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Foreword
In the ten last years, my research activities have addressed a variety of topics, however all related to the
development of new methods for brain images processing and analysis, for imaging biomarkers detection and
computer-aided diagnosis. In this document, I will focus on two important sub-parts of these researches: the
development of new methods for processing and analyzing arterial spin labeling images, and the introduction
of novel neurovascular coupling methods (electroencephalography and functional magnetic resonance imaging
modalities), using a priori sparsity constraints, in order to improve the neurofeedback proposed for the
rehabilitation of stroke patients.
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1

Cerebral Perfusion, Arterial Spin
Labeling, Image Processing and Analysis

Cerebral perfusion is the delivery of oxygen and nutrients from the blood to the brain tissue. It is mainly
studied at the level of microcirculation, which takes place in the finest vessels of the blood system, the
capillaries. Several medical imaging modalities can be used to evaluate this perfusion, such as nuclear
imaging, computed tomography and magnetic resonance imaging. Table 1, from [113], summarizes the main
characteristics of each of the main modalities available. The foremost advantages of Arterial Spin Labeling
(ASL) over other modalities are therefore: its non-invasiveness, facilitating the study of brain perfusion
in healthy subjects, and its ability to quantify perfusion parameters, allowing patient-specific studies. As
a matter of fact, different parameters are encountered in the literature to characterize this perfusion and,
under some assumptions, ASL is able to quantify some of them. The most commonly parameters mentioned
in ASL are Cerebral Blood Flow (CBF), usually expressed in milliliters of blood per minute per 100 grams of
brain tissue, and Arterial Transit Time (ATT), expressed in seconds or milliseconds. Investigating cerebral
perfusion in general and these parameters specifically, is of interest in many pathologies [52], such as cerebral
vascular disorders, cancers, dementias, certain psychiatric diseases or epilepsy. Perfusion is also a relatively
direct indicator of cerebral activity, allowing to obtain functional magnetic resonance images.

Introduced in the early 1990’s [37], ASL is a Magnetic Resonance Imaging (MRI) perfusion technique based
on the use of an endogenous tracer: the protons of blood water. As illustrated in figure 1, the principles
of this modality is to acquire two images: a first one (Label) with prior labeling of the incoming blood
and a second one (Control) without. The image obtained after subtraction between the Control and the

5



6 1. ARTERIAL SPIN LABELING

Table 1: Reproduced from [113]: Overview of the Imaging Techniques Dedicated to Brain Hemodynamics, with a
focus on Arterial Spin Labeling and its main features

Label images is perfusion-weighted: the signal of a voxel is stronger the more the labeled blood arrived at
this location. Figure 2 describes the evolution, in a given voxel, of the difference signal between the Label
and Control images. In [23], Buxton and colleagues proposed a simple model of this temporal evolution,
depending on some parameters: CBF, ATT, labeling efficiency, equilibrium magnetization of arterial blood,
and relaxation time of blood and tissues. Interestingly, to a first approximation, the model no longer depends
on the arrival time in its decreasing part, enabling the quantification of CBF, if the Inversion Time (TI) is
chosen in this second part.

However, ASL has some drawbacks, the main one being its low signal-to-noise ratio, which explains why
its use was initially limited mainly to research protocols. This also justifies the need for processing and
analysis tools specifically dedicated to this imaging modality. The development of such tools, as well as the
improvement of the acquisition sequences, and the considerable standardization efforts of the community
[4, 48] have resulted in recent years in an important maturation of ASL’s position in the clinic.

In the following sections, I will present some of our contributions over the past ten years: robust estimation
of cerebral blood flow, patch-based super-resolution, heteroscedasticity and detection of perfusion abnormal-
ities, a contrario detection of perfusion abnormalities, and impact of acquisition duration in resting-state
ASL. Each of them will be synthesized on a double page and the interested reader can refer to the publica-
tions listed at the end of the pages for more details. The figures presented are generally extracted from the
above mentioned publications. These contributions are the result of three theses that I co-supervised: those
of Camille Maumet, Cédric Meurée and Corentin Vallée.
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1 pair 60 pairs (average)

Figure 1: Principles of a typical ASL acquisition: two images are acquired, a first one (Label) with prior labeling of
the incoming blood and a second one (Control) without. The image obtained after subtraction between the Control
and the Label images is perfusion-weighted: the signal of a voxel is stronger the more the labeled blood arrived at
this location.

(a) (b)

(d) (c)

Figure 2: Evolution of the difference signal in a voxel (yellow square) between the Label and Control images, from
the labeling to the acquisition. (a) Labeling has just been performed (red line): the labeled blood has not yet arrived
in the voxel of interest. (b) After ∆t, the arterial transit time, the labeled blood starts to arrive. (c) After ∆t + τ ,
the labeling duration, all the labeled blood is arrived. (d) After TI, inversion time, the signal is decreasing due to
relaxation and venous clearance, and the Label image is acquired.
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Robust Estimation of Cerebral Blood Flow

Context Due to the low Signal-to-Noise Ra-
tio (SNR) of the ASL sequence, a single pair of control
and label images is not sufficient to measure perfu-
sion. The acquisition is therefore repeated several
times, leading to n pairs of images (usually n ≥ 30).

Perfusion information is then usually extracted by
pair-wise subtracting the control and label images (or
using surround subtraction) and averaging across the
repetitions.

Though sample mean, as an unbiased estimate of
mean, ensures convergence as n grows, it has a break-
down point of 0% (i.e. a single arbitrary large value
can induce an arbitrary large estimate) and is thus
very sensitive to outliers as illustrated in fig. 3.Repeat 1 Repeat n

...

ASL CBF
(average)

Repeat 1 Repeat n

...

Corrupted 
repeat

Repeat 1 Repeat n

...

ASL CBF
(average)

Repeat 1 Repeat n

...

Corrupted 
repeat ASL CBF

(average)
ASL CBF
(average)

Figure 3: Sensitivity of the sample mean to outliers.

And yet it is well-known that instabilities dur-
ing the acquisition and improperly corrected patient
motion can cause artefactual values. In particular,
sudden subject motion often induces strong corolla-
shaped artefacts [102].

To avoid the detrimental effects that a few ab-
normal repetitions could have in the final perfusion
map, it is often suggested to ignore the volumes cor-
responding to the motion peaks using an appropriate
threshold [102]. Volumes with (estimated) motion
parameters greater than [1 − 3]◦ or [1 − 3] mm are
thus discarded before averaging. However the choice
of these thresholds is empirical and there is no com-
mon rule across studies or automatic methods to tune
these ad-hoc parameters. In [104], the authors pro-
posed an automatic algorithm for outliers rejection in
ASL perfusion series based on z-score thresholding at
the volume (or slice) level. Their method produced
satisfactory results on a qualitative validation based
on ratings made by medical experts. However, their
approach is based on z-scores, while more robust sta-
tistical measures are known to be better suited to deal

with outliers. Also, they rely on empirically tuned pa-
rameters that might limit the generalization of their
procedure to new datasets.

Contribution How to appropriately deal
with outliers has been widely studied in the statistical
literature and a large range of methods has emerged.
Z-score is known to be sensitive upon sample size and
is suffering from masking effects when more than one
outlier is present in the series [100]. Indeed, in a
dataset containing more than one outlier, the stan-
dard deviation estimate will be artificially inflated
which may prevent z-score based outlier detection.
On the other hand, M-estimators are robust tech-
niques to estimate location and scale in the presence
of outliers. In [75], we investigated the use of Huber’s
M-estimator [54], as it is the most widely used. An
example of estimate computed with this method is
provided in fig. 4.

Repeat 1Repeat 1

Repeat 1 Corrupted 
repeat Repeat n

...

ASL CBF
(Huber M-est.)

Figure 4: Robust ASL CBF map via Huber’s M-
estimator.

A theoretically more efficient approach to deal with
outliers is indeed to employ robust statistics, such
as M-estimators. In [54], M-estimators are defined,
given a function ρ, as solutions θ̂ of:

θ̂ = argmin
θ

( n∑
i=1

ρ(xi − θ)
)
. (1)

If ρ is differentiable, and ψ is its derivative
then eq. (1) can be solved by finding the root of∑n
i=1 ψ(xi − θ) = 0. The sample mean can be seen

as an M-estimator with ρ(xi − θ) = (xi − θ)2 and

ψ(xi − θ) = 2(xi − θ) leading to θ̂ =
1

n

n∑
i=1

xi.

The M-estimator of location proposed by Huber
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in [54] is defined by:

ψ(xi − θ) = γ
(xi − θ

σ

)
where

γ(x) =


−k, x < −k,
x, −k < x < k,

k, x > k.

Classical values for k and σ are respectively 1.345
(corresponding to 95% efficiency in Gaussian data)
and the median absolute deviation divided by 0.6745.
Huber’s M-estimator is applied voxel by voxel on
the perfusion-weighted series to obtain the robust
perfusion-weighted map. Fig. 5 illustrates the ψ(x)
functions for the three estimators of interest.

Repeat 1 Repeat n

...

Corrupted 
repeat

Repeat 1 Repeat n

...

Corrupted 
repeat

Z-score thresh. Huber M-est.

8.5

Sample mean Z-score thresholding 
(sample mean after outlier rejection)

Huber M-estimator

Ψ
(x

)

Ψ
(x

)

Ψ
(x

)

0-kσ kσ

Sample mean

Figure 5: ψ functions for three estimators: sample mean,
z-score thresholding (equivalent to a sample mean after
outlier rejection), Huber’s M estimator.

Validation and Results The impact of us-
ing the M-estimator on the CBF quantification was
evaluated in two different ways: on simulated data
and on subjects diagnosed with brain tumor.

• On simulated data: a given percentage of ASL
volumes was corrupted by adding samples drawn
from a uniform distribution to a given percent-
age of the voxels (three levels of corruption: 2%,
20% or 50%) per volume. As seen in fig. 6, in
the presence of outliers, Huber’s M-estimator is
always more accurate than the sample mean and
either better or as good as z-thresholding.

• On clinical data: for these 24 cancer pa-
tients, Dynamic Susceptibility weighted Con-
trast (DSC) imaging had also been acquired.
The quality of the maps produced by each
method was therefore measure through the Pear-
son linear correlation coefficient with the DSC
CBF map. As shown in fig. 7, the M-estimator
still provides the best estimation, even though
the difference with the other methods are less
important.

Medium level of corruption
SSD of ASL CBF with estimated ground truth

SS
D

0            10             20            30             40           50
Percentage of corrupted volumes

Average
Z-score thresholding
Huber M-estimator

Figure 6: Healthy subject with simulated outliers: sum of
squared differences (SSD) of ASL CBF map, computed by
M-estimator, z-score thresholding and sample mean, with
the estimated ground truth.

Figure 7: Clinical dataset: correlation of ASL CBF with
DSC CBF for different number of repetitions.

Take-Home Message

→ Outlier filtering provides more robust
CBF maps than the sample mean

→ As M-estimators are able to deal with
a broader range of outliers, we recom-
mend the use of M-estimators as robust
method to compute ASL CBF maps

Main Related Publications: [74, 75, 71]
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Patch-Based Super-Resolution

Context Fast acquisition techniques such
as echo planar imaging are required to image the dy-
namic process of the labeled protons circulation, gen-
erating low resolution and SNR images. As seen pre-
viously, averaging a number of repetitions is thus nec-
essary, making ASL sensitive to new potential corrup-
tions, such as motion artifacts. Moreover, voxel-wise
estimations of perfusion parameters are perturbed by
the low image resolution. Indeed, this leads to the
introduction of partial volume effects, meaning that
perfusion of different tissues contributes to the per-
fusion signal observed in a single image voxel. In
clinical conditions, acquiring ASL at higher resolu-
tion is a challenging task, usually implying either a
decrease in SNR, or an increase in acquisition time.

Other MR modalities are facing similar low reso-
lution properties, such as T2-weighted and diffusion
images. Classical interpolation methods can be ap-
plied to MR images, but introduce a smoothing effect.
To overcome this, Super Resolution (SR) approaches
aim to reconstruct high frequency information from
low resolution data. Some of these methods are based
on multiple low resolution acquisitions, therefore re-
quiring specific acquisition protocols, which can be
time consuming [98]. On the other hand, several au-
thors [96, 27] have adapted and extended non-local
patch-based SR approaches that are independent of
the acquisition process to the MRI domain. The main
idea consists in using self similarities in images to per-
form reconstructions at higher resolution.

Contribution In [80], we proposed a novel
method to increase the resolution of ASL images, tak-
ing advantage of a High Resolution (HR) GMstruc-
tural image, typically acquired in conventional imag-
ing protocols. This non-local patch-based approach
for ASL reconstruction relies on the assumption of
similar spatial patterns between the perfusion im-
age and the high-resolution structural image. This
hypothesis of shared anatomical properties between
structural and ASL images seems natural, since gray
and white matter are the two tissues that contribute
to the brain ASL signal, with their own perfusion

characteristics (e.g. CBF and arterial transit time).
This new method increases the resolution of ASL im-
ages without lengthening the acquisition time.

Original image

High Resolution 
Structural image

Super Resolution 
image

Interpolated image

Patch-
based 
SR

Figure 8: Principle of the proposed method.

As illustrated in fig. 8, the proposed method starts
by a third order B-splines interpolation applied to
the low resolution image in order to increase its di-
mension to the desired one. This initialization is fol-
lowed by iterations between a non-local patch-based
regularization and a fidelity term assuring the global
intensities mean consistency between the initial low
resolution image and the reconstructed one.

The regularization step, similar to the non-local
means denoising method [21], corresponds to a patch
averaging using a similarity term between voxels’
neighborhoods. In our case, this patch similarity is
assessed both through the perfusion image and the
structural one

Xt+1
i =

1

Zi

∑
j∈Vi

Xt
je
− Sim(Xt,i,j)−λ Sim(Xs,i,j)

Xt
i is the intensity of voxel i in the image Xt cor-

responding to the reconstructed perfusion image at
iteration t. XS is the structural image. Vi is the cor-
respondence search volume around voxel i and Zi a
scaling parameter controlling that the sum of the ex-
ponential weights is equal to 1. Sim(A, i, j) is a term
measuring the similarity between the neighborhoods
of voxel i and j in the image A, defined as follows

Sim(A, i, j) =
1

σ2
i

‖N(Ai)−N(Aj)‖2L2

where N(Ai) is a patch around voxel i in the image A
and σ2

i the empirical local variance. It is important to
note that only values present in the perfusion image
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are averaged, the structural image is only involved in
the definition of the weights in this average.

The global low resolution mean value consistency
corresponds to an additive offset equal to the differ-
ence between the mean image value of Xt and the
mean of the initial low resolution image Y , respec-
tively µ(Xt) and µ(Y ): Xt′ = Xt + µ(Y )− µ(Xt).

Iterations between these two steps are performed
until convergence.

Validation and Results The quality of the
produced super-resolution perfusion images was eval-
uated in three different ways:

• On simulated data: a structural image was
acquired and segmented using SPM12 algo-
rithm, providing probability maps for gray mat-
ter (GM) and white matter (WM), noted pGM
and pWM . An artificial CBF map was pro-
duced using fixed CBF values for GM and WM:
CBFi = 70 ∗ pGM,i + 25 ∗ pWM,i This simulated
high-resolution perfusion images was then down-
sampled and corrupted by some noise, and our
SR method was applied and compared to classic
interpolation. As shown in fig. 9, our reconstruc-
tion is always closer to the original HR image.

Noise std (as percentage of GM CBF)

RM
SE

Nearest Neigbor
Trilinear

B-splines
Proposed method

Figure 9: Root mean square errors between the HR sim-
ulated CBF image and the reconstructed images.

• On healthy subjects: for 4 subjects, we acquired
standard pseudo-Continuous ASL (pCASL) im-
ages with resolution 3.5×3.5×3.5 mm3 and 30
repetitions, a high-resolution structural image,
and another series of pCASL images, with res-
olution of 1.75×1.75×2.5 mm3 and 100 repeti-
tions. Two corresponding CBF maps were thus
estimated, one considered as low-resolution and
the other as ground truth. Again, our super-
resolution method provides images closest (ac-

cording to RMSE values) to the HR acquired
ones. Fig. 10 shows an example of such images.

Figure 10: Healthy subject: a) structural image, b) CBF
maps from the acquired HR pCASL., c) low resolution
pCASL acquisitions, d) proposed SR reconstructed CBF.

• On clinical data: on the same data as in the
previous section, from the acquired 3×3×7mm3

PASL sequence, we estimated HR CBF maps us-
ing our super-resolution method and compared it
to the DSC CBF with a resolution of 1.8×1.8×4
mm3. As shown in fig. 11, our method also im-
proves the correlation to the DSC CBF map.

1            2             3            4             5             6             7            8             9             10

Pe
ar
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n 
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n 
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ef

fic
ie

nt

Low Res
Trilinear

B-splines
Proposed method

Subject

Figure 11: Pearson correlation between the reference DSC
CBF maps and the different reconstructed images.

Take-Home Message

→ Patch-Based super-resolution outper-
forms interpolation techniques

→ Independent of segmentation methods

→ No need for extended acquisition time

Main Related Publications1: [79, 80, 78]

1The SR method was included in the Siemens MR ASL Perfu-
sion Analysis prototype, as a syngo.via Frontier application.
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Heteroscedasticity and Detection of Perfusion Abnormalities

Context Patient-specific abnormal perfu-
sion patterns are useful biomarkers for the diagnosis
and monitoring of patients with a range of patholo-
gies involving microvascular dysfunction. The quan-
tification of CBF from ASL images can be used for es-
timating patient-specific perfusion abnormalities, by
comparing a single patient to a group of healthy con-
trols. The most widespread approach to compare
voxel-wise maps in neuroimaging is the massively uni-
variate General Linear Model (GLM). To detect dif-
ferences between two groups with repeated measure-
ments, a subtype of GLM is generally used: a mixed-
effect hierarchical two-sample t-test with two levels,
subject and group. In this context, two variance com-
ponents are of interest: the within-subject variance
(or the measurement error, estimated from the re-
peated ASL acquisitions of a single subject) and the
between-subject variance.

In the functional MRI community, where simi-
lar statistical models are applied, two approaches
are currently in use to solve hierarchical GLMs
[82, 25]. On the one hand, the homoscedastic ap-
proach assumes homogeneous within-subject vari-
ances or negligible within-subject variances by com-
parison to between-subject variance. On the other
hand, the heteroscedastic approach models heteroge-
neous within-subject variances. The latter is theoret-
ically more efficient in the presence of heterogeneous
variances but algorithmically more demanding. The
practical superiority of the heteroscedastic approach
for fMRI studies is still under debate and both ap-
proaches are in use in the community: SPM favors
the homoscedastic approach, while FSL and AFNI
use the heteroscedastic model.

Due to the low SNR of ASL sequences, within-
subject variances have a significant impact on the
estimated perfusion maps and the heteroscedastic
model might be better suited in this context.

Contribution In [77], we investigated the
performance of the homoscedastic and heteroscedas-
tic approaches, in terms of specificity and sensitivity
in detecting patient-specific perfusion abnormalities

from ASL images.
In ASL, at the subject level, the data under study

is a 4D volume of CBF maps containing r volumes.
The observations are therefore repeated measure-
ments of the same underlying value. For a subject
and at a given voxel, this perfusion value can be es-
timated by averaging the values for each repetition:
β̂s =

1
r

∑r
i=1 ys,i, where ys,i correspond to the value

for subject s and repetition i. Similarly, the sampling
variance of β̂s is estimated by:

V̂ar(β̂s) =
σ̂2
s

r
where σ̂2

s =
1

r − 1

r∑
i=1

(
ys,i − β̂s

)2
.

Given a group of n subjects, we assume that sub-
jects 1 to n − 1 are part of the control group and
subject n is the patient of interest. Then, the one-
versus-many second-level model is defined by

β̂1
...

β̂n−1
β̂n

 =


1 0
...

...
1 0
0 1


[
βcontrols
βpatient

]
+ γGC . (2)

βcontrols and βpatient are the two perfusion param-
eters to be estimated and compared. The error term
γGC contains two combined sources of variations: the
within-subject variance and the between-subject vari-
ance. Each element of γGC is therefore assumed to

follow a normal distribution: γsGC
∼ N

(
0, σ2

G +
σ2
s

r

)
.

Solving eq. (2) gives an estimate of the patient ver-
sus control group contrast, b̂ = β̂controls − β̂patient ,
and its associated sampling variance, V̂ar(b̂). In
the general heteroscedastic model as stated above,
the system (2) is solved by using a weighted
least square. Under the homoscedastic assumption,
assuming homogeneous within-subject variances or
negligible within-subject variances by comparison to
between-subject variance, one can state that γsGC

∼
N (0, σ2

GC
) where σ2

GC
is the combined within- and

between-subject variance. In that case, eq. (2) can
be solved using Ordinary Least Squares. A detailed
calculation of the homoscedastic and heteroscedastic
estimates can be found, for example, in [82] or [12].
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Validation and Results 21 patients diag-
nosed with brain tumors and 35 healthy volunteers
were involved in this study. Pulsed ASL (PASL)
images were acquired using a PICORE Q2TIPS se-
quence, and CBF maps were estimated using the ki-
netic model [23]. On the control group, three stan-
dard deviation estimates were then computed and are
displayed in fig. 12, as well as the mean perfusion es-
timate, giving a template of normal perfusion.

a

b

c

d
Figure 12: Control group. a) Mean perfusion esti-
mate β̂controls . b) Combined within- and between-subject
standard deviation estimate from the homoscedastic
model σ̂GC . c) Between-subject standard deviation esti-
mate from the heteroscedastic model σ̂G. d) Root square
of the average within-subject variance.

We then proved that none of the two possible as-
sumptions behind the homoscedastic model is ver-
ified. Indeed, by comparing the two last rows in
fig. 12, the within-subject variance is not negligible
by comparison to the between-subject variance. Fur-
thermore, by comparing within-subject standard de-
viation in different control subjects and in patients
(not displayed here), variations across subjects of the
within-subject variance were found to be important.

Finally, we detected perfusion abnormalities in
each patient, by performing statistical tests, com-
paring the control group and the considered patient,
for each model: homoscedastic and heteroscedastic.
These abnormalities were then compared to a ground
truth obtained, taking advantage of the complemen-
tary anatomical (T1w-Gd, T2w FLAIR) and perfu-
sion (DSC) information, and visually inspected by an
expert neuro-radiologist.

Fig. 13 shows these detections for one patient.
Modeling heterogeneous variances (heteroscedastic
model) reduces the false positive detections while pre-
serving the true detections. Finally, we compared the

sensitivity and specificity of the two models for dif-
ferent smoothing kernels, with Receiver-Operating-
Characteristics (ROC) curves, shown in fig 14.

Figure 13: Detections of perfusion abnormalities in a can-
cer patient. a) T1w-Gd map, black arrow indicates the
tumor site. b) ASL CBF estimate β̂n . c) Within-subject
standard deviation σ̂2

n . d) Ground truth hypo- (blue) and
hyper- (red) perfusions. Detections obtained with the ho-
moscedastic (e) and heteroscedastic (f) models.

Figure 14: ROC curves for perfusion abnormality detec-
tions with the homoscedastic and heteroscedastic models.
The average ROC curves across the studied smoothings
are plotted in plain line. Dotted lines are plotted one
standard deviation away from the average.

Take-Home Message

• The assumption of homoscedasticity is
violated in ASL studies

• Modeling heteroscedasticity is essential
in the detection of patient-specific per-
fusion abnormalities with ASL

Main Related Publications: [77, 71]
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A contrario Detection of Perfusion Abnormalities

Context Perfusion abnormalities are
promising biomarkers for a range of pathologies.
Since ASL is a quantitative imaging modalities, it
is a natural candidate to obtain such detection in
patient-specific studies. Inference at the patient level
is highly desirable in order to perform a diagnosis or
provide a personalized treatment. Furthermore, some
pathologies (such as brain tumors, stroke, or some
types of epilepsy) are intrinsically not well-suited to
perform group voxel-wise analyses, as the pattern of
spatial abnormalities is different for each patient. As
described in the previous section, in [77], we showed
that using a heteroscedastic GLM should be favored
in ASL studies on single patients. This has, for ex-
ample, been later applied in epileptic patients [17].

In neuroimaging, Gaussian smoothing is typically
applied on preprocessed data before computing the
GLM to compensate for small misregistrations, to re-
duce the effect of potential outliers and to insure that
the residuals follows a Gaussian random field [90].
While smoothing has demonstrated its usefulness,
its use can be problematic in some brain patholo-
gies where the co-localization of hypo- and hyper-
perfusions is common. For instance, in brain tumor,
ring-enhanced lesions present a pattern of abnormal
perfusion in which a central, hypo-perfused, necrosis
is surrounded by an enhanced, hyper-perfused, ring.

Contribution In [76], we presented a new
locally multivariate procedure to extract patterns of
abnormal perfusion in individual patients. This a
contrario approach uses a metric from the computer
vision community [36], suitable to detect abnormali-
ties even in the presence of nearby hypo- and hyper-
perfusions. This method takes into account local in-
formation without applying Gaussian smoothing to
the data. As shown in fig. 15, the a contrario proba-
bility estimation is based on a two-step procedure.

First, a voxel-wise background model is defined. In
our case, this model will come from a control popu-
lation. The standard univariate GLM, but on un-
smoothed data, can be used to produce the input
voxel-wise probability map of the a contrario .

Figure 15: General principles of the a contrario approach.

In the second step, in order to estimate locally mul-
tivariate probabilities, we start by choosing a parti-
tion of the image into sub-regions. In our case, since
the expected detections shape is unknown, the sub-
regions are arbitrary defined as spheres centered at
each voxel. A model to estimate the locally multi-
variate probability in a given region of interest from
the univariate voxel-based probabilities now needs to
be defined. This involves the notion of “rare events”.
By definition, a rare event occurs at voxel v if the
univariate probability (under the null hypothesis) to
observe such value, or a more extreme, is smaller than
a pre-defined threshold pPRE . The initial voxel-wise
probability map is thus thresholded to produce a bi-
nary map. Then, the number of rare events in a re-
gion r, l(r), is counted and the corresponding random
variable L(r) follows a distribution equal to a sum of
Bernoulli distributions with probability pPRE :

L(r) =
∑
v∈r

K(v) with K(v) ∼ Bern(pPRE)

The t-statistic used in massively univariate GLM,
is therefore replaced by a locally multivariate statistic
here: the number of rare events l(r) in a region r. To
be able to make inference, we must now determine the
distribution of the statistic l(r) under null hypothesis.

The original a contrario approach assumes spatial
independence of the residuals [36] and L(r) then fol-
lows a binomial distribution. However, spatial au-
tocorrelation of the residuals is a well-known phe-
nomenon in MRI (e.g. [110] for ASL), and cannot
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be disregarded. That is why, to estimate the prob-
ability of observing a given number of rare events
per sphere, we proposed in [76] a non-independent
probability, based on the joint distribution of a mul-
tivariate Gaussian, and introduced a corresponding
estimation method. Finally, the probability associ-
ated to each region is assigned to its center voxel v to
produce a voxel-wise probability map. This map can
then be thresholded, taking into account a multiple
comparisons correction, to obtain a detection map.

Validation and Results To evaluate the
impact of this new locally multivariate procedure, we
used again the 21 patients diagnosed with brain tu-
mors and the associated ground truth, described in
the previous section. To construct the "background"
model of normal perfusion, 60 controls subjects were
included. Our detections were compared to standard
GLM framework using seven different smoothing ker-
nels. The detections were estimated on each patient
individually, by comparing them to the control group,
and individual ROC curves were calculated. For a
global view of the results, the average ROC curves
are shown in fig. 16, for different sets of parameters.
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Figure 16: Average ROC curves, on 21 patients, for GLM
and different smoothing kernels and for the a contrario
approach and different sphere radii rd and p-values pPRE .

For illustration purposes, fig. 17 shows two repre-
sentative patients and compares the methods at fixed
false positive rate and true positive rate. The best set
of parameters identified for each patient were used.

Finally, we investigated the validity of the statisti-
cal models by GLM and by the a contrario approach.
To this aim, we checked the distribution of the p-
values under the null hypothesis, by studying the
control group by leave-one-out cross-validation (no
hypo- or hyper-perfusion is expected). Fig. 18 plots
the observed two-tailed probabilities against the ex-

Ground Truth GLM A contrario

Figure 17: Perfusion abnormalities detections in two pa-
tients with the GLM and a contrario approach using the
best parameter sets. Hyper-perfusions (red) and hypo-
perfusions (blue) are overlaid on the T1w-Gd map.

pected probabilities for the standard and the non-
independent a contrario approaches along with the
GLM. The proposed non-independent a contrario ap-
proach provides a distribution that is closer to the
theory than the standard a contrario and the GLM.
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Figure 18: QQ-plots of (a) a contrario region-based prob-
abilities, (b) GLM voxel-wise probabilities.

Take-Home Message

• The a contrario approach outperforms
the standard General Linear Model.

• Non-independent probabilities provide
more valid statistics in ASL analysis.

Main Related Publications: [72, 73, 76, 71]
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Impact of Acquisition Time in Resting-State ASL

Context Blood Oxygenation Level Depen-
dent (BOLD) fMRI is now a widely used imaging
technique to study cerebral activity. BOLD is how-
ever an indirect measure, and cerebral blood flow
changes resulting from neuronal activity are a closer
indication of brain function. Nevertheless, before the
introduction of ASL, they could only be measured by
invasive imaging techniques using exogenous contrast
agents. Allowing quantitative and non-invasive mea-
surement of CBF, ASL is therefore a good candidate
to be an alternative to BOLD.

In Resting State fMRI (rs-fMRI), no task is given
and the fluctuations of voxels time-series induced by
spontaneous neuronal activations are studied [16].
The similarities in neural activation patterns define
the functional connectivity of the brain, and show
that the underlying cerebral architecture is orga-
nized into functional specialized units, called net-
works. Resting-state functional imaging aims to iden-
tify functional networks of the brain and to describe
their interaction. As the resting state is not very
burdensome for the subjects, especially for children
and elderly people, but also for cognitive impaired
patients, rs-fMRI has found clinical applications in
the study of diseases and gained interest in the com-
munity in the last years.

Acquisition time is an important parameter in an
rs-fMRI study with strong practical consequences.
Most current rs-ASL studies use acquisitions of 8 to
13min duration. While the influence of acquisition
time in rs-BOLD has been investigated by several
authors, such as [18, 15, 5], in rs-ASL it had not yet
been explored.

Contribution In [107], we focused on as-
sessing the feasibility of ASL as an rs-fMRI method
and investigating the effect of acquisition time on the
estimation of individual functional networks. Seven
healthy subjects were scanned using a long pCASL
sequence: TR=3500ms, 420 acquired volumes, cor-
responding to a total acquisition time of 24min 30 s.
Each raw pCASL series was divided into 46 subseries
of different lengths, from 2min to the whole acquisi-

tion time, and the preprocessing was performed in-
dependently on each subseries.

Individual functional networks were estimated by
Seed Based Analysis (SBA), whose principle is to con-
struct areas with a homogeneous functional signal. A
region of interest, called seed, is defined. Then, with
a chosen similarity measure (linear correlation in our
case), the voxels whose signals are synchronized to
this seed are grouped together. Twenty seeds were
defined from single voxels spread across six expected
functional networks: Default Mode Network (DMN),
Sensori-motor, Language, Salience, Visual and Cere-
bellum. Each seed provides a linear correlation map
that was thresholded after statistical testing.

In order to assess the quality of the obtained net-
works, we relied on an atlas of seventeen resting-state
functional networks containing our six networks of
interest, the Multi-Subject Dictionary Learning atlas
(MSDL) [108]. Such an atlas will naturally not pro-
vide a high quality ground truth since it does not take
into account inter-individual variability for example.
In our case, however, our objective is to study the re-
lationship between acquisition time and the quality
of the networks obtained, and this atlas provides a
consistent measure.

Each detected network was then compared to the
atlas networks, using two measures: the Jaccard in-
dex and the area under ROC curve. The Jaccard in-
dex is a measure of overlap between two binary maps
A and B, defined as the size of the intersection di-
vided by the size of the union of the sample sets:

J(A,B) =
|A ∩B|
|A ∪B|

.

It is test-dependent: changing the risk or the mul-
tiple comparisons correction at the estimation step
will change the obtained network shape, modifying
Jaccard index. That is why, we also computed clas-
sical ROC curves and measured corresponding Areas
Under Curve.

Validation and Results We first checked
how the obtained networks corresponded to the ex-
pected networks, those where the used seed was
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placed. As shown in fig. 19, all the considered seeds
have their best scores with the expected reference,
and all six functional networks were considered suffi-
ciently well detected. Results with ROC curves will
not be shown here, but were always consistent.

Atlas ReferencesSeeds

0
0.

05
0.

1
0.

15
0.

2

DMN Motor Visual Salience Langu. Cereb.

DMN

Motor

Visual

Salience

Language

Cerebell.

Prefrontal
Left

Right
Posterior

Left
Right

Superior
Primary
Ventral

Dorsal Left
Posterior

Cingul. Ant.
Prefrontal L
Prefrontal R
Front. Gyr. L
Front. Gyr. R
Temp. Gyr. L
Temp. Gyr. R

Anterior
Posterior

Figure 19: Colormaps of median Jaccard indices for all
pairs of seeds and MSDL references. Green circles: suc-
cessful detections (Jaccard > 0.1).

Fig. 20 shows the evolution of the detected DMN
for one subject and one seed, according to the acquisi-
tion time. With a 2min long acquisition, the detected
map is mainly noise. From 4min to 12min, the false
positive noise has disappeared while the frontal com-
ponent of the DMN starts growing and the posterior
starts being detected. After 14min, DMN detection
is good and, more interestingly, stable. This plateau
is also reflected in the performance scores, and is ob-
served in every subject, as shown in fig. 21.

Figure 20: Evolution of Jaccard indices with respect to
acquisition time for a DMN estimation (blue) compared
to MSDL DMN (red), for one subject and one seed.

Figure 21: DMN: Jaccard indices evolution according to
acquisition time. Each color corresponds to a subject.
Blue line: local non-parametric regression (LOESS).

This phenomenon of quality stabilization after a
certain acquisition time is also observed for the other
networks studied. As shown in fig. 22, for all net-
works, a fast increasing score followed by a stabiliza-
tion stage can be observed on the LOESS curves. A
good compromise between score stabilization and ac-
quisition length seems to be reached around between
12min and 16min.
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Figure 22: Colormaps of Jaccard indices according to ac-
quisition time for all selected reference/seed pairs. Each
line corresponds to the computation of one LOESS curve.

Take-Home Message

• The estimated functional networks sta-
bilize after a certain acquisition time.

• For our set of sequence parameters, we
suggest 14min (240 volumes) as a good
compromise.

Main Related Publications: [106, 107, 105]
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Joint EEG-fMRI neurofeedback

Neurofeedback (NF) consists in presenting a subject with a stimulus directly related to his or her current
brain activity. It can be used to teach subjects to regulate their own brain functions by providing real-time
sensory feedback. NF is a rapidly growing field of research and has shown promise in treating a variety
of neural pathologies [14]. For example, after a stroke, motor recovery is generally quite limited after one
year [61]. Changes may have occurred, leading to significant functional reorganization of the motor network,
sometimes even in cortical areas distant from the focal lesion [50]. NF has the potential to induce adaptive
neural plasticity by selecting specific patterns and thus contribute to restore lost motor function [111, 118].

Although Electroencephalography (EEG) is currently the main modality used by NF clinical practitioners,
it lacks specificity due to its low spatial resolution. Research has therefore recently turned to other modalities
that more precisely target the activity of different brain regions. Thus, dynamic research into functional
fMRI-NF holds promise for the treatment of depression [120, 43], chronic pain and stroke [64, 119], as it
offers real-time imaging of activity in deep brain structures with high spatial resolution. However, the low
temporal resolution and high costs and constraints associated with operating fMRI-NF limit the development
of many applications. While promising, current NF technologies suffer from that antagonism between high
(fMRI) and low (EEG) burden solutions. The future belongs to hybrid answers that combine the best of
both approaches.

In the last years, the Empenn team led the Hemisfer1 project to develop a hybrid EEG-MRI neurofeedback
platform. Figure 23 shows the different steps of such an acquisition: the MRI-compatible EEG cap is
installed, the subject is then positionned in the MRI, and a screen displays the visual feedback.

1https://team.inria.fr/empenn/research/scientific-activities/hemisfer-projects/
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(a) (b) (c)

Figure 23: Reproduced from Mathis Fleury’s thesis: preparation of a simultaneous EEG-MRI-NF session with a 3T
MRI and a 64 electrodes EEG cap, at the Neurinfo imaging platform. (a) Installation of the EEG subsystem and
verification of impedance outside the MR environment, (b) Installation of the MR coil and rechecking of the EEG
impedance, (c) Placement of the amplifiers, battery and LCD screen to display the visual feedback.

Figure 24 describes the developed framework: during simultaneous EEG-MRI acquisition, a real-time
processing is computing two scores, one from EEG and the other from fMRI, depending on the targeted
cerebral area. These two scores are combined in a visual feedback presented to the subject, to potentially
reward him/her for having accomplished the desired task.

Production of 
« feedback »

Measuring brain 
function

Brain-state 
model 
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Data Processing
• Preprocessing 
• Real time data analysis
• Learn functional patterns

Figure 24: Hybrid EEG-MRI neurofeedback platform for stroke rehabilitation (Hemisfer project)
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Finally, figure 25 presents two bimodal neurofeedback metaphors, investigated in the Hemisfer project [88],
as well as two time series of the NF scores, computed in real-time. The main idea is to take advantage of
the characteristics of the two modalities, EEG and fMRI, which are very complementary, even if they do
not measure the same type of signal. Indeed, fMRI has an excellent spatial resolution, of the order of a
millimeter, and a lower temporal resolution, of the order of a second, whereas EEG has a high temporal
resolution (milliseconds), but a lower spatial resolution. The combined use of these two modalities for an
NF protocol had so far only been explored by another group, Zotev and colleagues [120].

Figure 25: Bimodal neurofeedback metaphors (1D on the left, 2D on the middle) displayed during neurofeedback
sessions [88]. 1D: the ball position represents the sum of the two neurofeedback scores, from EEG and from fMRI.
2D: the left and right axes represent respectively the EEG and fMRI scores. In both cases, the subject’s goal is to
bring the ball into the dark blue area. The two plots on the right show NF scores from EEG and from fMRI; green
areas are task and white areas are rest.

This ambitious project, in collaboration with the Hybrid and Panama Inria teams and involving clinicians,
aimed at taking full advantage of the NF paradigm in the context of rehabilitation and psychiatric disorders.
Functional and metabolic information from fMRI on the one hand and EEG on the other hand are combined
to enhance the NF protocol. The NF-EEG-MRI hybrid platform is now fully operational and two clinical
studies are underway or in preparation: on stroke and depression patients. This new multimodal procedure,
exploiting the qualities of each of the modalities involved, requires new data processing tools and opens the
door to very interesting methodological developments.

In the following sections, I will present some of our contributions in this area over the past few years:
electrodes detection during simultaneous EEG/fMRI acquisitions, multimodal EEG and fMRI source estima-
tion using sparse constraints, and a sparse EEG-informed fMRI model for hybrid EEG-fMRI neurofeedback
prediction. Each of them will be synthesized on a double page and the interested reader can refer to the
publications listed at the end of the pages for more details. The figures presented are generally extracted
from the above mentioned publications. These contributions are the result of two master internships I su-
pervised, Mathis Fleury and Caroline Pinte, and three postdoctoral researchers with whom I collaborated
with: Thomas Oberlin, Saman Noorzadeh and Claire Cury.
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Electrodes Detection During Simultaneous EEG/fMRI

Context As mentioned in the introduction,
electroencephalography (EEG) and functional MRI
(fMRI) are two complementary modalities that show
promise in the context of neurofeedback. Indeed,
fMRI has an excellent spatial resolution, in the order
of a millimeter, and a lower temporal resolution, in
the order of a second, while EEG has a high temporal
resolution (milliseconds), but a lower spatial resolu-
tion. In fact, source localization in EEG requires the
solving of an inverse problem that is sensitive to sev-
eral parameters [85], one of the main ones being the
forward head model used. Another important pa-
rameter for the inverse problem is the 3D position
of the electrodes on the scalp [3]. Indeed, the accu-
racy of the estimated coordinates of the EEG elec-
trodes impacts the localization of the EEG sources.
Position errors lead to inaccuracies in the estimation
of the EEG inverse solution [58]. This is an even
more important issue in our case, involving simul-
taneous EEG/fMRI acquisitions, where several ses-
sions and thus several EEG cap installations are re-
quired. Furthermore, in order to take full advantage
of these mixed acquisitions, the registration between
EEG and MRI data must be optimal. It is there-
fore essential to be able to obtain the EEG electrode
positions reliably and accurately.

In this context of simultaneous EEG-MRI acquisi-
tions, an external measurement instrument, MRI, is
available and seems natural. However, one difficulty
is that MRI-compatible EEG systems are specifically
designed to be as invisible as possible on most MRI
sequences to minimize the presence of magnetic arti-
facts. Methods requiring manual measurements [32]
or specific equipment [2, 112] have therefore been pro-
posed. More recent studies have proposed the use of
an Ultra-Short Echo-Time (UTE) sequence in which
the electrodes are more visible [22, 69]. This type of
recently proposed sequences [53, 57] allows to visu-
alize the tissues with a very short T2 and T2?, such
as cortical bone, tendons and ligaments, and has the
side effect of enabling the imaging of MR compatible
electrodes. The introduction of these new sequences
opens the door to new methods, more automatic and

more easily usable in the clinical routine. Indeed, no
additional equipment is required, and the additional
acquisition time is quite short, which does not over-
burden the corresponding EEG-fMRI studies.

Contribution We proposed two methods to
automatically detect the position of EEG electrodes
from a UTE MRI sequence. In the first work [40],
a segmentation step followed by a Hough transform
provided a set of candidate positions, then an EEG
cap model was registered on this set of detections to
select the right number of electrodes. As our number
of available data increased, we then replaced the first
step by a machine learning based one [89].

PETRAs
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Figure 26: Overview of the detection framework. Learn-
ing process (top), Deep learning-based prediction and
Registration-based refinement step (bottom).

Therefore, as illustrated in fig. 26, we proposed a
new two-fold approach based on a combination of
deep learning and template-based registration. In
fact, our method starts by training a model to detect
the position of the electrodes in a MRI volume. This
model is based on the U-Net neural network, a fully
convolutional neural network whose architecture al-
lows to obtain accurate segmentations [94]. As men-
tioned above, we use a type of UTE sequence: the
PETRA (Pointwise Encoding Time reduction with
Radial Acquisition) sequence [51], which is gradu-
ally becoming the new standard in applications of
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UTE sequences. An example of this type of images
is shown in fig. 27. The electrodes are only visible
on the PETRA. Finally, we use the Iterative Closest
Point (ICP) [13] algorithm to take into account the
geometrical constraints after the deep learning phase,
and to obtain labeling of the electrodes.

(a) (b) (c)

Figure 27: Example of images: (a) T1, (b) PETRA, (c)
Volume Rendering of the PETRA image.

To train our model and validate our method, a
ground truth was manually created for each PETRA
volume, in the form of labeled segmentation maps
with same dimension as PETRA images. The train-
ing dataset thus consists of 37 PETRA images, and
their associated ground truth and we used the 3D U-
Net [26] network. Once the model is trained, predic-
tions are made on the test dataset (23 new PETRA
volumes). To reinforce the strong geometrical a pri-
ori on the relative electrodes positions, we proposed
a second step improving the neural network predic-
tions. The main objectives are to force the number
of detections to be exactly equal to 65, and to cor-
rectly label the electrodes. As illustrated in fig. 28,
the n detections (n is not necessarily equal to 65) are
registered on an average EEG cap model, using the
ICP algorithm. This registered template is then used
to remove outliers and retrieve missing electrodes.
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Removal of duplicates 
and detections too far 
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ICP
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electrodes

Figure 28: Description of the ICP-based refinement step.

Validation and Results The robustness
brought by the ICP step allowed us to remove the
classical test-time augmentation phase, in order to
accelerate the prediction time of the neural network.
Finally, on our setup and for one PETRA volume,
the learned neural network provided its predictions

in about 2min, while the ICP-based refinement step
took place in a few seconds. The main detection re-
sults on the test dataset are provided in table 2. The
intermediate results of the neural network are also
shown, justifying the interest of the refinement step.

Deep learning
detection

Final
results

Position Error 6.78± 25.4 2.23±1.4
(mean ± std in mm)

PPV (%) 96.3 99.8

#Labeling Errors 3.2 (13) 0 (0)
mean (max)

Table 2: Row 1: mean and standard deviation values of
Position Error. Row 2: Positive Predictive Value. Row
3: Number of labeling errors among the true positives.

100% of the electrodes were correctly labeled in our
final results. As shown in the table, this was not the
case after the deep learning step. We cannot always
rely on the labeling of intermediate results. Indeed,
the number of labeling errors can be as many as 13 in
a volume. In fact, these observed errors often corre-
spond to a simple offset in labeling: an electrode is in-
correctly labeled and all its neighbors are then likely
to be contaminated by this error. We therefore de-
cided to disregard the labeling information provided
by the neural network and rely solely on the ICP
result for this. It may seem a bit odd to include la-
bels in the ground truth for the training step, since
we discard the resulting label afterwards. Neverthe-
less, our experiences have interestingly shown that
training a neural network with labeled ground truth
improves detection results (in term of position error)
compared to a situation where the ground truths are
simple binary maps. In particular, in the case where
65 different labels are provided during training, the
network is more likely to detect a number close to 65
also during the test phase.

Take-Home Message

• Ultra-short TE sequences allow to visu-
alize MRI-compatible EEG electrodes

• Our method uses deep learning and
ICP to give excellent detection results

Main Related Publications: [42, 40, 89]
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Multimodal EEG and fMRI Source Estimation

Context During neurofeedback sessions, the
real-time constraint prevents the reconstruction of
neural sources by solving the inverse problem asso-
ciated with the EEG data. However, an a posteriori
study of the localization of these sources would pro-
vide valuable information on the brain areas involved
in the neurofeedback task. As mentioned in the pre-
vious section, the localization of the active electric
sources from EEG requires solving an ill-posed in-
verse problem [109, 11]. One of the major challenges
in the context of simultaneous EEG-MRI acquisition
is therefore to take advantage of the good temporal
resolution of the EEG on the one hand, and the good
spatial resolution of the fMRI on the other hand.

These complementary strengths that these two
modalities can provide, have stimulated a variety
of studies [95]. These methods can be fMRI-
constrained, or EEG-informed, when models driven
on one modality act as the spatial (or temporal)
prior on the solutions of the other modality [20, 7].
EEG and fMRI can also be used in symmetrical ap-
proaches, so that the information fusion is based on
both data at the same time. Joint Independent Com-
ponent Analysis [81] or Bayesian approaches [35] can
be used to analyze both data in a joint space. Ac-
cording to the literature, the relation of neuronal ac-
tivity, hemodynamics, and fMRI is still unclear [66];
however, the existing methods model this relation-
ship based on the balloon model or neural mass mod-
els [6]. Although the integration of these two modali-
ties has been studied a lot, it is mainly validated only
on simulated data.

Contribution In [84, 83], we presented a
multimodal approach to estimate the brain neuronal
sources based on EEG and fMRI. Combining these
two modalities can lead to source estimations with
high spatio-temporal resolution. Our joint method is
based on a first step where each of the data modali-
ties are first modeled linearly based on the unknown
sources. Afterwards, they are integrated in a joint
framework which also add a constraint on the spar-
sity of sources.

As shown in fig. 29, in our model, the EEG and

fMRI signals, E and B, are linearly related to a ma-
trix S of spatio-temporal sources, which we want to
estimate. S has l rows and te columns, where l is
the number of sources (space) and te the number of
EEG samples (time). Classically each models relies
on a matrix modeling the generation of each signal:
the j × l leadfield matrix, G, where j is the number
of electrodes, and the H matrix, containing shifted
versions of the hemodynamic response.
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Figure 29: EEG and fMRI signal modeling. Our objective
is to estimate S, the matrix of spatio-temporal sources at
the origin of the two signals.

For each of this model, an underdetermined inverse
problem must be solved to estimate S. The EEG
inverse problem is ill-posed because EEG has much
fewer channels than the number of sources (l � j).
The fMRI is also ill-posed, this time because the sam-
pling time is much less than the target temporal res-
olution of the source. We proposed a joint frame-
work, combining the two inverse problems, to take
advantage of the characteristics of each signal. In
our joint modeling, a sparsity constraint is imposed
on the source, via the L1 norm (in [84], other penalty
terms are investigated on simulated data). Finally,
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the sources can be estimated as:

Ŝ = argmin
S

{
α
∥∥GS−E

∥∥2
2
+ (1−α)

∥∥SH−B∥∥2
2

+ λ
∥∥S∥∥

1

}
. (3)

α ∈ [0, 1] is a parameter adjusting the relative im-
portance of EEG and fMRI in the source estimation.
λ is a positive parameter weighting the sparsity con-
straint against the data-fidelity terms. Eq. (3) can
be solved using a proximal algorithm such as the it-
erative soft thresholding [10]. The two data-fidelity
terms have no reason to be of the same order of mag-
nitude, so the α parameter can be difficult to adjust.
In [83], we proposed a preliminary calibration step to
normalized each term based on unimodal data.

Validation and Results After validation
on simulated data, we recorded simultaneous EEG
and fMRI from 8 healthy subjects while doing a mo-
tor task of repeatedly clenching the right hand. The
quality of a sources estimation was therefore evalu-
ated by measuring the power of these sources in the
left motor cortex, relative to the power in the rest
of the brain. Fig 30 illustrates the effect of the pro-
posed calibration step. Interestingly, after normaliz-
ing each data-fidelity term, the optimal α is not far
from 0.5, which corresponds to an equal contribution
from EEG and fMRI.
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Figure 30: Performance scores for different parameter val-
ues, α and λ, without and with the calibration step in-
troduced in [83].

Fig. 31 compares the estimated activations in the
left and right motor cortex for the proposed method
and for unimodal estimations (α = 0 and α = 1).
The observed difference is bigger in the joint recon-
struction, suggesting an activation pattern more con-
sistent with the task performed.

The spatial result for a subject is illustrated in
fig. 32. The fMRI-based method shows increased
activity in the left motor cortex and precise local-
ization of active areas (SMA and M1), whereas EEG
detected activity in the SMA but not in the left motor

(a) fMRI only (b) EEG only

(c) joint EEG-fMRI

Figure 31: Box plots over eight subjects of the activations
power in the union of the premotor and primary motor
regions in both hemispheres, while right-hand motor task.

cortex. Furthermore, in both of these unimodal re-
sults, activations were detected in areas not involved
in the task. The multimodal approach seems capa-
ble of avoiding the false positives of the unimodal
approaches, and has detected high activities in both
SMA and M1.

(a) fMRI only (b) EEG only

M1

SMA

(c) Joint EEG-fMRI

Figure 32: Estimated location of sources. Blue zones:
active sources shown according to their power score. Red
circles: Unexpected detections of activation.

Take-Home Message

• Sparsity constraint helps to solve ill-
posed EEG/BOLD inverse problems.

• Symmetric EEG-fMRI joint recon-
struction improves the source localiza-
tion, even with a simple linear model.

• The temporal reconstruction has not
yet been validated.

Main Related Publications: [84, 83]
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Prediction of Multimodal Neurofeedback Scores from EEG

Context As mentioned earlier, using simul-
taneously fMRI and EEG for multimodal neurofeed-
back sessions is very promising to design brain reha-
bilitation protocols. Indeed, offering real-time imag-
ing of activity in deep brain structures with high spa-
tial resolution, fMRI brings real added values to NF
protocols. However using fMRI is costly, exhaust-
ing and time consuming, and cannot be repeated too
many times for the same subject. For example, and
for these reasons, the experimental protocol devel-
oped within the Hemisfer project for the rehabilita-
tion of stroke patients alternates EEG-fMRI neuro-
feedback sessions and EEG sessions alone.

During the past few years, simultaneous EEG-
fMRI recording has been used to understand the links
between EEG and fMRI in different states of brain
activity and has received recognition as a promis-
ing multimodal measurement of brain activity [1, 88].
Both modalities are sensitive to different aspects of
brain activity with different speeds. EEG provides a
direct measure of the changes in electrical potential
occurring in the brain in real time, while fMRI indi-
rectly estimates brain activity by measuring changes
in the BOLD signal, reflecting neuro-vascular activ-
ity, which occurs, in general, a few seconds after a
neural event [45, 66]. Several studies have investi-
gated correlations between EEG signal and BOLD
activity in specific and simple tasks [33, 97, 68] and
have found different relationships of certain frequency
bands of the EEG signal. All those studies reveal the
existence of a link between EEG and fMRI, but this
relationship varies considerably with the task, loca-
tion in the brain, and frequency bands considered.

Contribution In our context of multimodal
EEG-fMRI neurofeedback, building on these unique
data, we are interested in enriching the neurofeed-
back stimuli presented to patients in EEG-only ses-
sions using a model learned in the mixed sessions.
The original contribution of [29] concerns the pre-
diction of multimodal NF scores from EEG record-
ings only, using a training phase where both EEG
and fMRI synchronous signals, and therefore neuro-

feedback scores, are available. Fig. 33 describes the
general framework of the method.

Simultaneous EEG-fMRI Neurofeedback

EEG Features Extraction

EEG NF+fMRI NF

fMRI Features Extraction

LEARNING TEST
MODEL

Figure 33: Description of the proposed framework to im-
prove the EEG-only neurofeedback sessions by learning a
model during EEG-fMRI sessions.

First, to extract relevant information from EEG
data, a design matrix X0(t) ∈ RE×B is built, for each
time t. E is the number of electrodes and B a number
of frequency bands (10 bands between 8Hz and 30Hz,
3Hz wide with an overlap of 1Hz). X0(t) contains
a frequency decomposition of the past 2 s of the raw
EEG signal. There is no linear relationship between
the BOLD signal and the average power on frequency
bands from the EEG signal. Therefore, to better
match NF scores, we decided to apply a non-linear
function to X0, classically used in fMRI to model
BOLD signals [63], the canonical Hemodynamic Re-
sponse Function (HRF). X0 is convolved on its tem-
poral dimension with different HRF corresponding to
different delays. Finally three new design matrices,
X3 , X4 , and X5 are obtained, with respectively
peak locations of 3, 4, and 5 s. These design matrices
are then concatenated: Xc =

[
X0,X3,X4,Xt

]
.

During the training phase, corresponding to simul-
taneous EEG-fMRI acquisitions, reference fMRI neu-
rofeedback scores yf (t) are available. The objective
of the training is therefore to estimate an α such that

yf (t) ≈ 〈Xc(t),α〉 =
4E∑
i=1

B∑
j=1

Xi,jαi,j .

α can then be estimated by solving the following op-
timization problem:

α̂=argmin
α

[
T∑
t=1

1

2

(
yf (t)−〈Xc(t),α〉

)2
+φ(α)

]
(4)
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where φ is a regularization constraint on α, used to
incorporate our a priori on the activation pattern of
the NF-predictor. It has to: (i) be spatially sparse
to regulate the model, as EEG signals are noisy, and
to select the most relevant electrodes on each fre-
quency bands; (ii) be smooth across different over-
lapped frequency bands; (iii) allow non-relevant fre-
quency bands to be null. For all theses reasons, we
choose to use a L2,1 mixed norm (conditions i and
ii) followed by a L1-norm (condition iii), according
to the idea in [49].

φ(α) = λ‖α‖2,1 + ρ‖α‖1

= λ
∑
m

√∑
b

α2
m,b + ρ

∑
m,b

|αm,b|

Eq. (4) can be solved using the Fast Iterative
Shrinkage Thresholding Algorithm (FISTA) [10], and
we introduced a cross-validation-based process to de-
termine the important λ parameter (ρ is fixed and
constant across subjects and sessions).

Validation and Results To test and vali-
date our training framework, we used the data of 17
healthy subjects, scanned during simultaneous EEG-
fMRI neurofeedback acquisition [65]2. They all un-
derwent three NF motor imagery sessions of 320 s
each, and the multimodal NF score was recorded:
EEG score, ye, was computed from the Laplacian op-
erator centered around the motor region, and fMRI
score, yf was computed from the maximal intensity
of BOLD signal covering the right-hand motor area
and the Supplementary Motor Area (SMA).

For each subject, we considered one session as a
learning set, and the two others as testing sets. Thus,
one modelα was learned per subject. Fig. 34 presents
the correlation between our prediction and the orig-
inal scores. As can be seen on the left of the figure,
on the training set, it is possible to predict the fMRI
score using only the EEG signal, with good correla-
tion. During the testing, it can be noted that the bi-
modal score constructed using our prediction is more
correlated to the ground truth bimodal score, than
the EEG score alone. In fig. 35, examples of such
scores are represented as time-series.

Finally, a strength of our model is the interpretabil-
ity of the α obtained. Its sparsity and activation pat-
terns can be studied and displayed (not shown here),
2Data available here: https://openneuro.org/datasets/ds002338

TESTING SETLEARNING SET REFERENCE NF SCORES

𝑦! vs 𝑦" + 𝑦"𝜶𝒇$

𝑦! vs 𝑦" 	
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𝑦! = NF-EEG
𝑦" = NF-fMRI
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NF-fMRI
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Figure 34: Pearson Correlation: in cyan, between our
prediction of the fMRI score and the original one; in red
between the original bimodal score and the predicted one.

𝒚𝒆 vs "𝒚"𝜶𝒆 : r = 0.8𝒚𝒄 vs 𝒚𝐞 + "𝒚"𝜶𝒇 : r = 0.85  

𝒚𝒇 vs "𝒚"𝜶𝒇 : r = 0.64

Figure 35: Examples of NF scores. The x-axis is the
temporal axis. Vertical bands indicate the rest and task
blocks. r is the correlation coefficient between each pair
of time-series NF scores. (Top) correlation between the
original bimodal score and our reconstructed one. (Bot-
tom) Correlation between our predicted fMRI score and
the original one.

indicating on which electrodes the learned model is
mainly based to predict the fMRI score.

Take-Home Message

• fMRI neurofeedback score can be pre-
dicted using EEG signal only

• Promising results for clinical applica-
tion: enhancing EEG-only sessions

Main Related Publications: [30, 28, 29]

https://openneuro.org/datasets/ds002338
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Conclusions and Perspectives

In this manuscript I have tried to present the two facets of my interdisciplinary work with methods from
applied mathematics and computer science and an application theme, related to the study of the brain in
operation. I presented our main contributions on the topics of ASL perfusion imaging and hybrid EEG-
fMRI neurofeedback. We have first introduced new image processing methods to improve the quality of
images obtained from ASL acquisitions, but also original analysis methods of these images, in order to ease
their use in a clinical setting. Indeed, individual studies, which allow conclusions to be drawn at the level
of a single subject, are of increasing interest. Then, in the pioneering context of multimodal EEG-fMRI
neurofeedback, we developed innovative and promising methodological frameworks, opening the door to
improved neurofeedback brain rehabilitation, as well as to a better understanding of the links between the
two modalities involved.

Many perspectives have been opened up on various themes, which I will address in a non-exhaustive
manner in the following sections.

29
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3.1 Arterial Spin Labeling Images Processing and Analysis

With the ASL acquisition technique now beginning to be well established and some degree of sequence
homogenization having occurred, it is my belief that it is now time to look at more advanced applications
of this quantitative perfusion information. I will list below some of the research directions that I believe are
relevant, from the shortest to the longest term.

3.1.1 Multiparametric estimation

Cerebral Blood Flow (CBF) is not the only parameter of interest quantifiable with ASL. One other example
is Arterial Transit Time (ATT), which provides information on the time it takes for blood to reach a given
area of the brain. Several works have proposed to use specific sequences to estimate both CBF and ATT,
often by varying the parameter TI (inversion time), thus allowing the classical Buxton model [23] to be
fitted to estimate these parameters, see for example [47, 55]. More recent works [115, 114] have investigated
the optimization of ASL MRI experiments. Interestingly, they demonstrated that a sequential multi-Post
Labeling Delay (PLD) pseudo-continuous ASL protocol can be objectively optimized to maintain higher
CBF accuracy across a wider range of ATTs than a single-PLD or evenly spaced multi-PLD protocol. An
interesting question will be for example to seek, for a given acquisition time, the best compromise between
the number of repetitions at a certain TI and the number of different TIs acquired. In [116], we started to
look into that question (see figure 36), but a more thorough investigation is needed, for example using the
powerful compressed sensing framework, as the acquisition at different TIs can be interpreted as a sampling
scheme of the perfusion model.

On the other hand, the super-resolution method presented previously could also be used to generate high-
resolution atlases of brain perfusion related parameters, such as CBF and ATT. We can imagine for example
to introduce a non-local patch based a priori in the resolution of the kinetic model. As a matter of fact,
current recommendations are generally to acquire a well resolved single-TI ASL series, and a low resolution
multi-TI series to generate ATT maps [31]. However, the improvement of acquisition sequences combined
with the application of a super-resolution algorithm, opens the door to the possibility of reconstructing
more detailed images, which can provide information on a localized decrease or slowing of perfusion, not
necessarily related to a global vascular territory. In addition, the generation of well-detailed ATT maps
has the potential to allow the segmentation of these vascular territories, thus avoiding the need for specific
sequence acquisitions. Indeed, in normal brains, the boundaries between different vascular territories have
a longer ATT than their center. [38].

3.1.2 Functional connectivity estimation

Following our preliminary work on resting state ASL, the next step will naturally be to study the functional
connectivity associated with the ASL data and to compare it with the connectivity obtained by the BOLD.
In the medium term, an objective will be to provide new features and enhanced parametric maps of brain
perfusion and mental state connectivity at rest, and to develop new analytical models of dynamic regional
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Figure 36: From [116]: (a) Example of the general kinetic model with labeling duration ∆t = 1 s, Arterial Transit
Time, ATT=1 s and CBF= 10mL/(100g)/min (dark solid curve) and its noisy version with average SNR 5dB (grey
dashed curve). (b) Quality of CBF estimations: comparison between Mono-TI and Multi-TI (10 different TIs)
methods for different actual ATT values. With mono-TI acquisition, as expected, the best CBF estimation is achieved
when TI ≈ ATT+ ∆t. On the other hand, as soon as TI > ATT+ ∆t, CBF starts to be severely underestimated. In
contrast, multi-TI sampling provides stable quality.

perfusion. These advanced perfusion-derived functional models can be matched to structural models of
connectomics features in order to infer indices of dynamic brain local perfusion from normal and pathological
populations. From these maps, statistical descriptors can be derived to represent significant differences
between groups of individuals. Furthermore, and as I will detail in the next section, these connectivity models
could very well contribute to enrich a neurofeedback protocol, by defining more individualized rehabilitation
targets.

3.1.3 Pediatric applications

In the longer term and in a more ambitious perspective, the consolidation of the foundations of ASL should
open up a field of application in children, especially thanks to its non-invasiveness. In fact, the feasibility
of ASL is beginning to be demonstrated for preterm and full-term infants [34], and has been the subject of
several studies in the team [92, 24, 93, 91]. Therefore, we hope to extend these technical and methodological
advances to even more challenging domains such as neonates and antenatal neurodevelopment. Although
the link between cerebral blood flow and brain growth is not yet fully understood, one can make several
hypotheses. As a matter of fact, some recent works [99] highlight a novel mode of neuronal migration that
uses blood vessels as scaffolds. According to these studies, "astrocyte–vessel interaction is crucial during
postnatal neuroblast migration" and this so-called "vasophilic migration plays also a role in recovery after
stroke". In the same line, prenatal exposure to intermittent hypoxia (a condition where the tissues are not
oxygenated adequately) has been shown [117] to delay neuronal migration which can cause abnormalities
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in the brain growth. Introducing blood flow information in a biophysically based computational model of
human brain growth, such as in [103], illustrated in figure 37, thus seems to be an interesting and promising
research direction. A natural idea would be to locally adapt the overall brain growth factor to take into
account the regional variation in cerebral blood flow. A region presenting an abnormal hypoperfusion will
for example be growing slower than other normally perfused regions.

Figure 37: Reproduced from [103]: A simulation starting from a smooth fetal brain shows gyrification as a result
of uniform tangential expansion of the cortical layer. The brain is modeled as a soft elastic solid and a relative
tangential expansion is imposed on the cortical layer as shown at left, and the system allowed to relax to its elastic
equilibrium.
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3.2 Portable and Personalized Neuro-Rehabilitation with Multi-
modal Neurofeedback

As mentioned, NF has shown promise in the treatment of a variety of neural pathologies, and multimodal
EEG-fMRI NF can leverage both modalities to improve the quality of feedback and thus, potentially, the
induced rehabilitation. Nevertheless, fMRI is a cumbersome and expensive modality, making it difficult to
design personalized protocols. Recent developments in acquisition modalities and methodology open the
door to more portable and personalized NF for easier and more efficient use in the clinic.

3.2.1 Personalized neurofeedback based on brain connectivity and graph signal
processing

Brain connectivity studies the connections between different regions of the brain. Brain graphs or networks
are powerful tools to model brain function or structure and have known an increasing success in neuroscience
and related fields [9]. Under the natural assumption that functional brain information is related to the
topology of the associated structural connectivity graph, Graph Signal Processing [101] is a research area
that associates signals (i.e. brain activity) to an underlying brain network [19]. In the context of NF, we
hypothesize that the study and modeling of brain networks will allow us to better understand the impact
of NF-based rehabilitation and to better adapt them to the individual specificity of the brain architecture.
The questions I would therefore like to address in the future are the following: Does the rehabilitation of
stroke patients lead to a spatial reorganization of functional brain networks? How does this reorganization
affect the improvement of clinical signs? Once this reorganization is better understood, how can it be taken
into account to propose new NF protocols in order to better adapt them to each patient?

First, we could take advantage of the valuable data acquired within the Hemisfer project on stroke patients
(5 EEG-fMRI NF sessions, 4 EEG-only sessions, over 5 weeks). Patients have preserved Cortico-Spinal Tract
(CST), an ideal case for a first connectivity study of motor impaired patients, as the lesion did not severely
impaired the CST, leaving more room for local changes in brain functional connectivity. A natural first step
would be for example to assess the changes induced by NF training on the organization of functional brain
networks (by comparing the connectivity properties at the beginning and at the end of the NF protocol).

Based on these results, the goal would then be to identify novel NF targets that better correlate with
successful rehabilitation outcomes (connectivity biomarkers). A key step in an NF protocol is to properly
define and estimate a rehabilitation target according to which the intensity of the stimulus presented to
the subject will be calculated. Most of NF literature assesses treatment effects focusing on behavioral
outcomes and successful activation of targeted cortical regions. However, given the crucial role of large-
scale networks reorganization for rehabilitation, it is now believed that assessment of brain connectivity is
central to predict treatment response and to individualize rehabilitation therapies [8, 46]. Moreover, if NF
protocols training connectivity strength between two specific brain regions have been designed [60], to the
best of our knowledge, never a NF target based on individual structural connectivity has been proposed. An
ambitious objective will thus be to propose new targets based on individual connectivity networks by using
brain activity signals measured with EEG and functional MRI (BOLD or ASL), associated to individual
structural networks estimated with diffusion imaging within the Graph Signal Processing framework.
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3.2.2 Towards a more portable neurofeedback

Learning from multimodal EEG-fMRI neurofeedback sessions to enhance EEG-only sessions

Simultaneous EEG-fMRI provides more specific NF training [87]. However the use of the MRI scanner is
more costly and less comfortable for patients as compared to EEG-only NF sessions. The methodological
model presented above for learning information from mixed EEG-fMRI neurofeedback sessions to enrich
EEG-only sessions is a first step towards more portable enhanced NF protocols. However, it now needs to
be tested in a real-life situation. As a matter of fact, given the improved correlation of the proposed NF
predictor with bimodal NF scores, it would be interesting to validate its improved performance in actual
NF sessions compared to classical NF-EEG scores. In particular, to assess the response of subjects to the
predicted bi-modal NF scores and especially the predicted NF-fMRI scores learned by the proposed model
over a standard NF-EEG neurofeedback session, a new and large enough study is needed, as subjects can
learn at different paces to regulate their own brain activity.

In addition, the final objective of this project is to learn from EEG-fMRI NF sessions in order to provide,
outside the MRI scanner, improved NF-EEG sessions, whereas the current model has only been validated
on EEG data acquired during simultaneous sessions (in order to have a ground truth). Future work will
have to investigate the portability of the model learned on EEG-fMRI neurofeedback data, outside the MRI
scanner, introducing new challenges, such as dealing with a different number of electrodes and the absence
of ground truth once the EEG is measured outside the MRI scanner.

Functional near-infrared spectroscopy as an alternative to fMRI ?

The feasibility of using functional Near-Infrared Spectroscopy (fNIRS) in NF has recently been shown [39].
fNIRS is a noninvasive and portable optical neuroimaging technique that can detect changes in hemoglobin
concentration associated with neural activity, similarly as with fMRI. Compared to fMRI and EEG, as
illustrated in figure 38, fNIRS has both advantages and disadvantages. It offers better spatial resolution
(between 2 and 3 cm) than EEG and potentially higher temporal resolution than fMRI, due to a higher
sampling rate [59]. The practicality of the fNIRS is a major advantage over fMRI: it is easier to use, portable,
safe, almost silent, and inexpensive. In addition, fNIRS acquisitions are less sensitive to head movements
than EEG and fMRI. This makes it possible to use in more natural environments, for example by interacting
with the subject. Furthermore, it allows the study of more specific populations for which fMRI acquisitions
could be more complicated (e.g. stroke patients).

fNIRS is used to determine surface brain activities and can be easily coupled to an EEG cap to provide
a portable EEG-fNIRS NF. Due to limitations in the power of light emitters, fNIRS cannot indeed be used
to measure deep cortical activity, and has a lower spatial resolution than fMRI. This limits its use for NF
protocols targeting the amygdala, such as in some psychiatric applications. Nevertheless, its high portability,
as well as its compatibility with the EEG, make it an extremely promising modality for NF protocols targeting
motor areas for example. Some recent studies [70, 56] have compared the use of fNIRS to EEG in the context
of NF and have shown that the two modalities, although consistent, have different and complementary
properties. This confirms our conclusions on the bimodal NF EEG-fMRI concerning the interest of combining
the two measures of cortical activity: the electrophysiological and the hemodynamic responses. To the best
of our knowledge, simultaneous EEG-fNIRS NF has never been investigated. Therefore, and always with the
idea of lightening these rehabilitation protocols, the contribution of this new modality should be investigating
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Figure 38: Characteristics of three modalities that can be used for neurofeedback: EEG, fNIRS, and fMRI. fNIRS
and fMRI measure the hemodynamic response. fNIRS is a relatively “light” technique and appears to be a good
compromise between the good temporal resolution of the EEG and its poorer spatial resolution on the one hand, and
the good spatial resolution of fMRI and its poorer temporal resolution on the other.

to propose an EEG-fNIRS NF and compare it to the enhanced EEG-NF setting previously mentioned. As
fNIRS shares some properties with fMRI, the integration of this new modality to EEG definitely has the
potential to enable a portable and more specific NF training for patients.

Towards New Multisensory Neurofeedback

Current NF training usually provides basic visual feedback. Yet, the feedback is known to play a major
role in NF or brain-computer interfaces [86, 67]. The feedback informs the user about the quality of his
performance in real time to help him control his or her brain activity. Carefully selected feedbacks can
reduce the time required by the user to learn to control the system and their own brain activity. In order to
further develop NF protocols that can target a specific region or network, we can imagine to propose new
NF feedbacks that will involve multisensory stimuli (e.g. visual, haptic, auditory). These feedbacks can be
designed to activate brain regions specific to the considered pathology according in a rehabilitation scenario.

Our team already has experience in using a MR compatible vibrator for haptic stimulation of stroke
patients [62]. As shown in figure 39, our group has also recently investigated the influence of virtual
reality visual feedback on the illusion of movement induced by tendon vibration of the wrist in healthy
participants [44, 41]. Indeed, haptic interfaces have the potential to improve performance and increase the
pertinence of the feedback provided, particularly in the context of motor rehabilitation. The first results are
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Figure 39: Description of the experimental prototype platform, developed by the Empenn and Hybrid teams and
used in [44]. a-b) Set-up of the vibrator. A black curtain covered the forearm of the participant. c-d-e) Visualization
of the three virtual visual conditions (respectively Moving, Hidden, Static condition).

promising and demonstrate the impact that these new multisensory neurofeedback methods could have in
improving stroke rehabilitation. However, how to use these visuo-haptic systems, individually or in combi-
nation with other modalities, remains an open question that has not been thoroughly addressed by other
groups.

To develop a methodological and experimental framework for implementing haptic-based NF, several ques-
tions remain thus open: 1) the mapping of NF information on the various available modalities, i.e., qualifying
which NF features should be sent to which sensory modality and when, and 2) the adaptation/personal-
ization of the sensory feedback depending for instance on the evolution of participant’s results and/or on
his/her personal characteristics (preference, personality traits, disability properties, etc).
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ASL Arterial Spin Labeling. 7–18, 31–33, 36

ATT Arterial Transit Time. 7, 8, 32, 33

BOLD Blood Oxygenation Level Dependent. 18, 27–29, 33, 36

CBF Cerebral Blood Flow. 7, 8, 10–15, 18, 32, 33

CST Cortico-Spinal Tract. 35

DMN Default Mode Network. 18, 19

DSC Dynamic Susceptibility weighted Contrast. 11, 13, 15

EEG Electroencephalography. 1, 21–29, 31, 35–37

fMRI functional Magnetic Resonance Imaging. 1, 14, 18, 21–24, 26–29, 31, 35–37

fNIRS functional Near-Infrared Spectroscopy. 36, 37

GLM General Linear Model. 14, 16, 17

HR High Resolution. 12, 13

HRF Hemodynamic Response Function. 28

ICP Iterative Closest Point. 25

M1 Primary Motor Cortex. 27

MRI Magnetic Resonance Imaging. 7

NF Neurofeedback. 21–23, 28, 29, 35–37

PASL Pulsed ASL. 13, 15

pCASL pseudo-Continuous ASL. 13, 18
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PETRA Pointwise Encoding Time reduction with Radial Acquisition. 24, 25

PLD Post Labeling Delay. 32

RMSE Root-Mean-Square error. 13

ROC Receiver-Operating-Characteristics. 15, 17–19

rs-ASL Resting State ASL. 18

rs-fMRI Resting State fMRI. 18

SBA Seed Based Analysis. 18

SMA Supplementary Motor Area. 27, 29

SNR Signal-to-Noise Ratio. 10, 12, 14, 33

SR Super Resolution. 12, 13

TI Inversion Time. 8, 9, 32, 33

UTE Ultra-Short Echo-Time. 24, 25
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