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1.1 Foreword

My research activity in the past years has been focused on several topics all linked
to better understanding the brain architecture and neurological diseases, and ulti-
mately help with patient care. To keep it readable, this manuscript however had
to leave out part of my research that has been carried out since the beginning of
my career, particularly long running topics such as atlas construction, image seg-
mentation and segmentation validation. These topics lead to great collaborations
and several publications particularly with the Asclepios team (Liliane Ramus and
Grégoire Malandain on multi-atlas segmentation) and the Computational Radiol-
ogy Laboratory1 at Children’s Hospital Boston, emphasized by an Inria associate
team from 2011 to 2017. In addition, these topics lead to new methods for pedi-
atric longitudinal brain analysis [Legouhy et al. 2018], for Multiple Sclerosis (MS)
lesions segmentation [Karpate et al. 2015, Galassi et al. 2018] and the recent orga-
nization of a challenge workshop at the MICCAI 2016 conference on MS lesions
segmentation [Commowick et al. 2018].

I chose to focus this document on the research we (I and all PhD students,
post-docs, interns and researchers I had the chance to work with) conducted on
quantitative medical imaging to go towards a better understanding of neurodegen-
erative diseases and patient care adaptation and follow-up.

1http://www.crl.med.harvard.edu

http://www.crl.med.harvard.edu
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1.2 Quantitative images for disease understanding

In the field of disease diagnosis, Magnetic Resonance Imaging (MRI) has been play-
ing for a long time a major role to provide a precise, yet non invasive, evaluation
of the patient disease status. It is now used for many diseases and is a major tool
for clinicians. Among other examples, stroke is one of the earliest conditions to
have greatly benefitted from MRI [Chalela et al. 2007, Warach et al. 1995]: with
a combination of structural and very simple Diffusion Weighted (DW) scans, it
enables the separation of patients among the different treatments available (medica-
tion or thrombectomy). Another example is epilepsy [Kuzniecky et al. 1991] where
MRI allows the detection of foci responsible for seizures enabling their removal by
surgery. MRI is also useful for evaluating brain tumors where many studies have
been performed [Gordillo et al. 2013] especially enabling the precise segmentation
of tumors to remove them by surgery, treat them by radiotherapy or model their
evolution. Finally, a class of diseases of interest in this manuscript is the class re-
grouping neurodegenerative diseases. Two emblematic ones are Alzheimer’s disease
and MS. Both diseases are still not fully understood and patient follow-up is key to
the evaluation of the disease aggressiveness. For those diseases, MRI evaluation has
become a crucial marker. In Alzheimer’s disease, many studies have established a
link between cortical thickness or general atrophy seen from MRI and the patient’s
status [Frisoni et al. 2010]. For MS, MRI has even become so crucial that it is part
of the diagnosis criteria of the disease [Thompson et al. 2018].

MRI however lacks specificity in its findings, i.e. it is well able to distinguish
lesions or abnormalities but not to tell their specificities (tissue destruction level,
etc.). For this reason, more research has been conducted to develop new, more
specific, MRI sequences able to quantify the brain microstructure and its alteration:
quantitative MRI techniques. Those sequences, although requiring the development
of algorithms to extract relevant information, are very promising for better pathology
characterization. I will quickly discuss as a starter the case of MS showing how these
modalities have the potential to help the diagnosis and patient evaluation.

1.2.1 An example: multiple sclerosis and MRI

Multiple Sclerosis (MS) is an immune-mediated inflammatory disease of the central
nervous system affecting more than 100,000 persons in France. It causes progressive
myelin destruction and axonal loss (illustrated in Fig. 1.1.a) leading to increasing
handicap for the patient, including walking and cognitive impairment. The disease
course of MS is very variable between patients [Leray et al. 2010] (see Fig. 1.1.b
and 1.1.c) and its exact causes remain largely unknown, advocating the development
of imaging techniques for a better disease understanding. As mentioned above, this
has already lead to great advances using MRI to provide clinicians with 1- clearly
defined criteria for disease diagnosis [Thompson et al. 2018], and 2- automatic image
segmentation techniques [Danelakis et al. 2018] to count the number of lesions, their
volume and evolution in time, all meaningful to evaluate the disease.



1.2. Quantitative images for disease understanding 3

(a) (b)

(c)

Figure 1.1: Illustration of the axon and myelin degeneration process (a) occurring in
MS, leading to increased handicap on the Expanded Disability Status Scale (EDSS).
The variability of this evolution is illustrated in (b,c).

The link between observations made on conventional MRI modalities such as
FLAIR, T1-weighted or T2-weighted images and the disease status is unclear. This
absence of correlation between clinical observations and MRI based observations
has been denoted as the clinical-radiological paradox [Guttmann et al. 1995]. In
particular, predicting from the beginning of the disease in which group a patient will
be (on Fig. 1.1.c), is very difficult. Such an information would however be crucial
to adapt the patient treatment, for example using stronger disease modifying drugs
for patients at risk of a fast disease evolution.

The recent development of quantitative images in MRI offer great promises
towards solving this problem. Their main difference compared to so-called con-
ventional images is that they allow the quantification of some of the microstruc-
ture parameters i.e. specific, interpretable, properties of the underlying tissues.
For example, Diffusion MRI (dMRI) quantifies the diffusion of water in multi-
ple compartments (each related to a tissue type) and thus indirectly the mi-
crostructure of the white matter fiber bundles (axonal properties, fiber cross-
ings) [Panagiotaki et al. 2012, Filippi et al. 2001]. Relaxometry measures MR spe-
cific relaxation times (T1, T2) [Tofts 2004] in multiple compartments and allows
for the computation of a key component for MS: the proportion of myelin in each
voxel [Prasloski et al. 2012]. In addition to these multi-compartment modalities,
Magnetization Transfer Ratio (MTR) [Filippi & Agosta 2007] characterizes changes
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particularly linked to inflammation. Put together, these images could lead to un-
precedented advances in the understanding of lesions specificities, their respective
positions with respect to major fiber bundles and how they modify them, and help
solving the clinical-radiological paradox. Moreover, researching on those images and
how to process them could have great implications for many brain diseases.

1.3 Contributions summary

For all the previously mentioned reasons, we have worked on using two of these new
modalities, relaxometry and dMRI for neurodegenerative diseases evaluation. This
however causes several key problems of modeling, artifact correction, development of
processing tools on those modalities. I will explore in this manuscript several of these
challenges and the methods we proposed to tackle or reduce them. The manuscript
will be split into three parts: 1- artifact correction and multi-compartment model
estimation in diffusion imaging, 2- multi-compartment modeling and estimation from
relaxometry, 3- processing such compartment images and designing frameworks for
patient evaluation.

1.3.1 Diffusion imaging for white matter microstructure imaging

Chapter 2 will cover our recent developments on dMRI and particularly the progress
to go beyond clinically used diffusion models such as the well known tensor model.
New models, hereafter named Diffusion Compartment Model (DCM), consider the
diffusion process inside a voxel as separated in several compartments, each represent-
ing diffusion in a specific tissue architecture. These models are very interesting for
their interpretability. Their drawbacks however reside in their complex estimation.
Moreover, diffusion images are corrupted by distortion that ought to be corrected
before performing any computation on them. I present in this chapter advances on
those two crucial points.

1.3.2 Getting insights on myelin degeneracy: relaxometry

Chapter 3 will be centered on the use of relaxometry images, able via the right
estimation algorithms to provide Relaxometry Compartment Models (RCMs) i.e.
models of the different compartments of water bound to either nothing (free water),
myelin, or other cellular structures. Such information is of great interest to provide
the myelin water fraction, to which dMRI is blind. I will show how, for different
signal formation models, we define the estimation framework for obtaining robust
estimates of the compartments weights. I will then illustrate preliminary results on
clinical MS longitudinal data.

1.3.3 Quantitative image processing for disease study

Chapter 4 will finally present work towards the use of the previously introduced
models to use them on patient data and group studies. This includes interpolation
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and averaging of DCM images, an atlas-based fiber analysis framework of a patient
against controls, and new frameworks for the combined use of relaxometry and
diffusion for detecting new patterns in MS patient lesions, including detecting lesions
enhanced by Gadolinium (Gd) without using the contrast agent.
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This chapter explores our research around Diffusion MRI (dMRI) and diffusion
modeling. This work has been conducted mainly with two PhD students I co-
supervised: Aymeric Stamm and Renaud Hédouin. Several papers arose from this
work, but particularly two main ones discussed in the following sections:

• Echo-Planar Imaging (EPI) distortion correction: Renaud Hédouin, Olivier
Commowick, Elise Bannier, Benoit Scherrer, Maxime Taquet, Simon K
Warfield and Christian Barillot. Block-Matching Distortion Correction of
Echo-Planar Images With Opposite Phase Encoding Directions. IEEE Trans-
actions on Medical Imaging, 36(5):1106–1115, 2017

• Diffusion model estimation: Aymeric Stamm, Olivier Commowick, Simon K.
Warfield and Simone Vantini. Comprehensive Maximum Likelihood Estima-
tion of Diffusion Compartment Models Towards Reliable Mapping of Brain
Microstructure. In MICCAI proceedings, pages 622 – 630, 2016.
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2.1 Diffusion imaging and white matter microstructure

Diffusion MRI (dMRI) [Le Bihan et al. 1986] measures, at each voxel location, the
constrained local Brownian movement of water molecules. To measure this phe-
nomenon, images are acquired with diffusion weighting in different directions, with
different amplitudes hereafter respectively denoted gradient directions (or gradi-
ents) and b-values. On each of these DW images, the acquired intensities are
directly depending on the amount of water diffusion along the gradient direc-
tion [Johansen-Berg & Behrens 2009], leading to lower signal in regions where the
diffusion is high (as illustrated in Fig. 2.1 for the Cortico-Spinal Tract (CST) and
corpus callosum). From these acquisitions, it is thus natural to infer a model, i.e.
a Probability Density Function (PDF) in R3, describing the water diffusion in all
directions at a given distance from its original position.

(a) (b) (c)

Figure 2.1: Illustration of several DW images with (a): no diffusion weighting, (b):
diffusion gradient along the left-right axis, (c): diffusion gradient along the top-
down axis. The red box illustrates the corpus callosum region, a region known for
containing left-right fiber bundles. The blue box illustrates a part of the CST, a
region known for containing top-down fiber bundles.

In highly structured organs, such measures offer the great interest of inferring
indirectly the internal structure of the organ. As an example, in the brain, the pres-
ence of highly oriented structures such as parallel axons in a fiber bundle constrains
the water diffusion along their main orientation. As a consequence, the estimated
model will be highly influenced by the presence of these fiber bundles and will in-
directly describe them. Going further, the brain is not only composed of axons but
also of a large variety of supporting cells (as illustrated in Fig. 2.2) and free water,
each influencing the diffusion and thus the dMRI acquisition. A good model may
thus be able to finely characterize this internal microstructure of the brain at each
voxel and provide potential insights on their change over time, over individuals in a
population or due to the activity of a disease.

For this reason, dMRI is a tool of choice for studying the brain microstructure.
It has been widely used, both for clinical studies, e.g. in MS [Filippi et al. 2001,
Werring et al. 2000, Rovaris et al. 2005], or to study the normal structure of the
brain [Counsell et al. 2014, Scholz et al. 2014].
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Figure 2.2: Illustration of the different cell types of the brain: supporting (glial)
cells and the neuron.

Among the large variety of challenges still at stake in this field, we will present
in this chapter two main problems that were especially of importance for the goal
of improving disease characterization:

• correction of susceptibility induced distortions in dMRI: images acquired
through this technique have to be acquired fast to be clinically tractable. Such
sequences, called EPI, suffer as a result from large anatomical distortions de-
forming the visual aspect of the brain. These artifacts have to be corrected for
to enable a better interpretability of dMRI and to fuse its information with
other modalities.

• diffusion model definition and estimation: a large variety of models may be
defined from the set of DW images acquired, some requiring more gradients
and b-values than others (and thus more time), some allowing to get insights
into specific white matter microstructure parameters. It is a major challenge
to first define the “good” model, i.e. a model describing clearly the parameters
studied for a disease and that can be estimated from clinical data; and then
to define the optimization procedures to properly and robustly estimate this
model.

In the next sections I will detail the advances we proposed to tackle these issues:
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artifacts correction will be studied in Section 2.2 and diffusion model estimation in
Section 2.4.

2.2 Artifacts correction in diffusion weighted imaging

2.2.1 EPI and distortion artifacts

As mentioned above, dMRI requires fast acquisitions to reach clinically ac-
ceptable acquisition times. To this end, EPI acquisitions are commonly
used [Johansen-Berg & Behrens 2009] (and also very much used for other modal-
ities such as functional MRI [Huettel et al. 2004]). Their high velocity comes from
the fact that the image is acquired within a single repetition time (single-shot)
instead of multiple shots in other classical sequences (gradient echo, spin echo...).

The high velocity of EPI acquisitions however comes at the cost of a high sen-
sitivity to B0 magnetic field inhomogeneities. Affected regions, often located at
the tissue interfaces due to magnetic susceptibility effects, are either contracted
or dilated along the Phase Encoding Direction (PED) [Jezzard & Balaban 1995].
Moreover, measured tissue intensities in these regions change due to the local trans-
formation. Therefore the brain anatomy in EPI does not match with structural
images that are much less sensitive to distortions. Such a correspondence is how-
ever necessary as a joint analysis is often performed: structural images are used to
define regions of interest for fiber tracking or to extract lesions that are to be linked
to brain microstructure properties. It is therefore necessary to perform EPI distor-
tion correction, otherwise non linear anatomy mismatch between the modalities will
lead to biased results.

There is therefore a growing field of approaches to solve this prob-
lem. First, early algorithms have considered the acquisition of a B0 field
map [Jezzard & Balaban 1995, Reber et al. 1998]. This map is in turn used to infer
the local contractions and dilations, and to correct EPI. Other techniques have con-
sidered new sequences using point spread functions to obtain acquisitions a priori
free of distortions [Robson et al. 1997, Chung et al. 2011, Zaitsev et al. 2004].

A very promising approach towards distortion correction considers the acqui-
sition of two EPI sequences with opposite PED (e.g. one anterior-posterior and
one posterior-anterior). Thanks to these additional acquisitions and through care-
ful modeling of the distortion, images can be corrected. Moreover, it can be ap-
proximated [Vovk et al. 2007] that deformations due to distortion in successive EPI
volumes are the same. Therefore, a complete dMRI volume can be corrected at the
cost of only one supplementary b0 acquisition with opposite PED. For this reason,
this class of techniques has gained a lot of attention. [Voss et al. 2006] introduced
an algorithm to estimate, from the two images, the correction displacement field
based on cumulative intensity distributions along each line in the PED. This sim-
ple method strongly reduces the distortion, however it is sensitive to noise. The
computed transformation also needs to be smoothed, leading to a trade-off between
regularity and precision. [Andersson et al. 2003] used a pair of reversed EPI in con-
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junction with a discrete model of image formation for EPI. A registration-based
method has also been proposed by [Irfanoglu et al. 2015] requiring a non distorted
image such as a T2-weighted image (in addition to the reversed PED image) which is
used as the central point where the two images with reversed PEDs are transformed.

Given the promise of this last class of techniques, and given our prior experience
on registration algorithms using block-matching (see Appendix B), we have proposed
with Renaud Hédouin [Hédouin et al. 2017] a new method for block-matching based
distortion correction in EPI. Compared to previous approaches, we wished to ac-
count for the distortion model as early as possible through the introduction of a
priori on the transformations being optimized rather than after matching through
regularization (as it is done for example in [Irfanoglu et al. 2015]).

2.2.2 Distortion model

We assume that two images have been acquired: IF is the EPI forward image ac-
quired with a classical PED (anterior-posterior for example), and IB is the EPI
backward image acquired with a reversed PED (posterior-anterior in this case).
The goal of EPI distortion correction is to estimate a distortion transformation
field used in turn to recover a corrected image C. This field can also be used
to correct an entire series of EPI acquired with anterior-posterior or posterior-
anterior PED. [Jezzard & Balaban 1995] have demonstrated that deformations
due to B0 field inhomogeneities appear mainly along the PED and are negligible
in other directions. More precisely, we follow the distortion model as expressed
in [Voss et al. 2006, Morgan et al. 2004] which assumes that IF and IB are gener-
ated from the theoretical true image C using a displacement field parallel to the
PED: {

C(x) = JT+(x)IF (T+(x))

C(x) = JT−(x)IB (T−(x))
(2.1)

where T+(x) = x+ U(x) and T−(x) = x− U(x). JT+ and JT− denote the Jacobian
determinants of the local deformations which account for intensity changes in the
distorted areas. It will lead to an increased intensity in the contracted areas and a
decreased intensity in the dilated areas. U corresponds to the distortion displace-
ment field which is parallel to the PED, e.g. if the PED is along the y-axis then
U(x) = [0 Uy(x) 0]T . It is assumed that T+ and T− are opposite symmetric, i.e.
that they share the same U up to a minus sign.

2.2.3 A block-matching strategy for distortion correction

The corrected image C or a surrogate of it is generally unknown. We therefore chose
a registration approach that does not rely on it. A registration method has been
introduced by [Avants et al. 2008] allowing the deformation of two images towards
their barycenter without having it directly appear in the algorithm. The idea,
instead of looking for the transformation T between two images, is to seek the
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“half-way transformation” T 1/2 so that the two resampled images match as much as
possible:

IF ◦ T 1/2 ≈ IB ◦ T−1/2 ≈ C (2.2)

We have adapted this idea to our distortion model and to the Block-Matching (BM)
algorithm for its ability to simply and effectively incorporate constraints on the de-
formation field to fit the distortion model. To do so, we have first extended the
general asymmetric formulation of BM to general symmetric registration (see Ap-
pendix B.4.3 for more details). Then, we have extended this symmetric framework
to the distortion model by constraining the transformation to be along the PED. As
a summary, we start from an initial transformation U0 which can be null or coming
from another coarse correction algorithm. Then we proceed as in Appendix B.4.3
using IB and IF as the images to register, with several modifications.

At each step, we first resample the original images with the current transforma-
tion using the Jacobian determinant to modify intensities after interpolation. Then
we estimate pairings between the images in the forward (A+ = {Â+,1, . . . , Â+,N})
and backward directions (A− = {Â−,1, . . . , Â−,N}) using a BM algorithm. This
matching incorporates adapted transformations, and adapted indexes of matching
plausibility used in extrapolation (see Appendix B.3.2), to constrain the transfor-
mation a priori to match the distortion model. Finally, the end of each iteration
incorporates a simple modification to ensure that the updated transformations at
each step remain opposite symmetric by averaging the obtained deformation fields.
We detail in the following the two major modifications: adapted linear transforma-
tions between blocks and adapted matching plausibility weights.

2.2.3.1 Adapted linear transformations between blocks

In other applications, the transformations A.,i sought between blocks are often 3-
dimensional translations (as detailed in Appendix B.2). In the case of EPI distortion,
those transformations can be adapted to match a priori the expected features of
the distortion at the block level and thus obtain a more robust transformation
estimation. First the model assumes that distortions appear uniquely along the
PED: a one-dimensional translation along the PED (modeled by one parameter
t.,i) is therefore sufficient. At the scale of the block, a single translation is however
not enough to account for local contractions and dilations due to the distortion.
We therefore added three parameters to the transformation definition: one for the
change of scale due to the global contraction or dilation inside the block (s.,i); and
two skew components (k.,i and m.,i) for the two directions complementary to the
PED. Assuming the PED is the y-axis, A.,i is expressed as a 4× 4 matrix:

A.,i =


1 0 0 0

k.,i s.,i m.,i t.,i
0 0 1 0

0 0 0 1

 (2.3)
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Note that having the PED on another axis will result in the line of parameters
being displaced on the first or third line of the matrix. We have further stud-
ied in [Hédouin 2017] the properties of these transformations which showed that
there exists an analytical expression for their matrix logarithm. Therefore to speed
up the algorithm, the BM search and transformation extrapolation is done in the
Stationary Velocity Field (SVF) space. The BM step then amounts to estimating
the four log-parameters of each block transformation to compute the set of optimal
transformations Â+,i and Â−,i optimizing a similarity measure S between IF,l−1 and
IB,l−1 (the two input images resampled by the current transformation at previous
iteration l − 1) using the BOBYQA algorithm [Powell 2009]:

Â+,i = arg max
Ã+,i

S
(
Jexp(Ã+,i)

IF,l−1 ◦ exp(Ã+,i), IB,l−1
)

Â−,i = arg max
Ã−,i

S
(
IF,l−1, Jexp(Ã−,i)

IB,l−1 ◦ exp(Ã−,i)
) (2.4)

2.2.3.2 Matching plausibility weights

From this set of optimal local transformations Â.,i, we then proceed to compute
asymmetric transformation updates δS+ and δS− using M-smoothing extrapolation
as in Appendix B.3.2.2, further used to compute the update transformation. This
extrapolation requires plausibility weights for the matches w.,i that provide an es-
timate of the confidence in the block match. In [Hédouin et al. 2017], we refined
these weights to account for the uncertainty in matching along a specific direction
(the PED). To do so, we use a geometric mean of two different terms. The first
one is a function of the similarity at the optimal position Ŝ.,i (so that it belongs to
the range [0, 1]). The second one gives an index of the local structure of the refer-
ence block along the PED. If the block structure is parallel to the PED, all tested
transformations A.,i for that block would get roughly the same similarity score, in-
troducing uncertainty in the matches. We avoid such random solutions with an
index wd,i, a function of the local structure tensor inside the reference block to
give a low weight to uncertain blocks and their corresponding local transformations
(see [Hédouin et al. 2017] for more details on its definition).

2.2.4 Main results

Evaluating distortion correction is a difficult task since the non distorted image does
not exist. At best, one can compare distortion correction results with a known non
distorted image of another modality, although in that case direct comparison of the
intensities is not possible. We have therefore evaluated our algorithm on phantom
and in vivo data. Results on the phantom are not displayed here but available
in [Hédouin et al. 2017] and demonstrate state-of-the-art results of our algorithm
with some results better than TOPUP [Andersson et al. 2003] on some regions. In
vivo results are presented in the following sections. They relied on a set of five images
from control subjects acquired on a Siemens 3T scanner (images size: 128×128×60,
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resolution: 2×2×2 mm3) with a total of 30 directions at b-value 1000 s.mm−2. The
images were acquired with 4 different PED: anterior-posterior, posterior-anterior,
left-right and right-left. In both evaluations, the b0 images were used for computing
the correction which was then further applied to all DW images.

(a) Left-Right (b) Right-Left (c) Block-matching (d) T1-weighted

(e) Anterior-Posterior (f) Posterior-Anterior (g) Block-matching (h) T1-weighted

Figure 2.3: Illustration of BM EPI distortion corrections on b0 images acquired with
opposite PEDs on one subject. First row: PEDs along the left-right axis, second row:
PEDs along the anterior-posterior axis. (a-b, d-e) uncorrected EPI with opposite
PEDs; (c,f) corresponding BM corrected images; (d,g) T1-weighted reference image.

2.2.4.1 Visual evaluation

We have first evaluated the correction provided by our algorithm through the
comparison of the corrected images with conventional anatomical images (3D T1-
weighted images acquired in the same session as the control subjects). These results
are illustrated in Figure 2.3. On that figure, uncorrected left-right and right-left PED
images suffer from large spatial deformations around the falx cerebri (see arrows on
Fig. 2.3.a,b). On the contrary, our distortion correction method provides a good
matching of the structures in the T1-weighted image and on the b0 corrected image
(see arrows on Fig. 2.3.c,d). On the second line, uncorrected anterior-posterior and
posterior-anterior PED images suffer from deformations, including massive contrac-
tions and dilations around the frontal lobe (see arrows on Fig. 2.3.e,f). Again the
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BM correction restores an image with a structure in phase with the T1-weighted
anatomical reference (see arrows on Fig. 2.3.g,h).

2.2.4.2 Quantitative comparison to state-of-the-art methods

We then compared quantitatively our approach to two state-of-the-
art methods: [Voss et al. 2006] image lines registration approach, and
TOPUP [Andersson et al. 2003] (available as part of the FSL package). We
performed the following experiments on an Intel Xeon 2.5 Ghz computer on 20
cores. The mean computation time per subject is very short (about 5 s) for Voss et
al. algorithm, 170 s for our algorithm and 500 s for TOPUP. Unlike TOPUP, BM
is multi-threaded, allowing a faster computation time useful in the clinic.

To obtain a quantitative evaluation of the quality of the corrected images, we
computed (for each subject) the distortion correction from the two pairs of EPIs
(left-right/right-left, anterior-posterior/posterior-anterior). The idea behind this
evaluation was that if the correction performs well, then the two corrected images
should be the same (up to some additive noise). We have thus computed after cor-
rection the average of the local correlations between the two corrected images. These
results are reported for the two methods in Table 2.1. These results have highlighted
that BM improves the correction over Voss et al. on all subjects. Between BM and
TOPUP, the best score depends on the subject with a similar average, highlighting
similar performance.

Correlation Untouched Voss BM TOPUP
Subject 1 0.842 0.901 0.916 0.927
Subject 2 0.818 0.904 0.918 0.937
Subject 3 0.812 0.875 0.894 0.859
Subject 4 0.886 0.923 0.939 0.954
Subject 5 0.872 0.913 0.921 0.898
Mean 0.852 0.903 0.918 0.915

Table 2.1: Correlation results between left-right/right-left and anterior-
posterior/posterior-anterior images.

2.3 Modeling water diffusion

After artifacts correction and image improvement, the next step is to infer the 3D
probability of water diffusion from the diffusion sensitized measurements, which de-
scribes the white matter microstructure of the brain. It has been widely established
(see Section 1.4 of [Stamm 2013] for more details and references) that diffusion mea-
surements are directly linked to the probability of water diffusion through the image
formation model illustrated in Figure 2.4.

In this image formation model, we consider that measurements are performed
in q-space, i.e. along vectors q which are functions of the gradient application time
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Image = S0 · |FT [px] (q)|

Magnetic field gradient

Image

= · |FT [ ] (q)|

Diffusion profile

We measure this

Baseline image

We want to infer that

Figure 2.4: General illustration of the model estimation problem in dMRI.

δ, time between successive gradients ∆, gyromagnetic ratio of hydrogen γH , unit
gradient direction g and gradient strength G. These q-vectors are often separated
into two quantities: the b-value b = γ2HG

2δ2(∆− δ/3) and the gradient direction g.
This simplification is made since almost all models do not need the separate parts of
b. The attenuation observed from the baseline image then comes from the Fourier
transform of the diffusion probability in space. Estimating the water diffusion in
space after a certain amount of time thus amounts to solving the inverse problem
from this image formation model. The optimization being performed on the sig-
nal, the models are often described by their Fourier transforms (i.e. characteristic
functions), which we do in the following, but the parameters also describe the PDF.
Before performing the estimation, the diffusion model, also called diffusion PDF or
Ensemble Average Propagator (EAP), needs to be defined. Depending on the ap-
plication and quality of the EPI acquisition, several models of different complexities
have been defined. While this is not the main focus of this chapter, let us recall the
main (non-exhaustive) categories of models in the literature, before explaining and
focusing more on DCM and our contributions to their estimation.

2.3.1 Diffusion tensor

Historically, the Diffusion Tensor (DT) [Basser et al. 1994] was the first model intro-
duced going beyond a model parameterized by a single scalar (Apparent Diffusion
Coefficient (ADC)). It assumes the water diffusion PDF px follows a centered (zero-
mean) multivariate normal distribution characterized by its covariance matrix D

(symmetric positive definite):
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D =

dxx dxy dxz
dxy dyy dyz
dxz dyz dzz

 (2.5)

This model is one of the simplest to represent anisotropic diffusion, yet mean-
ingful as it is considering anisotropic diffusion inside each voxel (see Figure 2.5).
For these reasons, it is also one of the most used in clinic. Such a description
also provides straightforward parameters of the tissue microstructure through the
eigen analysis of the tensor D. Usual metrics [Basser & Pierpaoli 1996] combine
the eigenvalues of D to cover a range of diffusion properties such as ADC, Axial
Diffusivity (AD), Radial Diffusivity (RD) explaining the amount of diffusion in the
voxel in all or specific directions, and Fractional Anisotropy (FA) quantifying the
anisotropy of the diffusion.

Figure 2.5: Illustration of some diffusion tensors with different diffusivities and
anisotropies. Images are courtesy of [Kindlmann 2004].

Due to their simplicity, a large number of studies [Filippi et al. 2001] have there-
fore quantified the changes in those metrics due to several factors: diseases, aging,
etc. However, the DT model suffers from two major drawbacks [Mori 2007]:

• A single multivariate normal distribution by nature assumes diffusion is hap-
pening in a single, principal direction, in a plane of directions or in all di-
rections (isotropic). However, such a representation cannot handle properly
a voxel in which fiber bundles with different directions cross. In this case,
the estimated tensor does not represent the true nature of the underlying
microstructure, which in turn affects microstructure studies or tractography
algorithms.

• Microstructure parameters extracted from the DT are entangled: scalar mea-
sures, in particular ADC and FA, group several properties of the white matter
into a single scalar value, and are thus difficult to interpret. For example,
an FA or ADC change may be caused by an edema (i.e. inflammation that
as a consequence brings free water locally inside the voxel) or by a specific
destruction of axons in a fiber bundle. Using only the DT does not allow to
separate easily those two sources of diffusion changes.
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2.3.2 Orthogonal bases

Although not covered in this manuscript, the first options to go beyond the tensor
have consisted in using orthogonal bases representations of the signal. Since they
were historically primarily presented for tractography and for an improvement of
fiber bundles directions estimation, they are often called Orientation Distribution
Function (ODF) or EAP. In this section, we consider all those models which start
from modified Spherical Harmonics (SH) bases and go beyond but always share a
common property/assumption: the signal is represented as a weighted linear sum of
functions forming an orthogonal basis i.e.

S(bi, gi) = S0

N∑
j=1

cjYj(bi, gi) (2.6)

where (bi, gi) represents the couple of the b-value and gradient direction of the
i-th diffusion volume, S0 represents the non diffusion weighted signal value,
Y = {Y1, . . . , Yj , . . . , YN} forms an orthogonal (or possibly orthonormal) ba-
sis, and cj (j = {1 . . . N}) are the linear coefficients of each basis function.
Illustration of the first elements of the modified SH basis are illustrated in
Fig. 2.6. One of the earliest examples of such a model is the one proposed
by [Descoteaux et al. 2007] where Y is chosen to be a modified, real basis of SH
functions on the sphere [Atkinson & Han 2012]. This model allowed the estimation
of several crossing fiber bundles directions per voxel, although being limited to a
single shell acquisition due to the initial choice of basis functions on the sphere.
These bases were then used to develop new and more specific tractography algo-
rithms [Descoteaux et al. 2009]. On the other hand, this basis only considers fiber
orientations and therefore loses microstructure information.

Other works in this category moved beyond the spherical harmonics and con-
sider orthogonal bases that are compatible with multiple shells acquisitions. Among
them, [Descoteaux et al. 2011] proposed the Diffusion Propagator Imaging (DPI)
that extend the SH basis to multiple shells with the Laplace equation. Other ap-
proaches include the Simple Harmonic Oscillator Based Reconstruction and Es-
timation (SHORE) basis proposed in [Özarslan et al. 2013a] or Spherical Polar
Fourier (SPF) expansion proposed by [Assemlal et al. 2009]. Finally, one may also
consider R3 as the basis and the fact that signal formation is directly related to
the Fourier transform of the PDF of water displacement (see Fig. 2.4): this strat-
egy, called Diffusion Spectrum Imaging (DSI) [Wedeen et al. 2005], thus takes the
inverse Fourier transform of a large number of signals in q-space to get the PDF.
While being model free, this last option however requires a very large number of
signals to be robust which makes it difficult to use in clinical practice yet.

All these approaches have shown great interest for modeling diffusion, espe-
cially since the orthogonality of their bases makes their estimation rather simple
and efficient (linear least squares problem to solve). Some rotationally invariant
scalar properties of the models have been devised, e.g. return to origin proba-
bility [Özarslan et al. 2013b], however they do not convey a direct microstructure
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Figure 2.6: Illustration of the first elements of the SH basis. Images are courtesy
of [Leemans 2010].

related property of the underlying tissues. Some work therefore remains to be done
for making these models easily interpretable for clinical use.

2.3.3 Diffusion compartment models

Another class of approaches to recover the heterogeneous microstructure inside a
voxel relaxes the constraint of a model being represented using an orthogonal basis.
Rather, models in this class assume a given voxel is composed of different tissues
(glial cells, water...) or fiber bundles with different orientations. Each of these
groups of tissues, hereafter called compartments, are then assumed to have different
properties, called microstructure properties, that characterize their water diffusion
and thus their signal decay when a specific gradient is applied. Each voxel signal is
thus assumed to be represented as a DCM, i.e. a weighted sum of compartments:

S(bi, gi) = S0

N∑
j=1

wjϕj(bi, gi) (2.7)

where ϕj represents the signal decay of the j-th compartment (connected to a specific
tissue type or fiber bundle with a specific direction), and wj represents the weight of
the j-th compartment. An example of DCM is illustrated in Fig. 2.7. Again, while
very similar to Eq. (2.6), this signal formation equation includes a fundamental
difference in that every ϕj explicitly represents a tissue type or main orientation
in the voxel. This, with adapted models for each compartment, allows for the
direct characterization of microstructure properties and thus potential changes due
to development or pathologies, for each tissue at the sub-voxel level. For this reason,
using DCM sounds promising for disease study, able to solve both problems of the
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simple DT model i.e. disentangling of parameters of diffusion change and crossing
fibers resolution.

Figure 2.7: Illustration of a DCM. First row: abstract model showing the combina-
tion of some isotropic compartment and several anisotropic compartments. Second
row: illustration of the first row with a multi-tensors model.

Due to these advantages for disease characterization, developments have been
made in this category, making it an active field of research. As for orthogonal bases,
the first problem to tackle for DCM is the definition of the models assumed in each
compartment i.e. for each tissue type or fiber bundle. This is a field of research
in itself and it would go beyond the scope of this document to review all of them.
Recent articles give an insight into quite a lot of the models that may be assumed for
each compartment [Panagiotaki et al. 2012]. For the sake of a better comprehension
of future sections and chapters though, here are some typical compartments that
may be encountered.

The first class of compartments is composed of the so-called isotropic compart-
ments in that they represent water diffusing equally in all directions. The simplest
and best example is the isotropic 3D Gaussian distribution parameterized by a sin-
gle scalar diffusivity d. These compartments are usually used to represent 1- water
diffusing freely around cells while being sufficiently far away from them not to be
affected by their presence ; or 2- water diffusing inside cells whose shape can be glob-
ally considered spherical (e.g. neuron cellular part, glial cells, etc.). The second class
of compartments is composed of the anisotropic compartments i.e. compartments
associated to water diffusing principally along a given main orientation. These are
typically compartments aligned with a given fiber bundle going through the voxel,
up to a number of three anisotropic compartments: even though any number may
be used, it is indeed commonly accepted that at most three fiber bundles cross in a
brain voxel.

A very large number of anisotropic compartments have been proposed in
the literature. Among the most known (non exhaustive list), multi-tensor mod-
els [Scherrer & Warfield 2012] use a classical tensor for each anisotropic compart-
ment. Other models assume two subparts for a single anisotropic compartment
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to better explain the non Gaussianity of the signal decay for large b-values.
These two subparts often correspond to the intra-axonal and extra-axonal parts
of the diffusion for the fiber bundle. Two examples of these anisotropic com-
partments are the Neurite Orientation Dispersion and Density Imaging (NODDI)
model [Zhang et al. 2012] or the DDI model [Stamm et al. 2012].

The previous advantages however come at the cost of a much more difficult non
linear estimation problem, mainly due to the non orthogonality of the functions
ϕj , that remains an open problem. We have recently deeply studied this topic and
present it in the next sections.

2.4 Estimation of diffusion compartment models

2.4.1 Estimation problem formulation

Model estimation follows usually the same framework for any diffusion model, aiming
at minimizing the discrepancy between the model generated signals S(bi, gi) for
each b-value / gradient pair and the corresponding measured signals Si, which are
assumed to follow a specific noise model. While some approaches have studied
diffusion model estimation under the assumption of Rician noise [Fillard et al. 2007]
or other noise models [Stamm et al. 2014b], most estimation frameworks assume
Gaussian noise. In other words, we assume that for a given pair (bi, gi) and S0
signal, the signal measured is equal to the following:

Si = S(bi, gi) + ε (2.8)

where ε follows a zero-mean Gaussian with variance σ2. In this specific case, the
problem of estimation is formulated as a least squares system to be minimized over
the parameters θ of the model and S0:

{θ̂, Ŝ0} = arg min
θ,S0

M∑
i=1

(Si − S(bi, gi))
2 (2.9)

where M is the number of DW images acquired, θ is the set of model parameters,
θ̂ and Ŝ0 are the optimal values of the parameters. Such a problem is typically
minimized using different approaches depending on the model and the possibility to
obtain derivatives of the cost function. For example, [Panagiotaki et al. 2012] uti-
lized a Levenberg-Marquardt optimization algorithm [Levenberg 1944] for this least
squares problem for different DCM. Other approaches [Scherrer & Warfield 2012]
used the BOBYQA optimization strategy [Powell 2009] to avoid computing too com-
plex derivatives of the cost function. All these methods share the problem of trying
to optimize a non linear least squares problem and are thus very sensitive to various
artifacts in the acquisitions. In addition, DCM estimation is a very slow estimation
problem due to the number of parameters to be estimated and the complexity of
the cost function.
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We have proposed a new approach [Stamm et al. 2016, Commowick et al. 2016]
towards 1- the simplification of the cost function and therefore a faster imple-
mentation of DCM estimation, and 2- a complete maximum-likelihood estimation
framework that has, among other good properties, the ability of computing indirect
values of the confidence in the estimated values, through the computation of the
noise variance σ2 (the larger σ2, the lower the estimation quality). Instead of the
regular least squares formulation in Eq. (2.9), we formulate the estimation as the
following maximum-likelihood estimation under a Gaussian noise assumption (see
Appendix A):

{θ̂, Ŝ0, τ̂2} = arg min
θ,S0,τ2

M

2
log

(
τ2

2π

)
− τ2

2

[
M∑
i=1

(Si − S(bi, gi))
2

]
(2.10)

where τ2 = 1/σ2 is the inverse of the Gaussian white noise variance on the input
signals. Following the reasoning in Appendix A, this problem actually resorts back
to solving the problem in Eq. (2.9) but additionally provides us with an estimate of
the “local noise” as τ2 which in fact contains both noise variance and errors coming
from model unsuitability to the observed data.

2.4.2 Variable projection solution

The maximum-likelihood problem in Eq. (2.10) has the particularity of having some
of its variables linear in the system (namely the weights of the individual compart-
ments of the DCM). We have therefore developed in [Stamm et al. 2016] a variable
projection solution [Golub & Pereyra 1973] to the optimization problem enabling
fast optimization of the Maximum Likelihood (ML) estimator of DCM. In more
details, our framework for DCM estimation considers a set of parameters composed
of three subsets:

• parameters independent of the model: base signal S0, noise variance parameter
of the ML estimation σ2

• weights of the individual compartments of the DCM: w = {w1, . . . , wN}

• parameters θj of the individual compartments of the DCM forming the set of
parameters θ

Thanks to variable projection, we have developed a framework that, from the esti-
mation of the non linear parameters θ alone, provides a complete estimation of all
the aforementioned parameters. Moreover, we developed in Appendix A a simple
derivative scheme over both the individual residuals and the cost function itself in
Eq. (2.10), that provides: 1- a Levenberg-Marquardt optimization to provide robust
estimation, and 2- a generic gradient-based estimation for any compartment type in
the DCM where only the Jacobian of the individual compartments (component-wise
derivatives DF of matrix F in Eq. (A.12)) with respect to their parameters need to
be defined for the framework to be adapted to a new model.
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Example: practical implementation for multi-tensor estimation For the
sake of clarity and further experiments let us, without loss of generality on other
models, focus on a specific model for estimation: the multi-tensor model. We con-
sider here a DCM made of multiple tensors, each represented by the following indi-
vidual ϕj :

ϕj(bi, gi|θj) = exp(−bigTi Djgi) (2.11)

where the parameters θj of the individual compartment are all expressed in the
tensor Dj . A tensor has a total of six parameters that can be expressed in very
different ways. For practical reasons of setting reasonable bounds to the parameters
and get tractable derivatives, we have chosen to parameterize eachDj by a main unit
direction of diffusion ej,1 (two parameters in spherical coordinates), a supplementary
Euler angle aj ∈ [0, 2π] in the orthogonal plane to ej,1 giving rise to the second
eigenvector ej,2, and three positive additive eigenvalues parts dj,1, dj,2, dj,3 such that
eigenvalues of the tensor are ordered: λj,1 = dj,1 +λj,2, λj,2 = dj,2 +λj,3, λj,3 = dj,3.
With these parameters, Dj is parameterized as:

Dj = dj,3I3 + dj,2ej,2e
T
j,2 + dj,1ej,1e

T
j,1 (2.12)

where I3 denotes the 3D identity matrix. In our variable projection setting, the
ϕj(bi, gi|θj) constitute the Fi,j elements of F. Getting the derivatives of the ML es-
timation formulation after variable projection thus only requires the derivation ofDj

against its parameters which can be readily obtained by differentiating Eq. (2.12).
Additionally, since parameters are bounded, we applied Panagiotaki et al. strat-
egy [Panagiotaki et al. 2012] to unbound them for estimation with the Levenberg-
Marquardt algorithm.

2.4.3 Main results

We have evaluated this estimation framework against synthetic and control subjects
datasets. I provide here a short summary of the main results, however more details
about these experiments and the datasets used can be found in [Stamm et al. 2016].

2.4.3.1 Evaluation on synthetic datasets

We have first performed an evaluation on a synthetic dataset (see Fig. 2.8) where
we simulated multi-tensor models with:

• two isotropic compartments (one for free water, one for isotropically restricted
water i.e. water inside spherical cells). No parameters needed to be estimated
for these compartments apart from their weights.

• different numbers of anisotropic tensors at each voxel (from zero to three
compartments) with different orientation configurations

• varying proportions for each compartment from one voxel to the other
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(a) (b)

Figure 2.8: Illustration of the synthetic dataset used for ML estimation experiments.
(a): Number of anisotropic compartments per voxel (dark blue: 0, cyan: 1, orange:
2, red: 3). (b): glyphs illustrating the DCM PDF.

With these synthetic data defined, we then simulated DWI signals using the HCP
gradient scheme [Essen et al. 2013] and added Rician noise (25 dB), after which we
evaluated the estimation computation time with respect to the convergence to the
right solution. We compared for this task different optimization algorithms, and
different frameworks for optimization:

• Method A1: our framework: variable projection, Levenberg-Marquardt opti-
mization [Levenberg 1944] with analytical derivatives

• Method A2: variable projection, Levenberg-Marquardt optimization with nu-
merical derivatives

• Method A3: variable projection, globally convergent conservative convex sep-
arable approximation (CCSA) optimization [Svanberg 2002] with analytical
derivatives

• Method A4: variable projection, derivative-free bounded optimization by
quadratic approximations (BOBYQA) algorithm [Powell 2009]

• Method B: joint weights and DCM parameters estimation as proposed
in [Scherrer & Warfield 2012] using the BOBYQA algorithm

We evaluated the correct evaluation of the models against the ground truth
for each of these methods with two metrics: 1- mean square error of weights, 2-
mean square error of all Dj . Each metric was computed separately for a given
number of anisotropic compartments in the voxels (from 0 to 3). The evolution
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of these metrics for decreasing relative stopping criteria (from 1.0 × 10−1 to 1.0 ×
10−13) is plotted against their computation time in Fig. 2.9. The main results
confirm first a much accelerated estimation with the variable projection framework
with the analytical derivatives and Levenberg-Marquardt optimization (method A1),
while other gradient-based methods show longer computation times and method B
shows computation times increasing much faster with decreasing tolerance levels.
For zero to two fibers areas, method A1 is also outperforming all other methods,
especially state-of-the-art method B. Method A1 indeed reaches its lowest level for
higher tolerances and reaches lower mean square errors than other methods. All
methods however seem more sensitive to initialization and convergence tolerances
when considering three compartments which is likely due to much more complex
estimation when considering three fibers.
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Figure 2.9: Multi-tensor estimation performance curves. Mean square error varia-
tions as a function of computation time (in sec on a log-scale). First row: error on
weights; second row: error on diffusion tensors estimated. Columns match areas of
zero, one, two and three fibers from left to right.

2.4.3.2 Visual evaluation on control subjects data

We have then performed the evaluation of our framework in real life conditions on
datasets coming from the Human Connectome Project (HCP). These datasets are
high quality diffusion datasets (1.25×1.25×1.25 mm3 resolution with 270 gradient
directions over three b-value shells from 1000 to 3000 s.mm−2 [Essen et al. 2013]).
We have evaluated visually the ability of methods A1 and B to obtain good esti-
mation results of multi-tensor models in a reasonable computation time. We thus
optimized the parameters of estimation for both methods to get them to run in
30 seconds over a crop inside the corpus callosum and another one in the centrum
semi-ovale (known for its fiber crossings). We report the results in Fig. 2.10.

Visual inspection of these results further shows the ability of method A1 to pro-
vide more spatially coherent estimates of the multi-tensor models with less artifacts,
mostly visible in three fascicle areas (inside the centrum semi-ovale).
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(a) (b) (c) (d)

Figure 2.10: Visualization of the estimated multi-tensor models in vivo on an HCP
subject. (a,b): estimation in the centrum semi-ovale, (c,d): estimation in the corpus
callosum. Estimations are performed using method A1 (b,d) or method B (a,c).

2.5 Conclusion and perspectives

2.5.1 Artifacts correction in diffusion weighted imaging

We have conducted research to enable fast and accurate distortion correction of
diffusion images. This work is crucial as it is a necessary first step for further ac-
curate processing and studies of dMRI in a clinical context. Thanks to our work
with Renaud Hédouin, we have presented a method that generalizes block-matching
registration and provides state-of-the-art distortion correction or even better cor-
rection on phantom experiments (see [Hédouin 2017]). We have defined priors on
transformations between local regions by constraining their formulation to match
the distortion model in EPI. This is crucial as a priori constraints lead to more
robust algorithms, contrarily to a posteriori regularization. Moreover, this is the
first use of a symmetric setting in BM registration. This framework is applica-
ble to other traditional registration problems, including atlas construction where a
groupwise atlas construction can be derived from this symmetric registration.

Although less perspective can be directly seen from this work compared to other
chapters, many options remain to extend and further evaluate this research. First
of all, we have considered the most general case for our distortion correction (i.e.
no anatomical non distorted image). In fact, we could definitely adapt our method
to handle this kind of intermediate image. This would require extending the sym-
metric registration framework and change the similarity metrics used in the algo-
rithm. We performed preliminary studies with Renaud Hédouin on that topic (see
his PhD [Hédouin 2017], Section 4.6), showing that it is doable but work remains to
be done on the optimal similarity metric to define between three images. In addi-
tion to this direct extension, we could also extend this framework to treat different
sources of distortion, namely Eddy currents [Mangin et al. 2002], by using similar
local transformation definitions, this time to register individual gradient volumes.

Finally, evaluation of distortion correction has proven to be a difficult topic.
For this reason, most articles tend to evaluate only visually their results which is
not satisfactory. There is therefore a need for proposing new evaluation schemes,
most probably based on phantom experiments or simulations, to properly evaluate
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differences in algorithms performance. Designing and using those simulations and
phantoms could as well be future works, that could lead to a future challenge on
distortion correction which would be very valuable to the field.

2.5.2 Diffusion models estimation

Model estimation for diffusion modeling is a critical step for further processing and
statistical analysis of diseases. We have chosen over the past years to focus on
diffusion compartment models as they provide a great, intuitive way of modeling
the white matter microstructure. To overcome the challenges of DCM estimation,
we have proposed a new ML estimation framework that allows for faster model
estimation thanks to a variable projection formulation. Interestingly, this framework
is versatile as it may be used virtually for any combination of compartment models,
either using Levenberg-Marquardt estimation if the derivatives of the model can be
computed or using gradient-free optimization otherwise.

While I decided to focus on this aspect of estimation in this manuscript,
other problems arise very fast when considering the estimation of DCM. One
of them concerns the determination of the optimal number of compartments in
the model. We have proposed a new algorithm as a potential solution to this
task [Stamm et al. 2014a], relying on the Akaike information criterion to determine
the model over-fitting of the data. Validation is also an open problem. We have
used here only a relatively simple simulation. No direct evaluation may be done
on real life data. One way to further evaluate the model would be to adapt re-
cent phantoms [Daducci et al. 2014, Caruyer et al. 2014] to simulate realistic multi-
compartment model data on several shells and evaluate our methods on them.

While the algorithms we proposed are a great step towards the use of DCM in a
clinical context, some problems remain especially when a small number of gradient
directions or b-values is available. Another critical point for model interpretation is
the potential of some compartments to take the place of some others. For example, in
a model with an isotropic free water compartment and several tensor compartments,
nothing prevents one of the tensor compartments to take part or all of the isotropic
weight by changing accordingly its parameters. This indetermination, coming from
the fact that DCMs are not orthogonal bases, could lead to difficult interpretation
of the resulting models as the free water weights thus cannot be compared directly
between patients, especially when a large number of compartments are present in
the voxel. Including priors on the compartments so that they cannot take over each
other would therefore be an important step for the interpretability of the DCMs
estimated. Ensuring a good estimation of the models when only clinical, low angular
resolution data is available remains also a critical topic of research. We have in the
past presented compartment models towards this objective [Stamm et al. 2012], but
the careful optimization of estimation constraints remains an open problem to get
a robust estimation as well as enough degrees of freedom to precisely evaluate the
white matter microstructure.

Estimation of DCMs remains a long process which will need to be improved to
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be compatible with real time clinical use (one of the strengths of the DT model).
One solution to explore for this is dictionary-based initialization, inspired e.g.
from [Yap et al. 2016]. Finally, DCM estimation is only a step towards our goal
of getting more specific measures of white matter microstructure degeneracy. Tools
are now needed to perform the processing (registration, interpolation) and statistical
analysis of these models. I will cover some of these topics in Chapter 4.
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This chapter explores our research around quantitative relaxometry sequences.
This work has been conducted mainly with one PhD student, one post-doc and
one intern I co-supervised: Sudhanya Chatterjee, Fang Cao and Lucas Soustelle.
Several papers resulted from this work, but particularly two main ones discussed in
the following sections:

• Robust Relaxometry Compartment Model (RCM) estimation and use: Sud-
hanya Chatterjee, Olivier Commowick, Onur Afacan, Benoit Combes, Simon
Warfield, Christian Barillot. A three year follow-up study of gadolinium en-
hanced and non-enhanced regions in multiple sclerosis lesions using a multi-
compartment T2 relaxometry model. Preprint on bioRxiv. 2018

• Variable projection for RCM relaxometry: Sudhanya Chatterjee, Olivier
Commowick, Onur Afacan, Simon K Warfield, Christian Barillot. Multi-
Compartment Model of Brain Tissues from T2 Relaxometry MRI Using
Gamma Distribution. In ISBI proceedings, pages 141 - 144, 2018.

3.1 Quantitative relaxation times from MRI

Relaxometry gathers a set of acquisition methods whose aim is to measure, from
a set of MRI signals, the relaxation times of tissues. Those relaxation times are
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at the basis of all contrast images (T1-weighted, T2-weighted...) and are quantita-
tive i.e. these measurements theoretically do not change (at least much less than
weighted images contrasts) depending on the scanner (apart from a change ofB0 field
strength). This, plus the fact that relaxation times have a clear physical meaning,
makes their measurement very interesting in practice. Two complementary commu-
nities have studied this topic: the acquisition community and the signal processing
community. A large review of these aspects is proposed by [Tofts 2004].

Three main relaxation times are commonly measured through MRI (illustrated
in Fig. 3.1): longitudinal relaxation time (T1), and transverse relaxation times (T2
and T ∗2 ). Put shortly, T1 corresponds to the time, after the resonance has stopped, at
which the magnetization along the longitudinal axis (i.e. the nominal magnetic field
B0 direction) has reverted back to 63% of its original value before resonance. T2 on
its side concerns magnetization in the transverse plane. When resonance happens,
all spins are put in phase in the transverse plane. When the excitation stops, these
spins are going to dephase and therefore decrease transverse magnetization. T2
corresponds to the time at which the magnetization would reach 37% of its original
value after excitation stopped. T2 corresponds to the ideal case if the acquisition was
only influenced by the tissues imaged. For several reasons including inhomogeneities
in the magnetic field, dephasing of the spins happens faster than the true T2 value.
Therefore, T ∗2 is defined as the actual observed time at which the magnetization
reaches 37% of its original value. In both cases, dephasing happens much faster than
longitudinal relaxation and we therefore have the relationship that T1 ≥ T2 ≥ T ∗2 .

(a) (b)

Figure 3.1: Illustration of relaxation times in MRI. T1: longitudinal relax-
ation time (a), T2 and T ∗2 : transverse relaxation times (b). Images are courtesy
of [Ridgway 2010].

All of these constants have great interest for clinical purposes as tissues will
have different T1, T2 and T ∗2 values depending on their composition. There-
fore tissue changes due to pathologies are reflected in these three numbers. T ∗2
is for example sensitive to changes in magnetic susceptibility (which results in
changes of the B0 field inhomogeneity). Its study gave rise to quantitative
modalities such as Quantitative Susceptibility Mapping (QSM) [Young et al. 1987,
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Wang & Liu 2014] which, although not the topic here, is used for many diseases e.g.
MS where changes in the basal ganglia was observed early [Langkammer et al. 2013]
or Alzheimer’s disease where iron deposition is a known effect of the dis-
ease [Acosta-Cabronero et al. 2013].

The longitudinal relaxation time T1 has also been widely studied in the lit-
erature. Techniques have been developed to obtain quantitative T1 images first
from gold standard techniques such as inversion recovery or saturation recov-
ery [Crawley & Henkelman 1988]. Then dedicated acquisitions were proposed that
are compatible with clinical acquisitions. Among many others, popular meth-
ods to measure T1 include DESPOT1 [Deoni et al. 2005] or the MP2RAGE se-
quence [Marques et al. 2010], both relying on the acquisition of T1-weighted images
with different flip angles. This type of clinically compatible acquisitions lead to a
large range of applications for quantitative T1 measurements. For example in MS,
patients were found to have significantly higher T1 relaxation values throughout the
white matter [Vrenken et al. 2006b, Vrenken et al. 2006a] showing a disease activity,
even in these apparently normal parts of the brain on conventional imaging.

The T2 relaxation time has perhaps seen most of the developments in the
past years. It provides, usually after non linear estimation from a sequence
of multi-echo spin echo images (e.g. Carr-Purcell-Meiboom-Gill (CPMG) se-
quence [Carr & Purcell 1954, Meiboom & Gill 1958]), complementary information
to T1 measurements highlighting changes in tissue microstructure. Some ex-
amples of the direct application of T2 measurement include hippocampus study
and the relationship between T2 measurements and abnormalities leading to
epilepsy [Sumar et al. 2011, Pell et al. 2004] or the study of MS lesions, normal
appearing white matter and their evolution over time in MS [Combès et al. 2016,
Kerbrat et al. 2017]. Other applications also include the study of pediatric T2 re-
laxation times evolution depending on the brain region [Leppert et al. 2009].

In addition to single T2 relaxation time estimation, more and more teams have
considered the fact that each voxel in the brain is composed of several tissues with
different T2 values. As illustrated in [MacKay & Laule 2016] and shown in Fig-
ure 3.2, a voxel, due to its relatively large volume compared to the average cell size,
is composed of a set of tissues each with different T2 values: myelin has a short
T2 value in between 10 and 40 ms, intra- and extra-cellular matter (gray matter
cells, axons...) have medium T2 values around 100 ms, and free water far from any
cellular structure has a large T2 value around 2000 ms. All of these tissues and their
proportions (see Fig. 3.2.c) are interesting, however one is crucial when studying the
status or evolution of many brain diseases: the myelin. Myelin is indeed responsi-
ble for the fast transmission of the signal along axons and thus all brain function
and other body functions depend on its integrity. A vast part of the literature of
T2 relaxometry has therefore looked at the possibility to estimate Myelin Water
Fraction (MWF) from T2 relaxometry sequences.

A large body of literature has studied the MWF in different
diseases (MS [Laule et al. 2004], chronic stroke [Borich et al. 2013],
autism [Deoni et al. 2015]...). Since it may very well help in solving the
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Figure 3.2: Multiple T2 components of a white matter voxel. (a): illustration (cour-
tesy of [MacKay & Laule 2016]) on an electron microscopy image of the different
components (red arrow: myelin, orange arrows: intra and extra-cellular matter).
(b): illustration of a typical brain white matter voxel and its three T2 components
(short T2, medium T2, high T2). (c): ratios between the different compartments.

clinical-radiological paradox for MS, we have also studied this modality in depth.
Two major issues however need to be tackled to enable robust quantitative markers
of white matter microstructure in relaxometry:

• How to model the T2 distribution in a voxel? Two different approaches fight
each other on this topic: model-based where a priori constraints are set and
model free where a posteriori regularization ensures estimation robustness.
We debate on the current studies with both approaches in Section 3.2 and
then go on with the second major problem.

• How to robustly estimate an Relaxometry Compartment Model (RCM)? Data
acquired in relaxometry sequences, contrarily to diffusion in Chapter 2, are
indirect measurements of the fractions of each tissue. This renders the esti-
mation complex. We debate this aspect and present two approaches for RCM
estimation in Sections 3.3 and 3.4.

3.2 Modeling multiple T2 compartments

Many algorithms have been developed to estimate, from relaxometry sequences, ei-
ther the MWF or the complete tissue microstructure at each voxel. Among them,
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methods using multi-echo relaxometry sequences are the most common. These
multi-echo sequences consist in the acquisition of a series of 3D volumes, each for a
different echo time ei and with a constant repetition time TR. Going further into
specific acquisitions, the CPMG sequence acquires many images separated by a fixed
echo spacing i.e. ei = i∆TE. In its most general general form, the signal obtained
at a given voxel at the i-th echo (i ≥ 1) is computed as follows:

Si = S0

N∑
j=1

wj

∫
R+

pj(t)A(t, ei)dt (3.1)

where S0 denotes the baseline signal if no attenuation was present (proportional to
proton density), j denotes a j-th tissue category: pj(t) is its PDF, wj its weight
(
∑

j wj = 1). A(t, ei) is the attenuation function that will be applied for a given
relaxation time t at the echo time ei. Let us first discuss about pj and the number of
compartments N . The choice of these two components has lead to two large families
of estimation problems, although they can be summed up by the same equation.

If we choose in Eq. (3.1) a degenerate PDF for pj(t) as being a Dirac function
δ(tj) (i.e. null everywhere except at tj), the integral simplifies itself and we get:

Si = S0

N∑
j=1

wjA(tj , ei) (3.2)

Combining this choice with a large number of components N spread over
the whole T2 spectrum, we obtain the so-called multi-component model for
the relaxometry signal. This approach has been used in many works in-
cluding [Whittall & MacKay 1989, Prasloski et al. 2012, Layton et al. 2013,
Dingwall et al. 2016]. All these algorithms have in common that they fix a large
number of Diracs along the T2 spectrum and estimate the weight of each of the
pikes, usually through a non-negative least squares method. MWF is then usually
obtained by considering the sum of all peak weights whose T2 value is below a
threshold compatible with myelin e.g. 50 ms. However, while simple in appearance,
the estimation of the weights for so many peaks is highly under-determined and
some regularization is necessary. Different regularizations in the literature include
Tikhonov [Whittall & MacKay 1989], non-local [Yoo & Tam 2013] or spatial
regularization [Hwang & Du 2009, Raj et al. 2014].

The previous multi-component model imposes a regularization a posteriori of
the obtained peak weights. Instead, another solution is the Relaxometry Com-
partment Model (RCM) which assumes a small number of compartments N , typ-
ically the three aforementioned compartments (short T2, medium T2 and high
T2 water). Each of these compartments is now assumed to have pj account-
ing properly for the distribution of the class a priori and thus removes the
need for regularization in the estimation problem. Taking an example, one may
take a Gaussian PDF for each pj [Melbourne et al. 2013, Chatterjee et al. 2017a]
with specific parameters modeling the typical aspect of each class as described
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in the literature [Laule et al. 2007]. For this class of algorithms, the problem
therefore moves to the modeling and optimization strategy: choice of the right
PDF [Akhondi-Asl et al. 2015, Chatterjee et al. 2017b, Akhondi-Asl et al. 2014],
choice to optimize or not the PDFs parameters [Layton et al. 2013], and how to
perform this more complex estimation [Akhondi-Asl et al. 2015].

Because of its a priori modeling properties and after investiga-
tion of the multi-component techniques through the internship of Lucas
Soustelle [Soustelle et al. 2015], we have gradually chosen over the past years
to investigate multi-compartment techniques (hereafter named RCM) with the
PhD of Sudhanya Chatterjee.

In addition to these modeling and estimation aspects, one term has been dis-
carded so far and has also been the topic of several research works: the attenuation
term A(t, ei). In perfect acquisition conditions, this term is a pure exponential term
according to Bloch equations [Tofts 2004]:

A(t, ei) = exp(−ei
t

) (3.3)

Instead, CPMG sequences are subject to imperfect refocusing due to B1 inhomo-
geneities [Crawley & Henkelman 1987]. This leads to stimulated echoes in the ac-
quired signals starting from the second image. To handle this problem, the Extended
Phase Graph (EPG) algorithm was proposed to model the attenuation over multiple
echoes with imperfect refocusing [Layton et al. 2013, Prasloski et al. 2012]:

A(t, ei) = EPG(t, i,∆TE, T1, B1) (3.4)

where B1 is a scalar multiplicative factor that models the imperfect refocusing and
has to be estimated from the data, T1 is the longitudinal relaxation time at the
current voxel (which can be estimated from a quantitative T1 relaxometry sequence).
This EPG attenuation and the pure exponential one are illustrated in Fig. 3.3 and
demonstrate the ability of EPG to handle signal from stimulated echoes. For this
reason, although a topic of research on its own, we will only consider in the following
the EPG attenuation as it fits well the acquisition model.

3.3 Robust compartment models estimation

We have described a new method for the robust estimation of
RCM [Chatterjee et al. 2017a], from clinical data. I present here a brief in-
troduction to the method used and the main promising results we obtained on a
preliminary study on MS patients.

3.3.1 Non-negative compartment weights estimation

We use in this work an RCM tuned for the use on clinical data, where time con-
straints lead to the acquisition of a restrained number of echoes for the T2 relax-
ometry sequence. Typically, retrospective studies on diseases only consider seven
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Figure 3.2: Exemple de courbe réelle (en bleu) et de courbe estimée (en rouge) avec modèle
exponentielle

3.3.2 Correction du signal estimé par approche EPG

Dans la littérature, il a souvent été envisagé de supprimer le premier écho [38] plutôt
que de tenter une correction du modèle : ceci correspond à une suppression d’information
utile, conduisant à un biais conséquent. Cependant, la forme de la courbe peut être prévue,
et le modèle corrigé.
Comme évoqué dans le Chapitre 2, la séquence utilisée emploie le schéma de l’écho stimulé,
c’est-à-dire un pulse à 90̊ -z, puis 180̊ -x, puis 180̊ -x, etc. (fig. 3.3).

Cependant, plusieurs paramètres conditionnent l’efficacité de l’application du pulse
radiofréquence, comme la qualité des bobines de gradient, ou encore le diamètre du tube
de l’IRM dans lequel est soumis le champ. De fait, on assiste à une déviation du champ
magnétique B1, qui n’a alors pas une amplitude optimale et homogène dans tout l’espace
d’intérêt. L’impact direct est un flip angle ↵ non-nominal (on a ↵ = �B1⌧ , voir eq. 2.4),
traduisant l’apparition d’échos secondaires perturbant l’intensité mesurée aux premiers
échos. La modélisation classique de cette déviation est alors exprimée par convention de
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mémoire les différentes valeurs de �2
min (�2

min = argmin
X�0

kAX � Y k22)

• A ce stade, une courbe discrète de f(B1) = �2
min peut être construite

• Ultimement, une interpolation par spline cubique est réalisée afin de trouver la valeur
de B1 minimisant la fonction f(B1)

La valeur de B1 correspondante au voxel considéré est alors attribuée. La solution est cal-
culée à 10�3 près. Au final, le résultat est très satisfaisant (fig. 3.4). La figure 3.5 représente
la cartographie B1. Nous pouvons remarquer que le fitting est néanmoins imparfait : ceci
est essentiellement dû au bruit, mais aussi à l’aspect sous-déterminé du problème.

Figure 3.4: Exemple de courbe réelle (en bleu) et de courbe estimée (en rouge) avec modèle
corrigé EPG

3.3.3 Vers une régularisation du problème

Nous remarquons très vite que nous nous heurtons à un problème majeur dans l’estimation
de la MWF : la sous-détermination du problème — en plus du bruit — ne donne pas une
estimation lisse de la distribution de T2, mais plutôt des concentrations en des points pré-
cis et instables (voir fig. 3.6. Ceci est dû au côté instable de l’algorithme à chercher à
minimiser la fonction coût, et le fitting imparfait en est la conséquence : l’erreur RMS
est importante, et l’effet négatif majeur est cette concentration. Une possibilité pour ré-
soudre ce problème serait de lever la sous-détermination (plus de points échantillonnés)
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(a) (b)

Figure 3.3: Illustration of the CPMG signal decay curve over multiple echo times and
the simulated signal with ideal parameters using (a) the pure exponential equation
in Eq. (3.3) and (b) the EPG algorithm in Eq. (3.4). Legend: red curve - simulated
signal, blue curve: true signal to be estimated.

to eleven echoes acquired with a CPMG sequence with an echo spacing around 10
ms. Additionally, even with a large number of echoes, [Layton et al. 2013] have
highlighted the difficulty to estimate the parameters of T2 distributions. We have
therefore chosen in this work to consider a set of 3 compartments each with a PDF
pj with fixed parameters tuned to model the three compartments of water that may
encountered in a voxel: short, medimum and high T2.

This approach is in fact independent of the PDF chosen for pj and we now detail
the estimation procedure for any PDF choice. At a given voxel, the unknowns of the
estimation problem in Eq. 3.1 are now the baseline signal S0, the B1 inhomogeneity
factor and the weights w = {w1, w2, w3}. We first choose to fuse S0 and w into a
vector of variables α, as in Appendix A, whose terms are only constrained to belong
to R+. From this vector, S0 is obtained as the sum of α, and w is obtained by
dividing α by S0. We therefore get the following optimization problem:

α̂, B̂1 = arg min
α,B1

Ne∑
i=1

yi − N∑
j=1

αj

∫
R+

pj(t)EPG(t, i,∆TE, T1, B1)dt

2

(3.5)

where Ne is the number of echoes acquired. While solving this problem for both B1

and α is complicated, solving for each variable independently is simple. We have
thus chosen the following alternate optimization scheme:

• Fix B1 and optimize over α: this is achieved by using a non-negative least
squares algorithm [Lawson & Hanson 1995],

• With this updated α, optimize B1: this problem is non linear in nature and its
derivatives are computationally expensive to compute. We therefore optimize
it using the gradient-free BOBYQA algorithm [Powell 2009].
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3.3.2 Main results

We have modeled each compartment distribution (pj) using a Gaussian PDF, each
centered around the typical values of T2: for the short T2 (mean: 20 ms, standard de-
viation: 5 ms), medium T2 (mean: 100 ms, standard deviation: 10 ms), and high T2
compartments (mean: 2000 ms, standard deviation: 80 ms). We present in the fol-
lowing the main results we have obtained with this model first on numerical phantom
simulations, then on a longitudinal study on MS patients [Chatterjee et al. 2018a].

3.3.2.1 Evaluation on numerical simulations

We have performed many numerical evaluations that may be seen in Sudhanya Chat-
terjee’s article [Chatterjee et al. 2018a] and PhD [Chatterjee 2018]. I present here
only a representative evaluation we have performed on a numerical phantom illus-
trating the potential of the method. To evaluate the robustness of our estimation
framework in different noise, B1 and compartments configurations, we have built
a numerical phantom of T2 relaxometry sequences. We built the numerical phan-
tom to be as close as possible to the real signal formation model. For each pixel
in Figure 3.4, different configurations of compartment weights and B1 value were
selected to explore the range of values relaxometry signals may reach in a real case.
For each pixel, different T2 curves (each of 32 echoes each spaced by ∆TE = 10ms
generated using EPG with the specified B1 factor) were randomly sampled along the
distribution and averaged to obtain realistic signals of combinations from molecules
constituting the tissues.

From these reference signal images and the known ground truth T2 distribution,
we simulated different levels of Gaussian noise to obtain a Signal to Noise Ratio
(SNR) between 50 and 1000 (typical relaxometry images have a SNR between 50
and 100) and run our estimation algorithm to obtain the compartment fractions
(the compartment PDF parameters being the same between the simulation and
estimation algorithm). Validation of the robustness of the estimation method was
computed as a relative mean square error between the true parameters and the
estimated ones. This relative error is presented as a function of SNR in Figure 3.5.

Examining these results lead us to the conclusion that the proposed algorithm
finds reliably the weights of each T2 compartment. It is indeed visible on Fig. 3.5
that the relative mean square error does not go above 0.01 even at very low SNRs,
indicating a good reliability of the estimates over noise in all configurations. For
the same phantom, we also generated T2 relaxometry signals using only 7 echoes
each spaced by ∆TE = 13.7ms, a number of echoes more acceptable for clinical
acquisitions. We then estimated water fractions in each of the T2 compartments and
measured the relative absolute difference between the 7 and 32 echoes sequences.
These results are presented in Figure 3.6.

This figure demonstrates the similarity between the weights estimated for each
compartment, showing the robustness of the approach to a drastic reduction of
the number of echoes and the increase in their time spacing. From our experi-
ments [Chatterjee 2018], the only significant differences between 32 and 7 echoes
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Figure 3.4: Illustration of the numerical phantom developed for the numerical eval-
uation of our RCM model estimation framework.

FAE

Figure 3.5: Relative mean square errors between ground truth values and estimated
ones for estimated water fractions (left) and B1 factor (right). Both graphs are a
function of SNR (log-scale).

sequences are seen for a low SNR of 50, which is the lower bound of the noise we
have encountered in our images where SNR is more around 75 or 100.

3.3.2.2 Longitudinal study on MS patients

Based on the experiments on simulated data and the robustness shown to a change
of protocol, we have moved on to applying the developed technique to the analysis
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Figure 3.6: Relative absolute differences between 32 and 7 echoes sequences for (a)
short T2, (b) medium T2, (c) long T2 water fractions. All errors are shown by region
of interest as shown in Fig. 3.4.

of MS patients, on a specific database acquired at Rennes University Hospital. This
database consisted of 10 patients followed from their clinically isolated syndrome
over a period of three years. During these three years, scans were performed every
three months during the first year, then every six months during the second year,
and finally a scan after three years. At each of these scan sessions, images acquired
included a Gd enhanced T1-weighted image to highlight active lesions, a FLAIR and
T2-weighted image to delineate lesions, and a T2 relaxometry sequence with 7 echoes
spaced by ∆TE = 13.7 ms. The resolution of the T1-weighted and FLAIR images
were isotropic at 1×1×1 mm3, while the T2-weighted and relaxometry images were
acquired on the axial plane with a resolution of 1.5×1.5×3 mm3. Additionally, an
expert radiologist delineated on the first time point the lesions and the active parts
of the lesions. This gave rise to two different sets: L−: MS lesion parts at the
first time point that did not present an enhancement with Gd (i.e. inactive lesion
regions), E+: MS lesion parts at the first time point that presented Gd enhancement
(i.e. active lesion regions). This separation was made on the first time point and the
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delineated regions were then followed over the three years as shown in Figure 3.7.

M00 M03 M06 M09 M12 M18 M24 M36

same regions are observed over 3 years

MS lesion on T2-w MRI Regions studied

appears on T2-w
but not on Gd

(L-)

appears only on
Gd post contrast

(E+)

regions
marked
at M00

Illustration of lesion ROIs studied

Figure 3.7: Illustration of the MS lesions study plan. Lesions (active: E+, and
inactive parts: L−) are marked on the first time point and followed over 3 years.

Based on this database, we have evaluated the ability of compartment fractions
to distinguish these two kinds of lesion parts in terms of their evolutions. An example
of the evolution of these values for a given lesion is presented in Figure 3.8. This
figure illustrates the potential of water fractions to fully characterize the evolution of
edema and myelin recovery in lesions. After an initial state where the lesion shows
no visual sign of myelin and a clear sign of edema, the recovery becomes more and
more pronounced over the scans, showing a gradual, partial recovery both in terms
of high and short T2 water fractions.

Figure 3.8: Illustration of the evolution of lesion water fraction values for an active
lesion (at the first time point of the study) of a patient.
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We have continued the investigation over all patients and all regions of E+

and L− in the database. To do so, we have evaluated, for both groups (E+ and
L−), the average short, medium and large T2 water fractions over the period of
36 months. Parts of the results of this study are presented in Figure 3.9, a more
detailed view may be found in [Chatterjee et al. 2018a]. Overall, these results show
different trends of evolution for E+ and L− lesions, coherent with assumptions
from the clinic. At the first time point, E+ lesions clearly have less myelin content
(short T2 water fraction) and more edema (large T2 water fraction). Additional
experiments on successive time point differences between lesion groups showed that
E+ and L− lesions differ in their rate of recovery: L− lesions tend to recover faster
their large T2 water fraction than active lesions (E+), indicating more severity of
the active lesions. At the end of the 36 months, both groups come back to similar
trends of values. Medium T2 water fractions do not change over time between E+

and L−. However, medium T2 is more of an intermediate class gathering many
different tissues and the contents of that compartment could vary over time without
having its fraction change. Overall, these results are very encouraging on the use of
relaxometry for the distinction of aggressiveness of the lesions in the patient, thereby
providing robust and specific markers of the disease.

E+

L-∗

E+

L-

(a) Short T2 (b) Medium T2

E+

L-

∗∗

(c) Large T2

Figure 3.9: Evolution of E+ and L− water fraction weights over the ten patients of
the database and the three years. Stars indicate significant differences between E+

and L− at given time points (Mann-Whitney U test, p < 0.05).
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3.4 Towards compartment parameters estimation

While the previous method has demonstrated its robustness and potential in clinical
studies to characterize lesions, it leaves behind a part of the problem: the estima-
tion of the compartments parameters describing each T2 distribution and therefore
intrinsic tissue composition change in lesions. Doing that estimation is however very
difficult as the optimization of these parameters is very sensitive to noise and other
artifacts. Moreover, the distribution chosen in Section 3.3 for each compartment is a
Gaussian, whose support is not on R+. On the positive side however, we can restrict
ourselves to the estimation of only a subpart of the parameters and the estimation
problem, as in Chapter 2, is linear in some parameters (compartment weights). We
have therefore proposed in [Chatterjee et al. 2018c] a new approach towards PDF
parameters estimation for RCM, very similar in spirit to DCM estimation.

3.4.1 Gamma relaxometry compartment model

Since a Gaussian PDF has a support on R, it is not the most adapted distribution
to model tissue T2 distributions (pj in Eq. (3.1)), especially for the short T2 com-
partment whose mean T2 lies relatively close to 0. We have therefore changed for a
Gamma distribution that can fit well the expected shapes of the distributions and
has a support on R+. Additionally, we have parameterized the Gamma distribu-
tions by their means and standard deviations (instead of the classical shape and
scale parameters) for easier parameter setting and interpretation:

pj(t) =
t−1+µ

2
j/σ

2
j(

σ2
j

µj

)µ2j/σ2
j

Γ

(
µ2j
σ2
j

) exp

(
−µjt
σ2j

)
(3.6)

with µj : the mean of the Gamma PDF, and σj : its standard deviation. Putting
this back in Eq. (3.1) and using the same idea as in Section 3.3 for handling S0
and weights, we then get an updated signal model whose parameters are α, B1,
θ = {µ1, σ1, . . . , µN , σN}.

3.4.2 Maximum likelihood estimation framework

If we look at our signal formation model closer, an interesting thing is its similarity
with the one in Chapter 2. While the individual compartment formulations are of
course different, its structure is the same. Following the approach in Appendix A,
we have then developed a maximum likelihood estimation framework. It amounts
to solving the following least squares problem:

α̂, B̂1, θ̂ = arg min
α,B1,θ

Ne∑
i=1

yi − N∑
j=1

αj

∫
R+

pj(t)EPG(t, i,∆TE, T1, B1)dt

2

(3.7)
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For the same reason as in Section 3.3 (complex derivatives with respect to B1),
we have again chosen an alternate optimization first fixing B1 and estimating α

and θ, then fixing α and θ and estimating B1. While the B1 optimization remains
similar as in the previous sections, we have taken advantage of the linearity of the
α parameters by using a variable projection framework as presented in Appendix A
simply by identifying the elements Fi,j of the problem matrix F to the following:

Fi,j =

∫
R+

pj(t)EPG(t, i,∆TE, T1, B1)dt (3.8)

Only the derivatives with respect to nonlinear parameters need to be defined. We
have performed this derivation [Chatterjee et al. 2018c] after a study of the cost
function behavior as a function of its parameters and in the presence of noise. From
this analysis we have demonstrated that, even though all derivations to solve the
problem can be perfectly done, estimating all parameters for all pj was too unre-
liable and sensitive to noise. This probably comes from the fact that the observed
signal is not a direct measurement but rather an integration over the compartment
distribution. Our approach towards parameter estimation therefore considers the
only parameter that was stable enough: µ2 the mean of the medium T2 compart-
ment. After some calculations, we obtain the following expression for the derivative
of the cost function against any of the mean parameters:

∂Fi,j
∂µk

=

∫
R+

∂pj(t)

∂µk
EPG(t, i,∆TE, T1, B1)dt (3.9)

∂pj(t)

∂µk
= pj(t)

(
µj
σ2j

[
2 log

(
t
µj
σ2j

)
− 2Ψ

(
µ2j
σ2j

)
+ 1

]
− t

σ2j

)
(3.10)

if k is equal to j, and 0 otherwise. In Eq. (3.10), Ψ is the digamma function.

3.4.3 Main results

We have evaluated this method on several aspects including two main ones: repeata-
bility and evaluation of mean parameter variation in MS lesions.

3.4.3.1 Repeatability experiments

Repeatability experiments were performed to evaluate the robustness of parameter
estimation, even when freeing the estimation of some of the individual PDF pa-
rameters. We have considered a test-retest acquisition of T2 relaxometry data of
4 healthy controls. For each subject, the acquisition was performed twice moving
the subject out of the scanner in between the two scans. The acquisition details
were as follows: image size of 192 × 192, voxel resolution of 1.1×1.1×5 mm3, 32
echoes spaced by 9ms. On these datasets, fifteen white matter regions were marked
(see Figure 3.10) on the first (test) scan and the values obtained for the different
parameters were compared between the test and retest scans.
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6.3. Experiments 75

• Objective 2: Few spheres have T2 values which do not lie in whether com-
partment clearly. Hence the other objective of the experiment is to observe
whether and the manner in which the water fraction values estimated for the
spheres reflect the changing T2 values of the solution in the spheres.

The acquisition details are as follows: Siemens 3T MRI machine; 2D multislice
CPMG sequence; number of echoes = 32; first Echo at 9ms; echo spacing = 9ms;
single slice acquisition; in plane resolution = 1.33mm ⇥ 1.33mm; slice thickness =
3mm; matrix size = 192 ⇥ 192.

6.3.3 Repeatability test

The objective of this experiment is to observe whether the proposed model is re-
peatable in terms of estimation of the microstructure maps. For that purpose, test
retest T2 relaxometry scans of 4 healthy controls were obtained to evaluate the re-
peatability of the proposed method. The age of the healthy controls was in the
range of 26-32 years.

15 regions of interests (ROIs) were marked in the brain for each healthy control
over which the test and retest values of the compartments’ water fractions were
compared. All the ROIs were marked for one case. The ROIs were then registered
on the other cases using a rigid followed by an affine registration [Ourselin 2000,
Commowick 2012] to ensure that similar regions were analyzed for repeatability in
all cases. An illustration of these ROI on a subject is shown in Fig. 6.5.

ROI 15
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ROI 11
ROI 10
ROI 9
ROI 8
ROI 7
ROI 6
ROI 5
ROI 4
ROI 3
ROI 2
ROI 1

Figure 6.5: Test retest scans were performed for 4 healthy controls to study the
repeatability of the proposed method. This figure shows the 15 regions which were
marked on the healthy controls over which the repeatability was studied.

The details of the acquired data are as follows: 3T MRI scanner; 2D multislice

Figure 3.10: Illustration of the 15 regions of interest marked on the test scans for
test-retest evaluation.

Based on these regions, we have performed [Chatterjee et al. 2018a] a quantita-
tive study of the repeatability (between the test and retest scans) of the compart-
ment weight measurements through two techniques: Bland-Altman plots and linear
regression on the measures. We illustrate in Figure 3.11 this second evaluation,
whose results are very similar to the ones of the Bland-Altman plots. Those results
highlight on each graph the deviation between the ideal identity regression and the
observed one. On all parameters, we observe only a very small deviation between
the two regressions which highlights the fact that the proposed algorithm is well
repeatable on these datasets.
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Figure 3.11: Water fractions repeatability over 15 different regions of interest on a
test-retest experiment. (a,b,c): short, medium and high T2 water fractions.

3.4.3.2 Multiple sclerosis patient case

In addition to this first evaluation, showing a stable estimation in terms of weights on
test-retest data, we have then evaluated the added value of the proposed framework
(especially of the estimated mean T2 compartment parameter) on an MS patient.
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We have studied a T2 relaxometry MRI scan with multiple lesions with the fol-
lowing acquisition parameters: image size: 192×192 (single slice), voxel resolution:
1.1×1.1×5 mm3, 32 echoes each spaced by 9ms. We present in Figure 3.12 the
obtained water fraction maps of the three T2 compartments as well as the medium
T2 mean relaxation time as estimated for the patient.

T2 relaxometry
Estimated water fraction maps

Short T2 Medium T2 High T2

Estimated mean

Medium T2 PDF

0.00 0.40 0.00 1.00 0.00 1.00 90 155

Figure 3.12: Illustration of the estimated water fraction maps and medium T2 mean
relaxation time on an MS patient.

On this figure, several trends may be observed. First of all, as for the previous
model with fixed parameters, a decrease of the short T2 water fraction is observed
indicative of demyelination in the lesions. This observation is coupled with a clear
change of the medium T2 compartment mean relaxation time: the values of this
parameter are clearly larger inside the lesions when compared to normal appearing
white matter. To further characterize lesions based on this last parameter, we
have then explored for two lesions in Figure 3.12 the profiles of the PDF mean
parameter as we cross the lesion in different directions. Three profiles are illustrated
in Figure 3.13.
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Figure 3.13: Illustration of the medium T2 compartment average relaxation time
going through three different lesions, illustrating different lesion patterns.

On this figure, we can observe different profiles of variation depending on the
direction of the profile or lesion. Profiles (a) and (c) indicate a lesion resulting from
the fusion of two lesions (Fig. 3.13.c). For both of them, a clear increase of the mean
relaxation time of medium T2 is seen, indicative of a change in this compartment
when going toward the center of the lesion. This is probably related to a recent
lesion with more aggressiveness in the lesion center. On the contrary, profile (b)
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in Fig. 3.13 indicates a more homogeneous lesion with small or even no change at
all when going towards the core of the lesion. These results are very interesting as
they highlight some variations in the behavior of lesions, probably related to their
aggressiveness (although this fact remains to be investigated).

3.5 Conclusion and perspectives

Myelin content inside brain tissues of a patient is a critical indicator of the status
and evolution of many neurodegenerative diseases. Obtaining ways to quantify its
presence or absence, at least indirectly, is therefore an important step towards a
better understanding of these diseases. We have therefore proposed, particularly
thanks to the PhD of Sudhanya Chatterjee but also to previous internships such
as the one of Lucas Soustelle, new methodologies towards the robust estimation
of multi-compartment models of T2 relaxometry (RCM). These methods rely on
two new frameworks for estimation: one very constrained but also very robust esti-
mating only the three compartments’ weights; the second one able to provide more
information on the individual compartments parameters. Both approaches are or
can be directly based on similar frameworks as for DCM using variable projection
for an improved robustness.

We have demonstrated that both methods produce repeatable compartment
weights on test-retest experiments and also on different acquisition sequences (vari-
able echo spacing and number of echoes). These results indicate that both algorithms
are very well usable and robust. We have so far applied these methods to a study
of MS patients first at a single timepoint showing that both water fractions and
mean PDF parameter change 1- with a gradient when going inside the lesion; and
2- when considering different lesions, in conformity with histological observations
on different natures of lesions [Lassmann et al. 2001]. The second study we have
performed concerns the longitudinal analysis of the evolution of lesions that also
highlighted different patterns of evolution depending on the activity (in the sense of
Gd presence) of the lesion at the starting timepoint: active lesions appear on this
small sample to recover slower than inactive lesions, although those two groups are
not different after some time.

One topic of future research will concern more in-depth studies of the true rela-
tion ship between tissues constituting the voxels and the obtained water fractions.
This is especially true for water bound to myelin (the short T2 compartment) that
also includes other specific tissues in the brain or iron depositions. Methods to quan-
tify myelin are also not very reproducible from one scanner to another especially
if changing vendors. This does not impair the interest in myelin related measure-
ments from T2 relaxometry as they have proven very useful for studies of diseases.
There is however a need for a more in depth study of the quantities measured by
relaxometry and their relationship with true known tissues. Designing synthetic
experiments, phantoms or coupling acquisitions with histology acquisitions for that
would be very important. The latter option seems more and more doable as more
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repositories come out providing (for now only diffusion1) both MRI and histology
acquisitions, that are very valuable for this task.

While the proposed methods provide robust results when considering only
weights estimation, it is still very challenging to estimate the PDF parameters from
the current acquisitions. Our studies with Sudhanya Chatterjee [Chatterjee 2018]
have shown how estimating several parameters of the T2 compartments is very hard
and sensitive to noise and other artifacts. This problem of robust estimation of all
parameters remains an open one that will need proper new methods to be resolved.
Once resolved, our preliminary results on just one parameter suggest that we could
imagine studies as for diffusion where the informative microstructure parameters
are not only the compartment weights but a combination of weights and internal
compartment changes (that cannot be seen nowadays).

On the path of our research, we have also seen how much diffusion imaging
and relaxometry are complementary. First, diffusion imaging is blind to myelin
due to a still too long echo time compared to the one of myelin. However, diffu-
sion imaging provides information on the directionality of tissues and some of their
microstructural properties that relaxometry is unable to provide. Combining the
two modalities in joint evaluation frameworks will now be possible in a near fu-
ture, and has in fact been preliminarily started as I will present in the following
chapter. Those joint frameworks have also been started in the literature (e.g. g-
ratio [Campbell et al. 2018]) although they do not fully exploit the measurements of
both modalities but rather try to replicate histology measurements. We hope with
these new evaluations to provide comprehensive analyses of directional, microstruc-
tural and myelin contents of the tissues. Additionally, this complementarity exists at
the estimation level. Although not used at its best in the current versions of the RCM
estimation methods, variable projection could be fully used for all methods presented
in this chapter. One nice feature of this chapter and Chapter 2 is thus that they
rely on exactly the same model structures (multiple compartments) and therefore
same estimation frameworks. In a longer term, it would thus be interesting to study
joint diffusion and relaxometry estimation to take advantage of all the information
at once [Kim et al. 2017, Benjamini & Basser 2016, Canales Rodriguez et al. 2018].
This would allow for more robust estimation frameworks but would also require
compatible sequences and updates to the estimation method.

1https://doi.org/10.17605/OSF.IO/YP4QG

https://doi.org/10.17605/OSF.IO/YP4QG
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Last but not least, this chapter explores our research on quantitative MRI pro-
cessing, including interpolation, atlasing and combining modalities, to go towards
a better comprehension of disease status and evolution. This work was conducted
mainly with two PhD students: Sudhanya Chatterjee and Renaud Hédouin, in close
collaboration with the Children’s Hospital Boston (team of Simon Warfield). Among
the papers that arose from this work, two are particularly detailed here:

• DCM interpolation: Renaud Hédouin, Olivier Commowick, Elise Bannier,
Aymeric Stamm and Christian Barillot. Interpolation and Averaging of Multi-
Compartment Model Images. In MICCAI proceedings, pages 354 – 362, 2015.

• Relaxometry and dMRI for active lesions detection: Sudhanya Chatterjee,
Olivier Commowick, Onur Afacan, Simon Warfield and Christian Barillot.
Identification of Gadolinium contrast enhanced regions in MS lesions using
brain tissue microstructure information obtained from diffusion and T2 relax-
ometry MRI. In MICCAI proceedings, pages 63 – 71, 2018.
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4.1 Interest of quantitative image processing tools

We have seen in previous chapters how diffusion imaging and relaxometry, among
other quantitative modalities, are promising in characterizing diseases. These
modalities indeed provide interpretable quantities that may inform the clinician
on the disease status. When performing population studies, or when evaluating a
patient against a set of healthy subjects, two options are generally available: the
first one is to extract, from the diffusion model images, scalar maps that represent
microstructure properties. These scalar maps can in turn be analyzed for example
through their registration in a common reference frame, i.e. an atlas. Such analyses
could greatly gain from the new models provided by quantitative images, allowing
for better matches of the images and more interpretable parameters of the brain
microstructure. In the end, quantitative analyses could lead to much improved
specificity and interpretability for the clinician.

Let us take, as an example, the case of diffusion imaging. There have been
many studies on DT images processing that have shown great interest in us-
ing the full information of the tensor rather than scalar maps. First, many al-
gorithms have demonstrated a much improved alignment of images when con-
sidering the full tensor compared to anatomical images [Ruiz-Alzola et al. 2002,
Zhang et al. 2006, Yeo et al. 2009], the main reason being that the diffusion ten-
sor depicts directional and microstructural information in the white matter where
anatomical images provide uniform intensities. Following in this track, statisti-
cal comparison methods were proposed, generalizing several tests to tensor im-
ages [Lepore et al. 2008, Whitcher et al. 2007] or performing longitudinal analy-
ses [Grigis et al. 2012, Keihaninejad et al. 2013], again demonstrating better speci-
ficity in using the complete tensor information rather than part of it. All these
developments were supported by great works on underlying processing frame-
works on tensors, either defining mathematical operations in a Riemannian man-
ifold [Pennec et al. 2006] or Lie group [Arsigny et al. 2006b] (allowing operations
such as interpolation) or by studying their re-orientation after transformation (fi-
nite strain re-orientation [Ruiz-Alzola et al. 2002] or preservation of principal direc-
tion [Alexander et al. 2001]).

Based on this interest for diffusion model processing, several groups have been
exploring processing methods on more complex models such as ODFs. Among those
works, a Riemannian processing framework has been defined on ODFs and applied
for the study of differences between populations [Goh et al. 2011]. Registration of
ODF images was also explored by several works [Raffelt et al. 2011, Du et al. 2012].
However, DCM image processing remains yet to be really explored. Only a few pa-
pers study their processing and alignment [Taquet et al. 2014] and they remain often
linked to a specific type of compartment model, preventing their use on the vast ma-
jority of models available in the literature [Panagiotaki et al. 2012]. Such DCM im-
age processing would however allow even more specific analyses and atlases, as sug-
gested by previous studies on other models [Goodlett et al. 2006, Zhang et al. 2007].
I will therefore present some of our research on this topic in Section 4.2.
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Alongside these developments, we have seen earlier that one of the interests
of dMRI is to allow the analysis of microstructure changes along fiber tracts, es-
pecially along those that are known to be crucial in patient motor function or
particular cognitive skills for example. Such studies on large groups could al-
low a better understanding of neurological diseases and thus help to resolve the
aforementioned clinical-radiological paradox [Guttmann et al. 1995]. Some previ-
ous research, named tract-based spatial statistics (TBSS) already went in this di-
rection [Smith et al. 2006, Jbabdi et al. 2010], although using only the DT model
which is too simple and whose parameters are too entangled, or very simple com-
partment models. Also they do not consider fiber extraction per se but rather voxel
statistics on skeletons of the white matter architecture. With all these remarks in
mind, we have decided to go towards a personalized evaluation of the patient disease
burden at the compartment level along fiber tracts. I present these developments in
Section 4.3.

In addition to the previous developments on dMRI, there is a great interest in
the combination of information from different modalities to fully understand tissue
characteristics in each area of the brain. A very good example of the complementar-
ity of indicators from different quantitative images is the so-called g-ratio. Several
papers [Stikov et al. 2015, Campbell et al. 2018] have demonstrated the capability
to compute, from the combination of diffusion imaging and myelin sensitive im-
ages, this number that corresponds in histology to the ratio of the axon plus myelin
diameter and the axon diameter. This ratio, although subject to a debate of inter-
pretations, suggests the interest of using relaxometry images and dMRI for getting
the full picture of e.g. disease progression in a patient with myelin destruction.
We have studied, and I present in Section 4.4, the joint processing and learning
from these images for an also important project: the detection of Gadolinium (Gd)
active lesions, without the need of Gd injection which has been shown recently to
accumulate in brain tissues across time [Gulani et al. 2017].

4.2 Going towards diffusion compartment model images
registration and atlasing

Registration of DCM images, like every registration algorithm, relies on several key
parts such as the definition of the transformation being sought, how to optimize
it, or the similarity metric defining how well the images are in correspondence.
While these core components are underlying every registration algorithm, two ad-
ditional key parts need to be defined both for the registration of oriented models
(such as DCM images) and the constitution of atlases: 1- an interpolation / av-
eraging scheme, and 2- a re-orientation strategy when applying a transformation.
While the re-orientation strategy, extensively studied for tensors, can be directly
applied compartment-wise to DCM, the interpolation / averaging scheme needs to
be redefined. Such a scheme is of importance for example when applying a trans-
formation to an image or when picking the diffusion model at a current position in
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a tractography algorithm, or even when computing an average DCM image in atlas
construction. The second problem, not covered here, is the definition of similarity
metrics between DCM images. I [resent in the following methods we have introduced
to solve the first problem with a focus on being generic enough so that it can be
applied to virtually any compartment model in the DCMs.

4.2.1 Diffusion compartment models interpolation and averaging

Combining images into an atlas or interpolating a position between several voxels
requires the same operation. In the first case, a set of DCMs each weighted by 1/N ,
where N is the number of DCMs, has to be merged into a meaningful average DCM.
In the second case, interpolation provides the value at a given position by combining
weighted DCMs from the neighboring voxel positions. In both cases, the average
DCM has to be meaningful i.e. keeping as much information as possible from the
input data, yet remaining simple enough to be computationally tractable. If we
push further and use a simple idea, we can compute an average DCM from a set
of weighted DCMs as the reweighted sum of all compartments that constitute the
weighted input DCMs. This would keep the total information of the input data, but
would also lead to non tractable models (e.g. averaging 100 DCMs for atlas construc-
tion, each with 4 compartments, would lead to 400 compartments). We have instead
chosen with Renaud Hédouin to define the interpolation / averaging problem as a
simplification problem, trying to keep as much information as possible while having
a reduced number of compartments. Our idea, devised in [Hédouin et al. 2015], is
similar to that of [Taquet et al. 2014, Taquet et al. 2015], yet being more generic in
the compartments it can be applied too. Our simplification problem is shown in
Figure 4.1.

Figure 4.1: Global interpolation scheme of DCM as a simplification problem.

Our interpolation scheme is split into two parts. We first consider that at most
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one compartment of each isotropic compartment type is present in each of the input
DCMs. For those, the simplification is therefore straightforward: only their parame-
ters need to be averaged per compartment type and the weights computed, no further
simplification is needed. The second part of our scheme concerns directional com-
partments. These compartments, assumed in our framework to all follow the same
model (e.g. anisotropic tensor), are much more numerous (generally up to three for
each of the input data). We therefore apply a simplification of these input compart-
ments into a predefined number of compartments. This simplification is performed
by clustering the compartments using fuzzy spectral clustering [Ng et al. 2002] and
then averaging each cluster into a single directional compartment. Weights are then
recomputed from the input data to provide the final averaged DCM.

This simplification approach is generic in nature. It only needs the definition
of two parts for the application of the method to a given directional compartment
type: 1- the definition of a distance between compartments to compute the initial
affinity matrix for clustering, 2- the definition of compartment averaging into a sum-
mary compartment for cluster aggregation. We have defined in [Hédouin et al. 2015,
Hédouin 2017] these two key points and evaluated our scheme for the multi-
tensor model where each directional compartment is an anisotropic tensor (us-
ing log-Euclidean distances and averaging schemes [Arsigny et al. 2006b]), and
for the Diffusion Direction Imaging (DDI) model with several different met-
rics [Stamm et al. 2012].

4.2.2 Main results

We have evaluated our interpolation and averaging on several tasks and using dif-
ferent evaluation measures in [Hédouin et al. 2015, Hédouin 2017]. I present a short
summary of some of these results: 1- evaluation of two different metrics for inter-
polation of DCM images, 2- construction of an atlas from DCM images.

4.2.2.1 Evaluation of diffusion compartment model interpolation

We have first considered a simple experiment to evaluate our interpolation method.
The diffusion images used in the experiment came from the HCP, where dMRI
was acquired with a total of three b-value shells (from 1000 to 3000 s.mm−2) and
270 gradient directions, each volume being of size 145 × 174 × 145 and voxel size
1.25×1.25×1.25 mm3. From these images, we used the previously presented esti-
mation algorithms (see Chapter 2) to estimate a DCM at each voxel with the fol-
lowing characteristics: one free water compartment, one isotropic restricted water
compartment, and three directional compartments each modeled as a DDI compart-
ment [Stamm et al. 2012].

We have applied three successive rotations to the images, each having the same
axis and an angle of 120 degrees. After these three rotations, the DCM image
should come back to its original state and, if the interpolation is right, the difference
between the two images should be as small as possible. Since the DDI compartment
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is complex, we have evaluated several options to compute distances and averages
between them (four options in total). We illustrate the results of two of the best
methods in Fig. 4.2.

(a) Original (b) Method 1 (c) Method 2

(d) Original zoomed (e) Method 1 zoomed (f) Method 2 zoomed

(g) Original enhanced (h) Method 1 enhanced (i) Method 2 enhanced

Figure 4.2: Illustration of DDI interpolation methods after three consecutive ro-
tations around the same axis, compared to the original DDI. Top line: complete
images. Middle line: zooms on the yellow region. Bottom line: zoom with compart-
ments normalized to the same size to focus on the DDI compartments orientations.

This figure illustrates the differences arising from interpolation metrics. While
both methods appear to provide good results compared to the original image (top
line of Fig. 4.2), the rest of the figure highlights that in fact method 1 provides results
closer to the reality in some aspects (and in fact smaller errors compared to the orig-
inal image in terms of simulated signal from the models, see [Hédouin et al. 2015]).
Going in more depth, orientations of the individual compartments are better with
method 1, while their microstructure properties seem better with method 2. The
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choice of the distance used in clustering and of the averaging scheme of individual
compartments is therefore crucial for obtaining correct interpolation results. The
definition of what is correct is also very important: as [Taquet et al. 2015] also men-
tioned in their study, one question is whether we want to preserve microstructure
properties or diffusion signal properties. This is an open problem that probably does
not admit one solution, but rather the best option to take depends on the context.

4.2.2.2 Construction of a diffusion compartment model atlas

After evaluation of the interpolation scheme, we have then carried on with ap-
plying the technique to build an atlas of DCM images. To do so, we have fol-
lowed [Guimond et al. 2000] atlas construction, adapting to use diffeomorphisms en-
coded as SVFs and the log-Euclidean framework [Arsigny et al. 2006a]. To compute
the atlas, registration is needed. Since no DCM registration was available, we have
chosen to build the atlas using the registration framework detailed in Appendix B,
applied to DT images [Suarez et al. 2012] first (with an adapted similarity met-
ric and re-orientation scheme [Alexander et al. 2001]). Then, as a post-processing
step, we have applied the obtained transformations to the DCM images using our
interpolation.

We have considered a database of 46 diffusion images with an image size of
128×128×55, voxel resolution of 2×2×2 mm3 and 30 gradient directions with a
b-value of 1000 s.mm−2. From these, DCM images were estimated with one free
water compartment and three DDI compartments at each voxel and used to build
the atlas. The obtained atlas is illustrated in Figure 4.3. This atlas provides a
clear distinction of crossing fibers and will be of great interest in future studies, for
example in the ones presented in the next section.

4.3 Patient to population comparison of diffusion prop-
erties along white matter tracts

We have defined an interpolation method that permits the computation of DCM
atlases as reference frames for further studies, for example comparing groups of pa-
tients and controls, or a single patient with respect to an atlas of control subjects.
We are now primarily interested in the latter option as it may provide, with the
right tools and models, comprehensive and specific information on the status of the
disease for a patient. DCMs in this context can already provide much less entangled
voxelwise microstructure parameters such as the free water proportion (able to di-
rectly characterize edema) or intra / extra-axonal fractions at the voxel level. While
these quantities can already be an improvement over DT, we have gone one step
further [Hédouin 2017] and provide a tract-based patient to population comparison
framework for the characterization of changes within the patient microstructure at
the compartment level.
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Figure 4.3: Example of a DDI atlas superimposed on the average b0 image: axial
view (first line) and coronal view (second line).

4.3.1 Atlas-based patient to population study

Our framework is based on two parts: 1- an offline reference atlas creation providing
all the necessary material about a control population for further patient study, 2-
the registration and patient analysis along reference fiber tracts on the atlas. Such
an approach has the advantage of allowing a fast patient analysis requiring only an
additional registration to perform the patient analysis.

4.3.1.1 Atlas construction and reference fiber tracts extraction

The first step of our framework, performed once for all patients analyzed is the
creation of an atlas of reference tracts from a set of control subjects. Following
precepts in previous studies [Goodlett et al. 2006], we have built an atlas from the
diffusion images directly following the strategy highlighted in Section 4.2.2.2:

• Create an atlas from DT images using a method inspired
from [Guimond et al. 2000] using the log-Euclidean frame-
work [Arsigny et al. 2006b] and a DT registration method [Suarez et al. 2012]
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• Apply the obtained transformations to DCM images with our interpolation

• Compute an average DCM image.

From this atlas, we then extract the fiber tracts of interest using a full brain
tractography adapted to work with DCM images. To do so, we adapted a classical
deterministic tensor tractography algorithm [Mori et al. 1999] to handle DCM im-
ages in a generic manner (i.e. independent of the underlying compartment model).
The algorithm is a seed-based one, and its main adaptation is to take the direction
for the next progression step as the one from the closest DCM compartment to the
previous direction. This allows especially for a better handling of crossing fibers in
the brain. This tractography is, again, made once and for all on the atlas and will
be used as a basis to extract compartment-based microstructure information for all
control subjects and for the patient.

4.3.1.2 Patient fiber tracts analysis

Once the atlas of control subjects is built, the second step of the framework con-
sists in registering the patient DCM image to be evaluated on it. This image is
registered in the same way as for the atlas construction, to avoid bias in the results.
With this registration performed, the fiber tracts of interest are used to extract mi-
crostructure properties along the fibers (as shown in Figure 4.4) both in the patient
and the control subjects. Statistical tests can then be performed to characterize
the difference between the patient and controls. This last part is performed as pro-
posed in [Commowick et al. 2015] where we test if the parameter of the patient is
significantly different from the controls taken as a normal distribution.

Figure 4.4: Selection of microstructure properties along a fiber from DCM. General
properties about isotropic structures (e.g. w1 the free water weight) or microstruc-
ture properties in the directional compartment along the fiber are extracted.

4.3.2 Main results

As a first proof of concept of this new framework, we have evaluated
in [Hédouin 2017] a patient suffering from MS, with one lesion along the left CST.



56 Chapter 4. Quantitative image processing for disease study

We have therefore collected data for this patient following the same protocol that
was used for the control subjects in Section 4.2.2.2, i.e. dMRI with 30 directions
on a b-value shell of 1000 s.mm−2, image size of 128×128×55, voxel resolution of
2×2×2 mm3. We estimated DCMs from this data with the same parameters as for
the controls, and compared them along fiber tracts of the left and right CSTs in the
atlas.

(a) (b) (c)

(d) (e) (f)

Figure 4.5: Patient evaluation on the left and right CSTs for compartment AD.
First line: left CST, second line: right CST. First column: patient AD. Second
column: AD average across controls. Scalar bar below the two first columns: AD
in mm2.s−1. The last column corresponds to the p-value. Green volume: a lesion
segmented manually on the T2-weighted image.

We report in Figure 4.5 the evaluation of differences along the left and right
CSTs between the patient and controls for compartment AD. This figure shows
differences inside the lesion region (highlighted in green on Fig. 4.5.c) along the
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tract for AD while these differences do not appear in the controlateral fibers (right
CST). While other detections are visible here and there in fibers, their concentration
is more prominent in that region, suggesting a lower value of AD for the patient.
This highlights a change specific to the compartments along these fiber tracts, which
is much more interpretable than global measures at the voxel level.

(a) (b) (c)

(d) (e) (f)

Figure 4.6: Patient evaluation on the left and right CSTs for compartment FA. First
line: left CST, second line: right CST. First column: patient FA. Second column:
FA average across controls. Scalar bar below the two first columns: FA values. The
last column corresponds to the p-value. Green volume: a lesion segmented manually
on the T2-weighted image.

We then report in Fig. 4.6 the same evaluation for compartment FA. Contrarily
to AD, FA along the fibers does not vary significantly inside the lesion. This behavior
is different from what is usually seen on voxelwise studies where FA and AD tend to
vary together. Overall, these results are very interesting and suggest the feasibility
of the application of our approach. Work remains however to be accomplished for
a complete interpretation of those results since the data used is not ideal for DCM
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microstructure parameters estimation.

4.4 Combining relaxometry and diffusion for disease
characterization

The final contribution of this chapter goes in a different direction. It highlights
the potential of combining DCM and RCM for a better comprehension of diseases.
In this case, we studied the detection of Gadolinium (Gd) active lesions without
using Gd. Active lesions in MS are a crucial marker of the disease activity, both
for diagnosis [Thompson et al. 2018] and for the evaluation of a treatment. When
present, they highlight that the disease is active, thus meaning that the current
treatment is not working well enough to stop the disease from progressing. Mon-
itoring active lesions is thus crucial to decide on the treatment adaptation for the
patient. The classical way to assess active lesions is through the injection of a para-
magnetic solution - the well known Gadolinium (Gd) - that highlights the blood
brain barrier breakdown. While very practical, Gd however causes problems and is
not indicated from some persons (allergy, kidney problems, etc.). Moreover recent
studies [Gulani et al. 2017] have shown, without proving toxicity, that repeated in-
jections of Gd tended to create Gd deposition in the brain. There is therefore a great
interest to replace Gd injection by a less invasive method to assess active lesions.
On the other hand, we have seen in our research that both diffusion and relaxometry
are sensitive to myelin and microstructural changes in the brain in very complemen-
tary ways. We have therefore investigated [Chatterjee et al. 2018b] a way to learn
patterns (combining diffusion and relaxometry) of Gd active lesions in the brain to
enable Gd lesion detection without injecting Gd.

4.4.1 Machine learning scheme for Gadolinium lesion detection

Our machine learning scheme for Gd lesions detection follows the scheme presented
in Figure 4.7. This scheme is split into two parts. First we learn the features that
characterize Gd lesions from a set of DCM and RCM images where the ground truth
of Gd lesions have been manually delineated. Then, we apply this scheme to a new
patient to detect within his lesions where active voxels are located.

More precisely, the classification problem we have introduced starts from seg-
mentations of T2 hyperintense lesions (active or not), that can be obtained either
manually or automatically. From these lesions and the ground truth, the training
part chooses a set of non active voxels and active voxels randomly from the train-
ing set so that their numbers are balanced. From these voxels, feature vectors are
constituted and used to train a non linear Support Vector Machine (SVM) clas-
sifier [Cortes & Vapnik 1995] best suited to classify those input voxels. Since this
random selection of voxels may not be enough to detect correctly all active lesion
voxels, this training process is repeated 100 times with randomly selected voxel fea-
ture vectors from the training set, leading to a set of 100 classifiers. In the testing
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phase, we start from a segmentation of T2 hyperintense lesions (active or not) and
test each voxel feature vector against each of the 100 trained classifiers. If the ma-
jority of the classifiers assign the feature vector to the active lesion class, then the
voxel is declared as active lesion. Note that probabilities of active lesions could also
be given instead of a binary decision.

Figure 4.7: Training and testing scheme for Gd lesions detection.

4.4.1.1 Quantitative MRI features

We have studied two types of quantitative MRI feature vectors, coming from either
DCM images or RCM images. For DCM, we have used a simplified model with
one free water compartment (diffusivity of 3×10−3 mm2.s−1) and three directional
compartments modeled as zeppelins [Panagiotaki et al. 2012] with fixed radial dif-
fusivity. We chose such a model as the dMRI acquisitions from which we estimate
DCMs are clinical 30 directions / one b-value shell data (1000 s.mm−2). From these
models (estimated using the method proposed in Chapter 2), we extracted voxelwise
features more specific than the regular single tensor: free water weight, directional
FA (i.e. weighted average of FAs over the anisotropic compartments), directional
ADC and directional AD. These features are then stacked per voxel into a diffusion
feature vector FD.

Similarly to diffusion, we constructed feature vectors from RCM images (esti-
mated using Chapter 3), providing at each voxel a set of three fractions character-
izing short, medium and large T2 relaxation. Again, we stack those values into a
vector FR at each voxel. From those two sets of vectors, we also tested a combined
feature vector FRD = {FR,FD}.
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4.4.2 Main results

I report here two main results of our experiments, more details being provided
in [Chatterjee 2018, Chatterjee et al. 2018b]. The first experiment evaluated the
interest of combining diffusion and relaxometry in this detection task by evaluating
the overall accuracy, true positive rate and true negative rates in detecting the class
of the voxels in the left out part of the training set at each stage (see Fig. 4.7) by
the same framework using either FD, FR or FRD. The results of this evaluation
are presented in Figure 4.8. This figure demonstrates the complementarity of the
two modalities: diffusion alone allows a better true positive rate, on the contrary
relaxometry alone allows a better true negative rate. When combining the two, both
true positive and true negative rates reach values above each of the modalities alone.
This translates to a better overall accuracy when combining the two modalities.

Figure 4.8: Accuracy of predictions on the validation set depending on the features
used for classification. From left to right: overall accuracy, true positive and true
negative rates.

We have then evaluated the capacity of our model learnt on the training set, with
FRD as a feature vector, to correctly detect Gd positive parts of T2 hyperintense
lesions in a patient left completely out of the learning scheme. We applied the
testing process to the patient’s images and obtain the detections illustrated on three
different axial slices in Fig. 4.9. This figure shows good prediction results of whether
a voxel in the lesion is Gd positive or not. Quantitatively, the Dice score [Dice 1945]
for Gd positive lesion prediction is 0.64 and the one for Gd negative lesion prediction
is 0.86. This indicates that, even if there is room for improvement, especially since
the acquisitions used for this study are not ideal for microstructure parameters
estimation, the detection rates obtained suggest a great potential for Gd lesions
detection without the injection of Gd.

4.5 Conclusion and perspectives

4.5.1 Registration and processing of complex diffusion models

We have developed new algorithms and processing tools to accommodate the fact
that diffusion models are a bit special in the field of computational anatomy. These
are however crucial for defining new tools assessing the brain microstructure in var-
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(a) (b) (c)

(d) (e) (f)

Figure 4.9: Illustration of detection results on three different axial slices of an MS
patient. Legend: blue: correctly predicted inactive lesions ; red: correctly predicted
active lesions ; green: false positive voxels (i.e. detected as active when inactive).

ious diseases. While processing DT images has been well explored, no methods or
only a few were available for the interpolation and processing (e.g. parameters ex-
traction along fibers, tractography, etc.) of DCM images. Since this field has been
prolific in terms of number of models, we have proposed a novel interpolation and
averaging method, generic enough to be virtually applicable to any model encoun-
tered as long as two steps can be defined: a distance between two compartments, and
a way to merge two compartments into one. While this method has been successful
in our experiments, an investigation remains to be done on the nature of the inter-
polation that is desired by the user. As rightfully depicted by [Taquet et al. 2015],
one may want (e.g. in the case of tractography) to preserve directions rather than
microstructure parameters, one may otherwise want to preserve the signal simu-
lated from the model (as we did), or more to preserve microstructure parameters.
The development of such extensions for our method only needs changes in the two
aforementioned steps, but care must be taken depending on the application being
aimed.

Additionally a direct and natural extension of this work, that we have started
looking into in [Commowick et al. 2017] (based on the registration framework in
Appendix B), is the registration of DCM images. Once the interpolation is defined,
only the similarity metric between models remains to accomplish this task. Again
making such measures as agnostic as possible to the type of compartments will
have to be at the center of such research. While such a registration is doable and
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attractive in terms of developments, studies will then be needed comparing methods
registering different types of images (structural, DT or DCM images) to see the real
benefit of complex model images registration and how to provide the best results
in the best achievable timings as image resolution keeps on increasing with new
scanner capabilities (e.g. the HCP diffusion data).

Finally, another topic of interest on this specific field of interest is trac-
tography. While only discussed here, it is clear that this field requires great
improvements [Maier-Hein et al. 2017, Jeurissen et al. 2019] to remove false posi-
tives, to which DCM based tractography can contribute. In addition, combining
tractography with microstructure information, as started by [Daducci et al. 2015,
Girard et al. 2017], coming not only from diffusion but also from other quantitative
MRI modalities could be very valuable.

4.5.2 Combined analysis of quantitative MRI

Our experiments with the two PhDs of Sudhanya Chatterjee and Renaud Hédouin
have demonstrated the great potential of using microstructure information 1- at the
fiber level to detect changes of diffusion properties inside MS lesions ; 2- to detect,
using a combination of diffusion and relaxometry imaging, lesions that are active
without having to inject contrast agents such as Gd, for which the long term effects of
their deposition in the brain are still unknown. These results, although preliminary,
contribute to this objective. One direct improvement of the proposed methods will
be to consider microstructure parameters as functions along the fibers and apply
specific statistical schemes to them [Goodlett et al. 2009]. For the classification
scheme, we are currently looking more in-depth at the influence of each feature on
the results and towards providing for uncertain lesions, secondary decision schemes
to further help the classification.

Larger studies will be needed to confirm this potential but it already directs
us towards the definition of measures for evaluating the disease status, response to
treatment, etc. Many works will be needed in this field, ranging from the definition
of detection and characterization frameworks robust to all sorts of errors (image
artifacts of various sources, registration to templates when lesions are present, etc.)
to methods able to account for the temporal dimension as many neurological diseases
are slowly evolving and require longitudinal studies for better detection. In the
end, such studies may very well enable the early detection of subtle microstructure
changes leading to a specific trend of a disease.



Chapter 5

General conclusions and
perspectives

In this manuscript, I have covered the methodological developments we have ac-
complished towards the use of quantitative MRI in a clinical context, in order to
provide more interpretable, reproducible measurements of the microstructure in-
tegrity in the brain. We have accomplished already a lot on various topics. We have
first defined multi-compartment models for both relaxometry and diffusion, with
a nice similarity between the two models. Exploiting this similarity, we have pro-
posed maximum likelihood estimation methods for these models using the variable
projection framework, providing relatively fast estimation of such complex models.
Based on this estimation, we have proposed processing methods to exploit the mod-
els in disease studies. Finally, we have started working on applications of these
models towards better disease understanding and the definition of patient specific
measures of disease burden. These studies, although preliminary and on relatively
small databases, showed very encouraging results: more specific and interpretable
conclusions, ability to detect properties of MS lesions without contrast agents. For
all these methods, due to the large variety of models, I have always put an emphasis
on making them as agnostic as possible to the internal compartment definitions so
that they can be applied to virtually any multi-compartment model. Also, I have
always insisted on making all of the methods available open-source so that anyone
from the field can access them and test our articles on their data. This lead to two
repositories on Github: Anima1 and Anima scripts2 that contain all developments
in this manuscript and more in the future.

Perspectives in diffusion and relaxometry Many future directions of research
have already been mentioned in the previous chapters on dMRI and relaxometry.
Going further on more general topics for these two modalities, I have forgotten
so far about the acquisition side of things. The current clinical acquisition ac-
cepted nowadays for dMRI (30 gradient directions on one b-value shell) remains
very limited for multi-compartment models. While we can push on making the
best out of it (by imposing priors or model simplifications), one other way con-
cerns the push of new acquisitions to the clinic, such as e.g. the CUSP acquisition
from [Scherrer & Warfield 2012] that allows multiple b-values and more directions,

1http://github.com/Inria-Visages/Anima-Public, RRID:SCR_017017
2http://github.com/Inria-Visages/Anima-Scripts-Public, RRID:SCR_017072

http://github.com/Inria-Visages/Anima-Public
http://github.com/Inria-Visages/Anima-Scripts-Public
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especially with new scanner capabilities such as simultaneous multi-slice acquisi-
tions. Going towards those however requires to convince clinicians of the actual
importance of the models developed here. This is why we are currently working
on applying these techniques to several diseases and introducing new acquisitions
together.

On the side of relaxometry, the problem is even more pronounced. The methods
and results I have presented are very encouraging towards applying these techniques
as standard tools for neurodegenerative diseases evaluation. However, many acqui-
sition developments are still needed to enable clinically compatible acquisitions for
T2 relaxometry. We have been collaborating a lot in the past few years with the
Children’s Hospital Boston on those aspects but work remains to be done to obtain
artifact free, fast enough to acquire, sequences. Current acquisitions still require
more than 10 minutes to obtain good quality relaxometry. Applying techniques
such as compressed sensing or super-resolution algorithms e.g. [Meurée et al. 2019]
could allow such clinical applicability.

As a final remark on the acquisition side, the methods that have been pro-
posed for DCM estimation could very well be extended to benefit from new multi-
dimensional dMRI [Topgaard 2017] i.e. acquisitions with arbitrary diffusion gradient
waveforms. This would simply require to change in Chapter 2 the b-value by a b-
matrix without changing the core of the algorithm. We would then benefit from
these new acquisitions very promising to get direct microstructure parameters such
as axonal diameter [Drobnjak et al. 2010], thus leading to even more interpretable
results on patients.

Finally on these perspectives centered around dMRI and relaxometry, there is
now a need to combine those modalities beyond just detection tasks (as we did for
Gd in Chapter 4). While this is very interesting in the first place, it will now be
better to switch to purely descriptive, comprehensive analysis of patients with both
modalities to derive more complete disease burden scores for patients, and also to
build atlases of the normal population and its evolution.

General perspectives Going on some larger perspectives, all these topics have
proven their value for disease studies, mainly centered on MS. One of my aims is now
to apply these generic techniques to more diseases, each of which will surely bring
their new challenges. Among them, dementia is a pathology that we have started
working on where the brain connexions are changed both in terms of connexion
density and microstructure properties in the brain. This will probably require more
global disease burden studies including connectome analyses, with the challenge
of integrating several microstructure properties. Additionally, one may mention
traumatic brain injury or stroke, where additional constraints due to potentially
large lesions in the brain will bring challenges on matching or following structures.
However, it will probably help having a more in-depth evaluation of damage due to
the lesions and hopefully in recovering brain function in the future.

Another topic of my research, that has been running for several years now,
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is pediatric research. We are now at the point where, thanks to advances in ac-
quisitions, some if not all of the quantitative modalities could be applied to chil-
dren or babies. It could bring great advances in the future to improve the ro-
bustness of the methods presented here so that we can apply multi-compartment
techniques to neonates and children and better evaluate e.g changes due to prema-
turity. This will however require 1- more robust estimation especially to the smaller
amount of data (directions or echoes) due to time constraints and to movement
artifacts (e.g. [Mangin et al. 2002, Chang et al. 2005, Sairanen et al. 2018]); and
2- the development of longitudinal atlases either from cross-sectional or longitudi-
nal data (research we have started to work on with the current PhD of Antoine
Legouhy [Legouhy et al. 2019]).

Separated from studies on different diseases that I believe would bring clear
advances, another point to achieve is longitudinal analysis. Many of the brain dis-
eases are neurodegenerative i.e. the disease is slowly evolving inside the brain.
With the arrival of new longitudinal databases such as HCP lifespan, it will now
be possible to investigate the parallel evolution of patients and healthy controls
on quantitative images, which could bring new information able to detect patho-
logical evolution earlier. This could be achieved by applying what has been
proposed for shape analysis or structural images analysis (e.g. parallel trans-
port [Lorenzi & Pennec 2014, Cury et al. 2019]) to diffusion images in the first place
and then other modalities as well.

While dMRI and relaxometry present nice properties to highlight microstructure
changes, they are not the only quantitative modalities that may be obtained from
MRI. Future studies could also benefit from other complementary images such
as QSM providing maps of magnetic susceptibility, due among other factors to the
presence of iron which is a crucial marker in MS, Parkinson’s or Alzheimer’s diseases.
Arterial Spin Labeling is also a modality of choice for perfusion. In the future, having
all these modalities in a joint evaluation framework, where the right modalities are
picked for the disease under consideration, will be very valuable. The main problem
or such a framework will be to generalize the current fiber bundle studies based on
only one microstructure parameter to several parameters (as already mentioned for
the connectome studies).

Finally, one limitation of all studies presented here is the relatively small number
of patients or controls being studied. While interesting as a proof of concept for
the method, large databases integrating all these quantitative modalities will be
necessary to verify the applicability of the methods in real cases. The constitution
of databases with one quantitative modality or two are currently under way (e.g. the
HCP databases or UK biobank) but large databases with a nice set of quantitative
images remain to be gathered. On these large databases, the generalization of atlas-
based comparison will pose new problems due to the number of images: how to
compute atlases in a reasonable time and expand them as images arrive? Should
we move to multi-atlas analysis but then how to compare one image to so many?
How to ensure registration between all these images is good enough so that average
images are not too blurry (should we use Large Deformation Diffeomorphic Metric
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Mapping (LDDMM) or are SVF sufficient?) ? Once constituted and exploited, these
large quantitative databases will be extremely valuable for patient specific analysis.
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Appendix A

Variable projection for maximum
likelihood model estimation
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We present in this appendix the general derivation of the variable projection
estimation framework for maximum likelihood estimation of models expressed as a
linear combination of independent compartments. This derivation closely follows the
work from [Golub & Pereyra 1973] and is used for both diffusion DCM estimation
in Chapter 2 and RCM estimation in Chapter 3.

A.1 Problem formulation and maximum likelihood esti-
mation

We consider the case of general estimation problems where a set of signals y =

{y1, . . . , yN}T is acquired and modeled by a multiple compartment equation, i.e. a
linear weighted sum of individual models each representing a subpart of the signal
formation. In practice, we consider the following model:

f(x|w, S0,θ) = S0

C∑
j=1

wjfj(x|θj) (A.1)

where x is e.g. the q-vector in Chapter 2 or the echo time e in Chapter 3, S0 >
0 is a constant baseline signal, w = {w1, . . . , wC}T is a set of weights with the
property that wj ≥ 0 and

∑
j wj = 1, and fj is a, usually non linear, function

parameterized by the set of parameters θj = {θj,1, . . . , θj,k, . . . , θj,Kj}. We now
consider the maximum likelihood estimation problem of the function f knowing
signals y. We first assume that y is perturbed by some noise, i.e.

yi = f(xi|w, S0,θ) + ε (A.2)

where ε follows a noise distribution. In this work, we will consider only white Gaus-
sian noise, i.e. ε ∼ N (0, σ2), although other noise types such as Rician noise could
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be considered. From this noise assumption, we define the Gaussian log-likelihood
function for the problem:

`(τ2,w, S0,θ) =
N

2
log

(
τ2

2π

)
− τ2

2

N∑
i=1

(yi − f(xi|w, S0,θ))2 (A.3)

where τ2 = 1/σ2. The objective in maximum likelihood approaches is then to
maximize this equation with respect to its parameters w, S0 and θ. Without loss of
generality and to simplify constraints setting, we first reparameterize f to fuse wj
and S0 values into a single set of parameters α = {α1, . . . , αC}T where αj = S0wj .
By construction, αj ∈ R+ and values of S0 and wj can be recovered from α as
S0 =

∑
j αj and wj = αj/S0. f is thus now written as:

f(x|w,α) =
C∑
j=1

αjfj(x|θj) (A.4)

Written in matrix form, Eq. (A.3) becomes the following:

`(τ2,α,θ) =
N

2
log

(
τ2

2π

)
− τ2

2
‖y − Fα‖2 (A.5)

where F is a N × C matrix with Fi,j = fj(xi|θj).

A.2 Projecting linear variables of the system

From this point on, several variables can be identified as linearly separable in the
optimization of the log-likelihood in Eq. (A.5). First of all, if we study its derivative
with respect to τ2 and equate it to zero, we find the following expression for the
optimal τ̂2 as a function of other parameters:

1

τ̂2
=

1

N
‖y − Fα‖2 (A.6)

Putting back this analytical solution inside Eq. (A.5), and after simplification, we
then obtain the following equivalent formulation of the log-likelihood:

`(α,θ) = −N
2

[
1 + log

(
2π

N

)
+ log

(
‖y − Fα‖2

)]
(A.7)

Analyzing this equation, it appears that maximizing this likelihood is equivalent to
minimizing the following least squares problem:

arg min
α,θ

‖y − Fα‖2 (A.8)

If we look closely at this least squares system, some variables are again linear in the
system: α, while some are non linear: θ. For such cases, [Golub & Pereyra 1973]
proposed the variable projection technique. It consists in expressing the system
only in terms of the non linear variables of the system, the linear ones being directly
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determined by their analytical solutions in terms of the non linear parameters. In
practice, for the current system, we first determine the optimal α̂ as the classical
solution of linear least squares:

α̂ = F+y (A.9)

where F+ denotes the pseudo-inverse of F i.e. F+ =
(
FTF

)−1
FT . Putting back

this solution inside the previous non linear least squares system, we get the following
variable projection least squares system:

arg min
θ

E(θ) = arg min
θ

‖F⊥y‖2 = arg min
θ

‖
(
IN − FF+

)
y‖2 (A.10)

where IN denotes the N × N identity matrix. From this system, the estimation
process is thus as follows:

• Estimate θ̂ by solving the variable projected system in Eq. (A.10)

• Deduce from θ̂ the value of α̂ using Eq. (A.9)

• Finally compute τ̂2 using Eq. (A.6)

A.3 Differentiation against non linear parameters

The only step that remains is the optimization against the non linear parameters.
For some estimation problems, computing the derivatives of the cost function in
Eq. (A.10) is too complicated or even not analytically feasible. In those cases,
Eq. (A.10) can be optimized using a derivative free algorithm such as the BOBYQA
algorithm [Powell 2009].

For other problems where the derivative of the cost function may be com-
puted, any derivative based algorithm may be used such as the BFGS opti-
mizer [Byrd et al. 1995] or, as the residuals can be individually separated in
Eq (A.10), the Levenberg-Marquardt optimizer [Levenberg 1944]. Let us rewrite
E in a way suitable for the Levenberg-Marquardt optimizer. We define r as the
residuals vector for each measurement:

r(θ) = F⊥y (A.11)

We may redefine E as the following function of r: E(θ = 〈r(θ), r(θ)〉 , where 〈., .〉
denotes the dot product. The derivative of each residual of the orthogonal projection
of the system is given in [Golub & Pereyra 1973] as the following general formula:

∇r(θ) = −
(
F⊥DFF

+ + (F+)TDT
FF⊥

)
y (A.12)

where ∇r is an N × NC matrix representing the derivatives of r against the NC

parameters inside θ. By some abuse of notation for simplification DF represents,
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for each of the NC parameters inside θ, the component-wise derivative of F against
this parameter. With DF computed, the general cost function derivative can then
be expressed as:

∇E(θ) = 2yTF⊥∇r(θ) (A.13)

An interesting observation about those two last equations is that to compute the
derivative of any estimation problem, with any model, only the derivatives of this
model against the parameters (the DF matrices) need to be computed for the vari-
able projection problem to be optimized. This fact makes the variable projection
technique generic and this is heavily used for DCM estimation in Chapter 2 or RCM
estimation in Chapter 3.
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We present in this appendix the generic registration algorithm used in several
chapters (for different applications and image types). This algorithm relies on the
block-matching algorithm introduced by [Ourselin et al. 2000] for rigid registration.
It is in fact very versatile, usually requiring only the similarity measure between
blocks (and a re-orientation scheme for images of oriented models such as DT or
DCM images) to be defined to perform the registration. We explore in the first sec-
tions the individual elements of the registration and provide the general algorithms
in Section B.4.

B.1 Block-matching for medical images registration

We define the registration algorithm as the one that seeks a transformation T so that
a floating image resampled by T , F ◦ T , matches as much as possible a reference
image R: R ≈ F ◦ T . With that goal in mind, the core part of the registration
algorithm is based on an iterative framework which iterates three main steps:

• Define a set of blocks, i.e. a subset of voxels - often a cube around a given
point in the image, on the reference image R. Each block is defined by its
center xi: B(xi) ≡ Bi
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• Match these blocks from image R to image F , i.e. find the best local trans-
formation Ai such that a similarity measure S(R(x), F ◦A(x)) over the block
Bi is optimal

• From the set of transformations obtained, compute an update global transfor-
mation δT then used to update the current global transformation T

This algorithm is the block-matching core that is central to all variants
that are used in this document. This core is included in an iterative al-
gorithm (see Section B.4), itself often included in a multi-resolution (pyrami-
dal) framework to first get back large displacements from coarse resolutions and
then smaller / finer displacements from finer resolutions, in a robust and faster
manner. This core part has been used in many algorithms ranging from lin-
ear [Ourselin et al. 2000, Commowick et al. 2012b] to non linear, diffeomorphic
registration [Commowick et al. 2012a], with various applications such as tensor
registration [Suarez et al. 2012]. It requires mainly the definition of a similar-
ity metric S between blocks to be used on a specific modality. On scalar im-
ages [Malandain et al. 2004], given the relatively small size of a block (thus contain-
ing two or few different tissues), a linear relationship between intensities is usually
enough and a square correlation coefficient is used to match images. Apart from the
similarity, several points need to be defined at the general level to have an overview
of the algorithm:

• The nature of transformations A and T

• How to go from a set of transformations Ai and blocks Bi to a global (linear
or non linear) update transformation δT?

• Ensuring (or not) a symmetric transformation

B.2 Which local transformations between blocks?

Local transformations between a block in R and F are generally assumed to be linear
for two reasons: 1- the block is usually sufficiently small for this assumption to be
true, and 2- the search space over which the transformation has to be estimated
needs to remain small enough for computation time reasons. A transformation Ai
in RN is therefore represented as a (N + 1)× (N + 1) matrix. In the following, let
us consider without loss of generality that N = 3.

B.2.1 Local translation

The most common transformation used in block-matching is a local translation, i.e.
a move of the block in the three directions. In other words, Ai is represented as:

Ai =

(
I3 ti
0 1

)
(B.1)



B.2. Which local transformations between blocks? 75

where I3 is the 3×3 identity matrix and ti is a R3 vector. In addition, its matrix
logarithm is defined as a null matrix with a translation equal to that of Ai (ti).
This transformation has proven to be very useful and is also the fastest to estimate.
Originally, these three parameters have been interpreted as a sliding of the block
along the grid of voxels of the second image. The easiest optimization method for a
local block is thus a discrete grid search on the voxel grid of the floating image, which
has the advantage of not requiring any interpolation (and is thus fast). Although
enough to recover globally sub-voxel precision thanks to the iterations of the block-
matching algorithm, such an optimization may miss fine sub-voxel displacements.
Recent algorithms [Commowick et al. 2012b] have therefore studied optimization
over the whole R3 space, which may use a gradient-based algorithm if gradient of the
similarity measure is available or gradient-free optimization such as the BOBYQA
algorithm [Powell 2009].

B.2.2 Rigid transformation and beyond

Among linear transformations, virtually any can be searched for between a block
and an image. One particularly interesting and that we have explored in several
recent works [Commowick et al. 2012b, Commowick et al. 2012a] is the rigid trans-
formation. It has several interesting properties that allow for its simple optimization
and that will be useful to estimate global linear or non linear transformations. First
of all, in homogeneous coordinates, Ai is represented as follows:

Ai =

(
Ri ti
0 1

)
(B.2)

where ti is again a translation (also integrating the center of rotation), and Ri is a
rotation matrix i.e. RiRTi = I3 and ||Ri||F = 1. Interestingly, Rodrigues’ formulas
allow for the explicit computation of its logarithm and exponential [Blanco 2010].
In particular, the matrix logarithm of a rigid matrix A is expressed as:

log(A) =

(
w× l

0 0

)
(B.3)

where w× is the cross-product matrix of a vector of rotation angles w = (w0, w1, w2)
T

and l an arbitrary R3 vector. For the explicit logarithm and exponential formulas,
refer to [Blanco 2010]. The parameterization of the transformation through the
matrix exponential of log(A) is particularly interesting as it allows for 1- a clear and
separate depiction of the six degrees of freedom (three scalars of l and the angles in
w) of the transformation (instead of the rigid rotation matrix where parameters are
entangled), and 2- a direct expression of the rigid transformation in its Lie group
structure, useful to perform transformation extrapolation.

Coming back to block-matching, one can now search for rigid transformations
between a block and the floating image instead of just looking for translations. This
is particularly useful for registration of images with articulated structures such as the
spine [Commowick et al. 2012a]. However, since the search space is now much larger
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(six variables instead of three), a brute force discrete search as in the translation case
is much longer and, depending on the similarity measure optimized, a gradient-based
or gradient-free optimization is more adapted.

As a final remark, we presented here the search over rigid transformations but
any other transformation with well defined parameters covering its entire spectrum
may be used (e.g. similarity transformation or more specific transformations as
presented in Section 2.2).

B.3 Global transformation extrapolation

We now have from the previous step (actually the real block-matching step), a set of
blocks Bi defined on an image R and corresponding linear transformations Âi best
matching them onto F . We now briefly detail how to use these local transformations
to infer the update transformation δT . This procedure depends on the nature of
local transformations and the nature of the global transformation sought.

B.3.1 Global linear transformations

Let us consider that we are looking for a global transformation that is linear. Two
cases are still possible. First, if the Âi are translations, it is relatively easy to esti-
mate any linear transformation best summarizing the local displacements obtained.
Particularly, Chapter 8 of [Pennec 1996] explains very well how, through a linear
least squares formulation, to estimate from a set of translations either a global trans-
lation, rigid or affine transformation and we refer the reader to these formulas for
more details.

The second case arises when transformations Âi are more than just transla-
tions. In that case, we resort to the log-Euclidean framework for linear transforma-
tions [Arsigny et al. 2009] and thus formulate the least squares optimization directly
on the matrix logarithms:

log(δT ) = arg max
M

∑
i

|| log(Âi)−M ||2 (B.4)

This directly leads to log(δT ) being the weighted average of the input log-
transformations. For both cases, it is important to note that block-matching is not
exempt from outliers which may degrade the obtained transformation. Numerous
options may be applied to deal with this problem including weighting the individual
Âi by the optimum similarity measure value they obtained, or performing robust es-
timation such as least trimmed squares or M-estimation [Rousseeuw & Leroy 1987].

B.3.2 Non linear transformations

When non linear transformations are sought, the extrapolation step is more difficult
since many parameters come into play i.e. one 3D vector per voxel. In this section
we will consider diffeomorphisms defined by their SVF as the final transformation
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being sought. While encompassing a reduced set of the diffeomorphisms that may be
encountered (contrarily to LDDMM [Beg et al. 2005]), they have interesting prop-
erties that will be heavily used in this section, and that were well defined in the
log-Euclidean frameworks for diffeomorphisms [Arsigny et al. 2006a] and polyaffine
transformations [Arsigny et al. 2009].

In particular, we consider that δT is defined by its SVF δS i.e. a vector field
whose exponential is δT : δT = exp(δS). The goal is to extrapolate the “log-vector”
at each voxel of δS from the sparse set of optimal block transformations Âi located
at their block centers xi. For this task, we will heavily use the matrix logarithm of
linear transformations, which is explicitly defined for translations and rigid trans-
formations.

As a side note to this class of transformations, it has been demonstrated
that computing the SVF from a transformation T is computationally expen-
sive [Arsigny et al. 2006a]. In addition, SVF having nice properties for statistics
computation, it is desirable to always keep T implicit and instead compute the
SVF S. Transposing the transformation composition in that space however requires
to use the Baker-Campbell-Hausdorff (BCH) approximation [Bossa et al. 2007,
Vercauteren et al. 2008].

B.3.2.1 Gaussian extrapolation

The first and simplest way to extrapolate a dense SVF is to use Gaussian extrapola-
tion [Commowick 2007, Garcia et al. 2010]. From the set of log(Âi) and transforma-
tions locations xi, we first construct a sparse field C where each voxel corresponding
to xi is affected by the displacement generated by log(Âi): C(xi) = log(Âi)xi. The
Gaussian extrapolation then builds a dense SVF δS from C and a sparse field W of
weights wi attributed to each pairing (for example the optimal value of the similarity
measure): W (xi) = wi. The extrapolated δS is then defined as:

δS =
Gσ ∗WC

Gσ ∗W
(B.5)

where σ is the standard deviation of the Gaussian extrapolation kernel Gσ. This
extrapolation works perfectly in a region where enough input matchings are present,
e.g. inside the brain. On the contrary, in regions far away from the blocks, this
extrapolation is meaningless and may lead to artificially large deformations. To
counter this effect, an additional post-processing is performed on the obtained SVF:
when far enough from any matching (Gσ ∗ W below a certain threshold), δS is
gradually set to identity (i.e. zero velocity field).

As for linear transformation computation, outliers in pairings need to be ac-
counted for. A simple operation to do so is to compute at voxel locations xi the
norm of the difference between δS(xi) and C(xi): ri = ||C(xi) − δS(xi)||. From
these, the mean displacement difference r over the whole image is computed as well
as the variance σ2r :
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{
r = 1

N

∑
i ri

σ2r = 1
N−1

∑
i(ri − r)2

(B.6)

We can reject pairings from C for which the residual ri > r + ασr and recompute
from it an outlier free δS.

B.3.2.2 M-Smoothing extrapolation

Although simple, the Gaussian extrapolation does not completely incorpo-
rate outlier rejection in its process in the sense that one would need to it-
erate over the rejection process to do so. We have therefore introduced
in [Commowick et al. 2012a] an extrapolation approach similar to the M-smoothing
filter proposed by [Mrazek et al. 2006]. This approach looks for the best log-
transformation log(Sk) at each voxel of δS by minimizing the following criterion:

(logS1, . . . , logSn) = arg min
logS1,...,logSn

 n∑
k=1

∑
i∈Vk

wiρ
(
|| logSk − logAi||2

)
d
(
|xk − xi|2

)
(B.7)

where ρ is robust error norm (typically linked to an M-estimator, here the Welsch
function), Vk is a neighborhood around voxel i (note that the sum over i ∈ Vk only
considers voxels where a transformation Ai was estimated) and d is a spatial error
norm. This criterion can be minimized using gradient descent which for a particular
adaptive, data-dependent step size leads to the following update formula for each
logSk:

logSt+1
k =

∑
i∈Vk wiρ

′ (|| logSk − logAi||2
)
d
(
|xk − xi|2

)
logAi∑

i∈Vk wiρ
′ (|| logSk − logAi||2) d (|xk − xi|2)

(B.8)

where ρ′ acts as a tonal kernel, which for the Welsch function ρ is written as ρ′(a2) =

exp
(
−a2/2λ2

)
, and d acts as a spatial kernel, here a Gaussian kernel: d(a2) =

exp
(
−a2/2σ2

)
. The gradient descent is initialized with ρ′(a2) = 1. These two

kernels account simultaneously for the spatial proximity of Ai and its local agreement
with other local transformations. From the obtained logSk, we finally obtain δS at
each voxel by δS(xk) = logSkxk.

B.4 Asymmetric or symmetric registration

From the previous sections, we now have all the necessary elements (apart from a
few such as being able to resample images or the similarity measure which is not the
topic here) to perform the registration of two images. The final step is to combine
all of these into an algorithm. At this stage, it is crucial to note that the block-
matching core algorithm is intrinsically an asymmetric one: images R and F do
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not play the same role and reverting their use does not lead to the exact inverse of
δT . Options are however available to ensure this, and this is why we detail three
algorithms, going from no symmetry to more and more symmetry.

B.4.1 Asymmetric registration

The first, classical, registration built around the block-matching is the asymmetric
one. It is described in Algorithm 1.

Algorithm 1 Asymmetric Block-Matching Registration Algorithm
1: for p = 1...P , iteration on pyramid levels, do
2: for l = 1...L, iterations, do
3: Resample F with T
4: Match R and F ◦ T : δT ← block-match(R,F ◦ T )

5: Update T by composing it with δT
6: If needed, regularize T (elastic-like)

From two images, a reference R and a floating image F , the algorithm seeks
T by running a multi-resolution pyramid. At each step, the previously described
components are put together to estimate update δT (or δS if the transformation
computed is non linear) and compose it with the current estimate of T (BCH ap-
proximation for SVF). In this case, R and F clearly have an asymmetric role, blocks
being always defined on R and only F being resampled.

B.4.2 Symmetric registration

In the previous algorithm, blocks are always defined on R while F is always the
floating image. This second algorithm, presented in Algorithm 2, aims at sym-
metrizing this definition of blocks and ensuring that the obtained transformation
when inverting F and R roles is the same up to an inverse, hereafter called inverse
symmetry.

Algorithm 2 Symmetric Block-Matching Registration Algorithm
1: for p = 1...P , iteration on pyramid levels, do
2: for l = 1...L, iterations, do
3: Resample F with T and R with T−1

4: Match R and F ◦ T : δTF ← block-match(R,F ◦ T )

5: Match F and R ◦ T−1: δTR ← block-match(F,R ◦ T−1)
6: Compute the transform update δT from δTF and δTR
7: Update T by composing it with δT
8: If needed, regularize T (elastic-like)

Again, T and δT are replaced by S and δS when dealing with non linear trans-
formations. In this algorithm, blocks are defined at each step both on R and on F
and used to estimate two asymmetric updates: δTF and δTR (respectively δSF and
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δSR for non linear transformations). To account for these two updates and ensure
inverse symmetry, the composition step is modified and preceded by an averaging
of the two updates (for linear transformations using the matrix logarithm, and for
SVF the log-Euclidean framework):

δT = exp

(
1

2
[log(δTR)− log(δTF )]

)
(B.9)

δS =
1

2
(δSR − δSF ) (B.10)

B.4.3 Kissing symmetric registration

In direct symmetry, the images roles are not completely symmetric. In fact, one
image in each way (from F ◦T to R and from R◦T−1 to F ) is never resampled: the
transformation is applied only to one image at a time. Kissing symmetry instead
seeks the transformation T so that R ◦ T−1 and F ◦ T match. T now encodes the
half transformation between the images: this amounts to looking for an intermediate
position in between the two images by moving both of them towards each other,
thereby fully symmetrizing their roles. This registration is presented in Algorithm 3.

Algorithm 3 Kissing Symmetric Block-Matching Registration Algorithm
1: for p = 1...P , iteration on pyramid levels, do
2: for l = 1...L, iterations, do
3: Resample F with T and R with T−1

4: Match R ◦ T−1 and F ◦ T : δTF ← block-match(R ◦ T−1, F ◦ T )

5: Match F ◦ T and R ◦ T−1: δTR ← block-match(F ◦ T,R ◦ T−1)
6: Compute the half transform update δT from δTF and δTR
7: Update T by composing it with δT
8: If needed, regularize T (elastic-like)

As for direct symmetry in Algorithm 2, the composition step is modified to
compute δT , respectively δS, from the asymmetric updates:

δT = exp

(
1

4
[log(δTR)− log(δTF )]

)
(B.11)

δS =
1

4
(δSR − δSF ) (B.12)

The only difference with direct symmetry is here 1/4 instead of 1/2 to account
for the fact that we are looking for a transformation bringing the two images on a
middle point where they match. Applying the final transformation T to F , is as
simple as taking the square transformation (or multiply it by 2 in the “log-space”).
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