasing scores compared to Jaccard’s index after 3 min.  
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11.3 Comparison of ASL and BOLD 
To best extract the influence of the modality factor, we have to compare functional 

networks with as many variables as possible in the same state. One of these variables is 

actually critical: the size of the sample of data used to estimate the functional networks. 

In rsfMRI context, the sample size for functional networks estimation is the number of 

volumes and not the acquisition duration. Even though comparing images with the same 

acquisition duration is appealing, mostly because we want eventually to conclude on an 

optimal duration in minutes, a direct and careless comparison is actually a 

methodological pitfall. To illustrate this point, let us consider an estimation A made with 

two techniques 1 and 2, and name them A1 and A2. If A1 is better than A2, but A1 has 

been estimated with a larger sample size than A2, one cannot assume the technique 1 is 

better than 2. From this section onwards, we will compare ASL and BOLD in terms of the 

number of volumes.  

11.3.1 Boxplots – Seeds response 

A first assessment can be made through the distribution of overlap scores with MSDL 

references of each modality with respect to the seeds and the scores. To his end, we 

simply constructed boxplots in our rsASL investigations (Figure 8.1). One boxplot was 

associated with a combination of one seed with one MSDL reference network, and 

showed the distribution of the score for all subjects and all number of volumes for this 

combination. Figure 11.3 and Figure 11.4 extend the construction and add a dependence 

to the modality. Hence, for each combination of seed and reference we have now a pair 

of boxplots, noted A for ASL and B for BOLD. Figure 11.3 and Figure 11.4 show first that 

according to our seed selection criterion (a median above the black dotted lines), more 

seeds are considered to be able to provide an effective detection of the corresponding 

expected networks (17 for BOLD vs 11 for ASL). Besides cerebellum seeds, ASL shows 

slightly lower Jaccard’s index than BOLD. The stars and N.S correspond to the result of a 

Mann-Whitney test, such as the p-value is below 0.001% for three stars, below 0.01% for 

two stars, below 0.05% for one star, above 0.05% for N.S. The boxplots corresponding to 

AUC are given in appendix, and lead to the same conclusion: ASL is more likely to fail to 

detect the expected networks and provides slightly lower overlapping scores with MSDL 

atlas. Censoring the data by removing the acquisitions with low number of volumes (likely 

corresponding to failed detections) increases globally the scores, but the results remain 

the same: detections of functional networks seems easier in BOLD.  
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Figure 11.3: Distribution of Jaccard’s index with respect to the MSDL reference, the seeds and the modality, 1st part 
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Figure 11.4: Distribution of Jaccard’s index with respect to the MSDL reference, the seeds and the modality, 2nd part 
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11.3.2 LOESSs Colormaps 

Figure 11.6: Color maps of Jaccard’s index LOESS values with respect to the number of 

volumes for all reference/seed combination. Figure 11.5 and Figure 11.6 below are 

extended version of the color maps shown in section 11.2 dedicated to BOLD and in 

section 8.2 dedicated to ASL. In these figures, the colormaps are shown with respect to 

the number of volumes (the sample size) and scale scores values between minimum and 

maximum values. Uncolored lines show seeds that are considered to not have been able 

to detect their corresponding expected network, according to our criterions.  

The key result is actually, as Figure 11.5 and Figure 11.6. show, that the colormaps are 

quite homogeneous, whether between scores as we see in previous sections or more 

importantly between modalities. Indeed, in most seeds the scores reach 50% of their 

maximum values before 100 volumes, and all before 125. Then, for most seeds, AUC and 

Jaccard’s index keep growing slowly, and after 250 volumes, scores barely change.  

11.3.3 Conclusion 

Overall, the detection of networks seems easier in BOLD as more seeds manage to 

provide satisfactory estimation of functional networks. Both MSDL overlap scores 

(Jaccard’s index and AUC) are slightly better in BOLD than in ASL. However, as MSDL is an 

atlas built from rsBOLD data, it could bias the overlap scores of rsBOLD. A stabilization 

stage can also be observed with BOLD. However, the variance of rsBOLD results are larger: 

LOESSs are less correlated between and within scores compared to rsASL results. 

Consequently, it is harder in BOLD to precisely define a start of the stabilization stage as 

AUC clearly suggest a higher number of volumes, no matter the definition of stabilization 

considered. If we use the same considerations as in ASL that leads to 240 volumes, the 

range of value for stabilization start are for BOLD between 250 and 290 volumes. 

Converted to minutes with ASL TR = 3.5s and BOLD TR = 1.4s, it suggests 14 min for ASL 

and 6-7 min for BOLD. As we discuss with ASL, these values depend a lot on where to 

consider that the stabilization have started.  

Regarding the rsBOLD, others studies have suggested different values for 

duration/number of volumes: 6 min/60 vol. [Van Dijk et al., 2010], 10 min/250 vol. [Bouix 

et al., 2017], 12 min/275 vol. [Birn et al., 2013], 25 min/750 vol. [Anderson et al., 2011], 

and 100 min/2700 vol. [Laumann et al., 2015]. [Termenon et al., 2016] focus on the 

tradeoff that can be made between duration and number of subjects in a group study. 

They give as reliable configuration from 14 min/1200 vol. for 40 subjects to 7 min/580 

vol. for 100 subjects. Each paper assesses the effect of acquisition duration in rsBOLD 

differently: comparison to networks obtained from longest acquisition [Bouix et al., 2017], 

connectivity between region of interest [Birn et al., 2013], reproducibility [Anderson et 

al., 2011; Laumann et al., 2015], scoring on graph properties [Termenon et al., 2016]. 

Hence, because of the different modeling, it is hard to say either our suggestion is in line 

with literature or not, notwithstanding the different sequence and preprocessing. The 

different quality assessments are not a drawback however, as each paper and our work 

explore different aspects of the impact of the number of volumes.  
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As discussed for rsASL, the conversion of number of volumes into minutes, through the 

TR parameter, seems to be of prime importance as a further area of investigation. In 

rsBOLD the TR has already been shown to be able to impact estimation considering a 

fixed number of volumes [Wu et al., 2011], but for rsASL a specific investigation of TR in 

combination with the number of volumes in rsfMRI would be highly valuable in the topic.  
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Figure 11.5: Color maps of AUC LOESS values with respect to the number of volumes for 
all reference/seed combination. 

Top figure is built with ASL data, and bottom with BOLD. The absence of color for a seed 
denotes a failed detection, according to the criterion median of AUC above 0.7.  
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Figure 11.6: Color maps of Jaccard’s index LOESS values with respect to the number of 
volumes for all reference/seed combination. 

Top figure is built with ASL data, and bottom with BOLD. The absence of color map for 
a seed denote a failed detection, according to the criterion median of Jaccard’s index. 
above 0.1 .  
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Section 12. Comparing ASL and BOLD without a reference 

12.1 Foreword 
Most of the work in this section has been made during an international mobility of the 

author in the Brainnetome center of the Institute of Automation in Beijing. The author is 

deeply grateful towards Pr. Yu and his colleagues whose insightful comments and 

encouragement made possible to conduct this research.  

12.2 Motivation 
In the previous sections, comparisons were made using the MSDL references. Our ansatz 

was to use a gold-standard beforehand in order to propose a model close to visual 

investigation of resting-state data. Using the MSDL instead of another atlas seems to 

have a limited impact when assessing the start of functional networks stabilization. 

However, BOLD scores (Jaccard’s index and AUC) are slightly better than ASL, despite a 

higher within-variance of the scores. An obvious hypothesis is that since MSDL atlas 

comes from BOLD data, it may give BOLD a decisive advantage in the comparison. To 

check this assumption properly, one should test if BOLD still provides with better scores 

when compared with different atlases that come either from BOLD and ASL data, 

notwithstanding the hypothesis that ASL and BOLD functional networks are different. 

However, there is no resting-state ASL atlas of functional networks to the best of our 

knowledge. Last, we want to directly compare ASL and BOLD without using a third-party 

dataset of references because besides the assumption of references neutrality toward 

modalities, it also obviously limits the ways to compare ASL and BOLD to the scoring of 

overlaps with such references. In the next sections, we compare the rsASL data and the 

rsBOLD data without third-party atlas on the basis of 4 criteria: the number of active 

voxels, the functional networks tissue distribution, their intrinsic functional connectivity 

and last, the spatial correlation between corresponding rsASL and rsBOLD networks.  



Chapter III 
Resting-state ASL performance compared to resting-state BOLD 
Comparing ASL and BOLD without a reference [94] 

12.3 Number of active voxels 

12.3.1 Preliminary remarks 

The number of active voxels is defined as the number of voxels that are part of an 

estimated functional networks. This is a straightforward measurement of the size of 

functional networks. However, this measure should be used carefully when comparing 

ASL to BOLD, especially if we do not check some conditions beforehand. 

First of all, ASL and BOLD functional networks should be expressed in the exact same 

voxel space, which is our case (MNI 152). Secondly, number of active voxels should be 

computed only for successful detection of functional networks. We will keep the criterion 

we used for Jaccard’s index in section 7.1 to select which estimation should be kept. 

Thirdly, in order to compare number of active voxels, estimation of functional maps must 

be estimated through comparable methods. This is a typical case where analysis using a 

statistical test should be built carefully: number of active voxels is critically dependent on 

the threshold used to build the functional network from the functional connectivity map 

(threshold on the map of correlation with a seed in our case). This threshold is almost 

every time defined by a statistical test using a risk corrected for multiple comparison 

testing, which is itself dependent on the sample size (the number of volumes in our 

context). Comparing ASL and BOLD functional networks estimated through different test, 

sample size, threshold etc. is arguable since the difference could be explained mostly by 

the methods used and not by the acquisition modality as we see in Figure 10.1. The key 

idea is basically to avoid introducing the strong influence of new factors we can control 

easily into the assessment of the comparison, in order to be able to exhibit as well as 

possible the only influence of the factor of interest. In our case, we have fortunately been 

able to check all these conditions.  

Final point, the number of active voxels seems a not very relevant score, as just 

comparing size of networks without additional information seems pointless. However, it 

can be useful for discussing other measurements on functional networks. Moreover, in 

fMRI, ASL is known to be more “specific” than BOLD, and BOLD more “sensitive” than ASL 

[Barker et al., 2013]. It is then expected that BOLD will provide higher number of active 

voxels. Even if by the visual inspections we made we already confirm our functional 

networks check this proposition, we can also quantify this difference, and above all, check 

how the difference of the number of active voxels between ASL and BOLD evolves with 

respect to the number of volumes. 

12.3.2 Results 

Figure 12.1 shows evolution of the number of active voxels for both modalities with 

respect to the number of volumes. We show only the two most extreme cases in term of 

difference between ASL and BOLD number of active voxels as the influence of the seed is 

actually pretty limited. Moreover, we are more interested in the relative difference 

between ASL and BOLD rather than the absolute values. As expected, BOLD has a higher 

number of active voxels compared to ASL. This seems less obvious below fifty volumes, 

but let us remember that with such low numbers of volume, functional networks 

estimation has most likely failed. We can note that even if with higher number of volumes, 
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the difference between ASL and BOLD is almost stable, the ratio is decreasing since both 

ASL and BOLD have higher number of active voxels. These results are similar to [Zhang et 

al., 2018], who also used number of active voxels in order to compare resting-state ASL 

to BOLD with 130 volumes acquisitions. We can also note that the size of the functional 

network estimation can greatly increase with number of volumes (almost double 

between 150 and 300 volumes). 
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Figure 12.1: Extreme cases for the number of active voxels 

Both graphs show LOESS estimation of the evolution of the number of active voxels with respect 
to the number of volumes. Each dot corresponds with one subject’s functional network 
estimation. The grey area is the 95% confidence interval of the LOESS. Top figure shows the 
results for the seed in prefrontal DMN, where the difference of number of active voxels between 
ASL and BOLD is maximum, and bottom figure shows the results for the motor superior seed 
where the difference is minimum. In both extreme cases BOLD has always more active voxels. 
Since the difference is pretty stable after 150 volumes, the ratio is decreasing with higher 
volumes number. 
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12.4 Functional networks tissues distribution 

12.4.1 Motivation 

In section 11.3, regarding the overlap with MSDL references, we show that even if ASL 

and BOLD functional networks spatial extent share similar behavior with respect to the 

number of volumes, there was still a difference regarding both overlap scores (Jaccard’s 

index & AUC). The large difference between ASL and BOLD sensitivity, actually suggest a 

strong difference in functional networks shape (volume) between ASL and BOLD. The 

investigation on number of active voxels in previous section shows that estimated BOLD 

networks can be three times bigger compared to ASL networks. With such wide 

differences, it is natural to investigate next the functional networks composition between 

the three major brain components: grey matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF). Indeed, functional brain activity is mostly located in the cerebral 

cortex. Hence it is envisioned for our estimated functional networks to be mostly 

composed of GM to be considered as a satisfying detection [Logothetis et al., 2001]. 

While voxels in CSF should be obviously considered as real false-positive, it is not the case 

for WM. Indeed, WM may have some functional role, as some study have exhibited white 

matter specific networks [Gawryluk et al., 2014; Peer et al., 2017].  

12.4.2 Results 

Figure 12.2 shows the detailed composition of the functional networks. Figure 12.3 

shows some descriptive values on the mean composition of functional networks. Results 

are both interesting and not. Mainly, no matter if this is GM, WM or CSF, the percentage 

distributions are globally extremely homogeneous with respect to three aspects of 

interest: the modalities, the seeds, the volumes number. Firstly, even if most modalities 

pairs of estimated networks with respect to the seeds show a statistical significative 

difference, this is purely informative as the difference is not large enough to clearly 

discriminate ASL and BOLD functional networks. Secondly, Figure 12.2 shows the 

composition of functional networks is independent from the seed, expect maybe for the 

motor area (GM, WM, CSF) and Cerebellum (GM). Their difference in composition 

between ASL and BOLD is a bit more obvious, but with a median difference still below 

10%. Last, BOLD interquartile range is smaller than ASL. However, the interquartile range 

is still below 5% for almost every boxplot. Since we include every estimation, it also shows 

that the impact of the number of volumes is purely anecdotal.  

It is a bit surprising that even with such huge difference in size between low/high number 

of volumes and between modalities, the composition of estimated functional networks 

remains very stable. Regarding estimation that have most likely succeed, i.e. with enough 

volumes, the composition was expected, may be not with that much similarity. However, 

for estimation that have most likely failed, i.e. with low number of volumes, it seems that 

the signal of the seeds (located in GM) do not correlate with pure random noise as the 

composition is still the same. If the composition we found characterize functional 

spontaneous activation, then low volumes estimations could also match with the 

clustering of tiny regions having spontaneous activation happening at the same time. 

However, since the time range is narrow, only few have happened. Hence, while it 

matches with functional connectivity definition, the limited number of spontaneous 



Chapter III 
Resting-state ASL performance compared to resting-state BOLD 
Comparing ASL and BOLD without a reference [98] 

activations is not sufficient to define a consistent functional network. As we point in 

section 4.1.3 spontaneous activation is easier to detect around a frequency of 10-2 Hz. 

Hence, with low number of volumes (<80), if we assume the SBA exhibit a functional 

signal because of the tissue distribution, the correlation with the seeds probably only rely 

on very few activations. Since these activations are random, the few volumes estimations 

are not repeatable, invalidating this way the status of functional networks. The functional 

connectivity demands similar neural activation pattern, and pattern require a certain 

number of simultaneous activations. 
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Figure 12.2: Distributions of functional networks composition 

Boxplots showing GM, WM and CSF percentage distribution of estimated functional networks 
with respect to the modality (A stands for ASL, B for BOLD) and with respect to the seed (top 
numbers). The decomposition is extremely homogeneous, whether it is with respect to the seed 
or the modalities. Even if statistical testing shows numerous significative differences, this is 
purely anecdotal since differences are too narrow to discriminate the modalities given a 
functional networks tissues distribution.       
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Figure 12.3: Histograms and estimated probability density function of composition percentage 

Top shows the average distribution for all estimated networks. Bottom shows the distribution 
for the same subset define by the Jaccard’s index criterion. The difference is barely noticeable, 
showing that even if we consider only the best detection, the composition of estimated network 
is not improved (less CSF, more GM). The mean composition is roughly 58 % of GM, 27 % WM, 
12 % CSF in both cases.       



Chapter III 
Resting-state ASL performance compared to resting-state BOLD 
Comparing ASL and BOLD without a reference [101] 

12.5 Intrinsic functional connectivity of the functional networks 

12.5.1 Introduction 

As we mention in section 4.8.5, we can interpret the construction of functional networks 

as a statistical clustering, which exhibit the issue of functional networks scaling: a balance 

has to be found between minimizing the variance within clusters (small networks) and 

the variance between clusters (few networks). Since we are not partitioning the brain by 

working on a set of 6 typical networks, we can compare the estimated rsASL and rsBOLD 

networks with their variance within. To this end, we focus on networks intrinsic 

functional connectivity (IFC): the distribution of the linear correlation between voxels 

signal inside networks.   

12.5.2 Results 

We consider only the seeds that provide successful detection for both ASL and BOLD 

according our criterion in section 8.2.1. Figure 12.4 and Figure 12.5 show four mean 

distribution of linear correlation for all functional networks corresponding to a valid seed, 

for all subjects, and estimated with four different number of volumes, respectively: 51, 

154, 257, 360. It corresponds to durations in rsASL of 3, 9, 15, 21 min, and in rsBOLD of 

1’11, 2’24, 6, 8’24 min. Table 12.1: shows mean of networks IFC with respect to the seeds 

for estimation made with 257 volumes. The role of the seeds seems limited. The BOLD 

intrinsic connectivity is always weaker than ASL. While it is difficult to qualify the nature 

of the signal that seeds gather at low number of volumes, the intrinsic connectivity there 

has still an extreme discriminative power. With higher number of volumes ASL and BOLD 

the difference is less strong. 

We show in previous section 12.4 that the tissues distribution of the functional networks 

is extremely homogeneous between modalities. Hence, the difference in intrinsic 

connectivity cannot be explained this way. We know with section 12.3, that BOLD 

functional networks volume is roughly twice higher compared to ASL.  Moreover voxels 

can belong to multiple functional networks and functional networks as units are not 

independent from each other, as a consequence of their small-world organization in 

graph theory [Liang et al., 2014; Wang et al., 2010]. Even using tough conservative 

statistical testing [Carp, 2012; Eklund et al., 2016], the high sensitivity of BOLD compared 

to ASL is probably still prone to gather voxels that show an intermediate functional 

connectivity with two different functional networks in both of these networks. In other 

words, BOLD high sensitivity limits its discriminative power. Some literature also suggest 

that typical functional networks such as the DMN can also be subdivided into more sub-

specialized functional units [Bzdok et al., 2015; Kernbach et al., 2018; Leech et al., 2011]. 

As BOLD captures more of this sub-specialized units compared to ASL, if we assume that 

ASL functional networks are roughly included in BOLD one, then it is natural that the 

within variance (hence the intrinsic connectivity) of ASL networks can only be similar in 

worst case, or better in general case than the BOLD ones. This case is a cluster pruning 

issue we describe in section 4.8.5 about scaling: we can improve the within variability of 

BOLD clusters at the cost of the model complexity, for the sub-division of actual networks 

make sense functionally speaking. However, we already use tough conservative 

parameter in our modeling, and moreover, we use the exact same modeling for ASL.  
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Figure 12.4: Estimations of the normalized mean distribution of IFC of ASL and BOLD networks 

Top figure considers the functional networks estimated with 51 volumes and bottom 154 
volumes. ASL IFC is shown in blue and BOLD in orange. The mean distribution of correlation is 
estimated with at most 109 pairs of voxels per subject per functional networks and is weighted 
in consequently in the mean before the normalization. 
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Figure 12.5: Estimations of the normalized mean distribution of IFC of ASL and BOLD networks 

Top figure considers the functional networks estimated with 257 volumes and bottom 360 
volumes. ASL IFC is shown in blue and BOLD in orange. The mean distribution of correlation is 
estimated with at most 109 pairs of voxels per subject per functional networks and is weighted 
in consequently in the mean before the normalization. 
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SEED AVERAGE IFC - ASL AVERAGE IFC – BOLD 

DMN PREFRONTAL 0.180 0.091 
DMN POSTERIOR 0.267 0.076 
MOTOR SUPERIOR 0.208 0.084 
VISUAL POSTERIOR 0.244 0.081 
VISUAL VENTRAL 0.267 0.095 
VISUAL DORSAL LEFT 0.224 0.083 
VISUAL DORSAL RIGHT 0.212 0.090 
LANGUAGE FRONTAL GYRUS LEFT 0.320 0.176 
CEREBELLUM ANTERIOR 0.179 0.108 

Table 12.1: Mean value of networks IFC with respect to the seed 
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12.6 Spatial concordance between ASL and BOLD 

12.6.1 Motivation 

Even though we already know ASL and BOLD estimated functional networks differ by 

their size and agree by their tissue composition, we would like to investigate how the 

modalities spatial layout concordance evolves with respect to the number of volumes. 

With the LOESSs and MSDL, we have interpreted the stabilization of the Jaccard’s index 

and of the AUC of the estimated functional networks with the MSDL, as a sign of spatial 

stabilization of the estimation, in accordance with some visual inspection. Indeed, if we 

consider Jaccard’s index and AUC as distances between the MSDL references and the 

estimated functional networks, a stabilization in scores can translate stabilization in 

spatial extent. However, estimations could be orbiting around references. Even if visual 

inspection seems to invalidate this hypothesis, or at least showing oscillations as a 

marginal phenomenon, we did not investigate every estimated functional network and 

we have no assumption on what happens before scores stabilization. By investigating the 

Pearson’s 𝜙 coefficient (spatial correlation, detailed below) between ASL and BOLD, i.e. 

a distance between ASL and BOLD estimated functional networks, we can either 

strengthen the confirmation of estimation spatial stabilization or detecting some 

oscillation around the references. Indeed, we can argue that a functional networks 

estimation can oscillate around its reference, and then, a stabilization in the score does 

not totally translate a stabilization in spatial layout. However, the case where a functional 

network estimation oscillates around a MSDL reference with respect to Jaccard’s index, 

and also oscillate around the reference with respect to the AUC, and also oscillate around 

its corresponding networks in the other modality seems unachievable. By directly 

comparing ASL and BOLD, we get rid of the reference dependence of the scores. Even if 

the phenomenon of stabilization is unlikely to be impacted by the references, using a 

BOLD set of references raises questions about the height of the scores, as discussed in 

section 12.3.2, since BOLD is likely to benefit from this bias.  

Using our former definition of 𝑎, 𝑏, 𝑐, 𝑑  from section 7.2, the Pearson’s 𝜙  coefficient, 

often called spatial correlation is: 

𝜙 ≔
𝑎𝑑 − 𝑏𝑐

√(𝑎 + 𝑏)(𝑎 + 𝑐)(𝑏 + 𝑑)(𝑐 + 𝑑)
 

Equation 12.1: Pearson’s 𝜙 coefficient – Spatial correlation 

The two binary variables are here the ASL and BOLD estimated functional networks 

binary mask computed on voxels: 𝑎 is the cardinal of the positive matches between ASL 

and BOLD, 𝑑  cardinal of the negative matches, 𝑏  corresponds to cases where ASL 

estimation suggests a voxel belong to a functional network where BOLD do not, and 𝑐 

the opposite in the modalities. It should be noted the Pearson’s 𝜙 coefficient is exactly 

the Bravais-Pearson linear correlation given our definition of the two variable [Cramér, 

1947], hence the name of spatial correlation. Since the definition matches, it is also 

interesting to note that in consequence 𝜙 is related to a square root of a chi-squared 

statistic, modulo a sample size factor. This unlock more advanced statistical analysis, but 

we will not need them. 
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12.6.2 Results 

Figure 12.6 shows a collection of spatial correlation heatmaps related to a seed used to 

the corresponding functional networks maps. The colors of correlation values are 

normalized between correlation minimum and maximum values with respect to each 

seed. Correlation values (colors) are the average value over the subjects. The chosen 

seeds are considered to provide successful detection of the related functional networks 

in both modalities, regarding our selection criterion. However, even seeds that failed to 

detect their corresponding functional networks still provide very similar heatmaps of 

correlation. This similarity may mean that these seeds actually detects real functional 

networks, unlike at low number of volumes for instance as we discuss in section 12.4.2. 

These potential real functional networks are however difficult to interpret, since they do 

not look like functional structure already well-established. Whichever the seed, 

maximum correlation values are not very high: this was expected since ASL estimated 

functional networks are usually twice to three times smaller than BOLD one. Heatmaps 

shows almost a line symmetry around the first bisector. It is interesting to notice the 

evolution of the spatial correlation between ASL and BOLD is close to the LOESS modeling. 

Firstly, the correlation increases rapidly at low number of volumes (≤100). Secondly, 

spatial correlations show a slower increase with intermediate number of volumes. 

Eventually, correlations stabilize after a certain number of volumes. This value obviously 

depends on the definition of stabilization, exactly as the issue we discuss for the LOESS 

modeling. If we consider a threshold of spatial correlation between 80% and 90% of the 

maximum, the satisfactory number of volumes to achieve is close to the value we find for 

ASL and BOLD with the LOESSs in section 11.3.2. Note that the area of correlation stability 

is not totally symmetrical with respect to the first bisector. While there is an overall 

symmetrical behavior of the spatial correlation with respect to the modalities, the area 

of stability can start with a difference up to 60 volumes between ASL and BOLD (90% + 

DMN: 120 BOLD / 180 ASL). This difference tends to disappear with relaxed definition of 

stabilization (like 80%). 

The combined results for spatial correlation and LOESS modeling tend to confirm a 

posteriori the spatial stabilization was not dependent from the reference. Indeed, 

without any visual inspection, spatial correlation never indicates whether estimated 

functional networks achieve satisfactory spatial layout or not, i.e. if SBA manage to detect 

the functional network in our case. Moreover, the ASL and BOLD could have spatially 

evolved the same way without impacting spatial correlation a lot. However, with the 

previous work made with the MSDL reference, we know which functional networks 

estimation can be considered as successful, and also when they globally achieve spatial 

stability. With LOESSs and MSDL, the atlas used as a set of references may have an impact, 

but mostly on scores height and not on stabilization phenomenon. By getting rid of 

atlases with spatial correlation, and in combination with the prior knowledge from 

LOESSs and MSDL, we can say that after a certain number of volumes, ASL and BOLD 

provide their best estimation of functional network, this estimation is stable, and also 

that ASL and BOLD agree the most on estimation at this point.  
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Figure 12.6: Collection of heatmaps of spatial correlation between ASL and BOLD 

Correlation values (colors) are normalized between minimum and maximum values for 
each seed. Contour lines shows every 10% step of increase. The spatial correlation 
behaves symmetrically around the first bisector: a fast increase before 100 volumes, a 
slower increase between 100 and roughly 200 volumes, and finally a stabilization 
plateau with values close to the maximum. As suggested by contour lines, the plateau 
size depends a lot on which percentage of the maximum value is considered to be the 
edge.  
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12.7 Conclusion 
We first showed that the number of active voxels is a discriminant variable for the 

modality. Indeed, no matter the seed, ASL estimated functional networks always have a 

smaller size compared to BOLD. This result matches similar investigations in the literature 

[Zhang et al., 2018]. We showed that this result is also true with respect to the number 

of volumes, even if the size ratio is smaller with higher number of volumes. In the 

previous section, we investigated the composition in terms of GM, WM and CSF of the 

estimated functional networks. Interestingly, this composition is extremely 

homogeneous, whether it is with respect to the seed, with respect to the number of 

volumes, or more importantly, with respect to the modality. 

Secondly, we investigate in section 12.4 the tissues distribution of estimated functional 

networks. Indeed, our functional networks of interest are expected to have most of their 

voxels located in grey matter, few in white matter, and none in cerebrospinal fluid. Even 

with the large difference in size, the tissue distribution of estimated functional networks 

is actually extremely homogeneous between ASL and BOLD. No matter the seed, the 

subject, the number of volumes, the modality, the tissue distribution is for almost every 

estimation is as follow: 55-60% in grey matter, 25-30% in white matter, 10-15% in 

cerebrospinal fluid. In other words, given a tissue distribution, it is not possible to guess 

to which modality it corresponds: the tissue distribution has no discriminative power.  

Thirdly, we investigate the intrinsic functional connectivity of estimated functional 

networks. We address the issue of functional networks scaling in the first part of the 

manuscript in section: interpreted as the result of a statistical clustering, an estimation 

of a functional network, i.e. a cluster, is wanted to have a minimal intra-variance, i.e. a 

maximal intrinsic functional connectivity. We show that no matter the seeds, the 

successfully estimated functional networks have a better intrinsic functional connectivity 

in rsASL than in rsBOLD.  

We end the comparison by investigating the spatial correlation between rsASL and 

rsBOLD estimations. We only consider seeds that are able to effectively detect a 

functional network. For every seed, the spatial correlation interestingly behaves like its 

corresponding LOESS in previous modeling: a low number of volumes is associated with 

a low spatial correlation, and interestingly, after a number of volumes close to the range 

where we detected stability with the MSDL, the spatial correlation between rsASL and 

rsBOLD functional maps reaches its highest values and stays stable with bigger number 

of volumes. It confirms that the impact of using an atlas is extremely limited in the 

exhibition of the stabilization phenomenon, and this way, definitely confirm the spatial 

stabilization of functional networks. 
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This manuscript had three main objectives. The first one was to confirm ASL as a viable 

resting-state fMRI technique. The second one was to address the effect of scan duration 

on the functional networks estimation. The third one was to test rsASL performance 

against rsBOLD with respect to the scan duration. 

We first investigated the effect of scan duration in rsASL with classic methods which 

model what a rsfMRI investigator would experience. We used a standard pCASL sequence, 

typical preprocessing and simple estimation methods at the subject scale, as we wanted 

to show that ASL is fully viable as a rsfMRI technique even with the simplest techniques. 

An estimation of a functional network is validated by an expert if it is close to what the 

expert expects the functional network to look like. We mimicked this process by scoring 

the overlap of the estimated functional networks with a set of reference networks from 

a resting-state atlas. We then modeled the evolution of scores with respect to the scan 

duration/the number of volumes. The spatial representation of functional networks 

stabilized after a certain acquisition duration for the six common functional networks we 

focused on. While the start of the stabilization is depending on the functional network 

considered and, more importantly, on the definition of stabilization, 14 minutes 

duration/240 volumes is suggested as most likely sufficient for resting-state ASL. Indeed, 

we used a typical sequence, preprocessing and modeling. Hence any method that 

improves the detection of functional networks is likely to provide an earlier stabilization 

start, i.e. smaller optimal number of volumes/shorter duration. As we were able to detect 

every functional networks of interest, we also confirm the viability of ASL as a rsfMRI 

technique. 

We integrated rsBOLD data in our study. The first step was to investigate the impact of 

the number of volumes in resting-state BOLD. We addressed this question by applying 

the methodological framework we developed for the ASL data to the BOLD data. It seems 

that, as in rsASL, functional networks estimation in rsBOLD also stabilizes after acquiring 

a certain number of volumes. However, rsBOLD results were more heterogeneous: the 

start of the stabilization is harder to define precisely compared to rsASL. The higher 

variance of BOLD could, though, be explained by the relatively small number of subjects. 

An interesting result is that the evolution of functional networks with respect to the 

number of volumes is similar. The range of number of volumes where stabilization starts 

for both modalities are close: 240 volumes for rsASL, 250 to 290 volumes for rsBOLD. 

The comparison between ASL and BOLD used a third-party atlas. As the atlas is built with 

rsBOLD data, the second step was to compare the modality without the atlas. We focused 

on four measures: the number of active voxels, the tissue distribution, the intrinsic 

functional connectivity and the spatial correlation. 

The investigation of the number of active voxels showed that the size of BOLD functional 

networks is always half to three times bigger than ASL, no matter the number of volumes 

considered. Regarding the tissue distribution, results were extremely homogeneous. In 

other words, given a tissue distribution, it is not possible to discriminate seeds, subjects, 

number of volumes and most importantly, ASL and BOLD. The investigation of intrinsic 

functional connectivity exhibited a better performance of rsASL than rsBOLD. For all 

successful seeds and number of volumes, rsASL networks intrinsic connectivity is better 
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than rsBOLD. Last measure investigated was the spatial correlation between rsASL and 

rsBOLD. The correlation was maximal and stable when both BOLD and ASL data reach at 

least 200-250 volumes. Since this is also the range of volumes for which most functional 

networks are starting to stabilize and reach their best estimation, we can add that this is 

also when BOLD and ASL most agree on functional networks estimation. This also tends 

to strengthen, a posteriori, the proposition stating that the stabilization of Jaccard’s index 

and of AUC (computed by comparison to an atlas) was reflecting the stabilization of 

spatial representation of functional networks.   

We addressed the effect of scan duration mostly through methodological considerations. 

As we worked under a single given set of parameters, the suggested duration of 14 min 

could be strongly influenced by the preprocessing and sequence parameters. Although 

the influence of each of them must be kept in mind, most of them have a specific 

bibliography that goes well beyond the issue of the optimal acquisition duration. 

Regarding rsASL, however, two parameters may have a deep impact on our results: post-

labeling delay (PLD) and repetition time (TR). Indeed, shorter PLD tend to gives better 

functional networks representation but worse estimation of CBF. As the principal 

advantage of ASL over BOLD is CBF quantification, we kept a quite long PLD, compared 

to classical values in use in the resting-state literature.  Hence, an investigator focusing 

on a better functional estimation could use a shorter PLD, and, while tempting, we cannot 

assume that shorter PLD comes along with an earlier stabilization. 

In our opinion, the critical parameter is the repetition time (TR). It defines the sample 

frequency of the resting-state signal and turns the 14 min suggestion into 240 volumes. 

Its variation may shift the stabilization step toward a higher/lower number of volumes 

and hence a longest/shortest duration, without changing the stabilization phenomenon 

of the functional networks representation after a certain number of volumes (i.e. same 

signal but different sampling frequency). As a pioneer work on the effect of scan duration 

in rsASL, we focused more on the modeling rather than investigating the influence of the 

TR. However, a specific study on the relationship between repetition time, number of 

volumes and quality of functional network estimation would be highly beneficial to better 

define the optimal duration and also would be useful when an investigator sets up a 

sequence. 

Regarding acquisition protocols, we try to use the most generic sequences in use for both 

rsASL and rsBOLD in order to suggest a sufficient number of volumes to use, as more 

advanced sequences are expected to provide same or earlier stabilization start. We 

discard subjects variability by using the same subjects for both sequences, but yet, each 

MRI modality is not acquired at the same time. An interesting approach, in order to better 

seize the cross effect of scan duration and MRI modality, would be to acquire both ASL 

and BOLD at the same time, by using a dual-echo sequence [Cohen et al., 2018]. An 

alternative implementation can be made even by only using a standard ASL sequence. 

Indeed, in ASL, the control image contains only BOLD signal, called concurrent BOLD 

which can be compared to the subtraction control/label, i.e. the ASL signal [Zhu et al., 

2013].           
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As mentioned in the first chapter, functional connectivity has various modeling. Here, we 

choose to model functional connectivity with linear correlation and construct functional 

networks with SBA, as it was well-adapted to compare rsASL with rsBOLD regarding 

methodological considerations. As ICA is also widely used, an investigation of the 

functional networks spatial stabilization using the definition of functional connectivity 

through statistical independence should be beneficial. Indeed, it is not guaranteed that 

statistical independence and linear correlation provide a similar stabilization 

phenomenon.  

We focused our investigation on the construction of functional networks in order to 

assess the feasibility of ASL as a method for resting-state fMRI. We showed that ASL is 

able to reconstruct the functional networks. The next step would be to investigate the 

interactions between these functional networks and the investigation of the small-world 

architecture with respect to the number of volumes, similarly to the work done in BOLD 

on the topic [Birn et al., 2013; Termenon et al., 2016].  

As we wanted to confirm the efficiency of ASL in resting-state fMRI, we naturally focused 

on a subject scale study. While general conclusions at the subject scale are still valid at 

the group scale, e.g. stabilization of functional networks after a certain duration, a 

specific group scale comparison would answer unresolved issues. First, do ASL and BOLD 

require the same number of subjects to define reliable networks at group scale? Such 

work was carried out by [Termenon et al., 2016] for BOLD. Secondly, the effect of scan 

duration could be assessed by comparing the individual maps at a certain number of 

volumes to a group-made reference, similarly to the work of [Bouix et al., 2017]. 

As an exploratory study, we have considered a large range of number of volumes with a 

relatively high temporal resolution. The consequence is that even with only 7 subjects, 

more than 12 000 functional network maps have been generated and analyzed. Given 

the knowledge produced by the work, further studies could diminish the temporal 

resolution and narrow the range of number of volumes to investigate in order to include 

far more subjects without increasing the computational time. We have indeed limited 

sources of variability by considering a homogeneous population, and a larger population 

should be considered regarding the rsASL optimal scan duration issue in order to assess 

population factors influence, in particular the age. 

In a nutshell, we showed that rsBOLD outperforms rsASL on numerous aspects (temporal 

and spatial resolution, SNR, practicability, easier detection of networks), but not on every 

aspect, such as the intrinsic functional connectivity. When considering the number of 

volumes, ASL can even compete with BOLD: ASL showed less variability with the LOESSs 

and MSDL modeling, same functional networks tissue distribution, and similar number of 

volumes to get the best estimation of functional networks. With the ability to quantify 

CBF, unlike BOLD, we believe that the results of this manuscript have shown that rsASL 

in particular and ASL general deserve an increasing exposure. 
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Resting-state ASL sequence parameters 
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Resting-state BOLD sequence parameters 
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Seeds Location in MNI152 coordinates 

Expected Networks Seed Location in MNI152 

DMN Prefrontal (1,55,-3) 

DMN Left (-39,-77,33) 

DMN Right (47,-67,29) 

DMN Posterior (1,-61,38) 

Motor Left (-55,-12,29) 

Motor Right (56,-10,29) 

Motor Superior (0,-31,67) 

Visual Primary (2,-79,12) 

Visual Ventral (0,-93,-4) 

Visual Dorsal Left (-37,-79,10) 

Visual Dorsal Right (38,-72,13) 

Salience Cingulate Anterior (0,22,35) 

Salience Prefrontal Left (-32,45,27) 

Salience Prefrontal Right (32,46,27) 

Language Frontal Gyrus Left (-51,26,2) 

Language Frontal Gyrus Right (54,28,1) 

Language Temporal Gyrus Left (-57,-47,15) 

Language Temporal Gyrus Right (59,-42,13) 

Cerebellum Anterior (0,-63,-30) 

Cerebellum Posterior (0,-79,-32) 
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Boxplots of AUC distribution 
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