
HAL Id: tel-01116466
https://inserm.hal.science/tel-01116466

Submitted on 13 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis and Extraction of Complexity Parameters of
Biomedical Signals

Amira Zaylaa

To cite this version:
Amira Zaylaa. Analysis and Extraction of Complexity Parameters of Biomedical Signals. Bioengi-
neering. François-Rabelais University of Tours, 2014. English. �NNT : �. �tel-01116466�

https://inserm.hal.science/tel-01116466
https://hal.archives-ouvertes.fr


!

François-Rabelais University of Tours
DOCTORAL SCHOOL OF ENERGY, MATERIAL, EARTH AND UNIVERSE

SCIENCES

LABORATORY AND RESEARCH TEAM : Imaging and Brain Laboratory, Imaging
and Ultrasound Team, National Institute of Medical and Health Sciences Unit 930

DISSERTATION presented by :

Amira ZAYLAA

Defended on : December 15th 2014

in partial fulfilment of the requirements for the degree of: Doctor of Philosophy
From François-Rabelais University of Tours, France

Discipline/ Speciality : Life and Health Sciences/ Biomedical Signal Processing

Analysis and Extraction of Complexity Parameters of

Biomedical Signals

DISSERTATION supervised by :
Jean-Marc GIRAULT Associate Professor QRS François-Rabelais University of Tours, France
Jamal CHARARA Professor Lebanese University, Beirut, Lebanon

Committee Members :
Tuan PHAM Professor University of Aizu, Japan
Mohamad KHALIL* Professor Lebanese University, Tripoli, Lebanon
Catherine MARQUE Professor University of Technology of Compiègne, France
Jamal CHARARA Professor Lebanese University, Beirut, Lebanon
Jean-Marc GIRAULT Associate Professor QRS François-Rabelais University of Tours, France
Oussama BAZZI Professor Lebanese University, Beirut, Lebanon

* committee president





There is behind every distinguished work a group of extraordinary supporters,
to my family, friends and every person fond of science





Acknowledgements

This dissertation has never been possible without the will and blessing of God, the most
gracious and the most merciful.

First, I would like to express my gratitude to my supervisors Dr. Jean-Marc Girault
and Prof. Jamal Charara for their guidance and sincere advice. I would like also to
express my profound gratitude to Prof. Tuan Pham from the University of Aizu in
Japan and Prof. Catherine Marque from the University of Technology of Compiègne for
being in the committee of my PhD and for their valuable comments. Special thanks
to Profs. Mohammad Khalil and Oussama Bazzi for being in the committee of my
dissertation and for their supportive comments.

The interdisciplinary nature of my work has allowed me to have great collaborators. I
acknowledge Dr. Sébastien Ménigot from the University of Paris-10 and Miss Faten Khatib
from Sharp Chula Vista Medical Center in U.S.A.. They have provided much guidance
and assistance for my research and gave me very helpful proofreading of my published
articles. The same gratitude goes to my colleagues in the Imaging and Brain Laboratory,
Drs. Liviu Chira, Fatima Sbeity and Souad Oudjemia, and Mr. Maroun Geryes for their
assistance in my project. My gratefulness extends to Prof. Denis Guilloteau the director
of the Imaging and Brain Laboratory in Tours, and thanks to Prof. Ayache Bouakaz the
director of research for his accessibility and advices. Special thank is due to Prof. Charles
Tabet from the National Council for Scientific Research (Lebanon) for his support and
accessibility.

I am deeply grateful to my parents, my mother Ahlam Dalle who formed part of my
vision and taught me the good things that really matter in life, my sister Alaa Zaylaa,
my brother Omar Zaylaa, my sister-in-law Afnan Qudus and my cousin Faten Khatib for
keeping me optimistic and inspired, and for their support and encouragement that are a
constant source of power for me.

I acknowledge those who gave me the possibility to complete this thesis: Dr. Keinana

5



ACKNOWLEDGEMENTS

Muhrez, Zainab Zahereddine, Mohammad Chehimi, Dr. Mohammad Al Akhras, Dr. Darine
Abi-Haidar, Yann Sindakli, Michéle Françoise and her family, Dominique and Erica and
my friends in France.

6



Abstract

The analysis of biomedical time series derived from nonlinear dynamic systems is chal-
lenging due to the chaotic nature of these time series. Only few classical parameters can
be detected by clinicians to opt the state of patients and fetuses. Though there exist
valuable complexity invariants such as multi-fractal parameters, entropies and recurrence
plots, they were unsatisfactory in certain cases. To overcome this limitation, we propose
in this dissertation new entropy invariants, we contributed to multi-fractal analysis and we
developed signal-based (unbiased) recurrence plots and unbiased recurrence descriptors
based on the dynamic transitions of time series.

Principally, we aim to improve the discrimination between healthy and distressed biomed-
ical systems, particularly fetuses by processing the time series using our techniques.
These techniques were either validated on Lorenz systems, logistic maps or fractional
Brownian motions which model chaotic and random time series. Then the techniques
were applied to real fetus heart rate signals recorded from patients in the third trimester
of pregnancy. Statistical measures comprising the relative error, standard deviation,
sensitivity, specificity, precision and accuracy were employed to evaluate the performance
of detection.

Elevated discernment outcomes were realized by the high-order entropy invariants de-
veloped. Multi-fractal analysis using a structure function and coarse-graining enhanced
the detection of the medical states of the fetuses. Unbiased cross-determinism invariant
developed amended the discrimination process. The significance of our techniques lies
behind their post-processing codes which could build up cutting-edge portable machines
offering advanced discrimination and detection of Intrauterine Growth Restriction prior
to fetal death. This work was devoted to Fetal Heart Rates but time series generated by
alternative nonlinear dynamic systems should be further considered.

Keywords : Multi-fractal Analysis, Entropy Quantification, Maximum Entropy, N-
Order Entropy, Recurrence Plots, Unbiased Recurrence Plots, Recurrence Quantification
Analysis, New Invariants, Discrimination, Detection, Diagnosis, Doppler Ultrasound Fetal
Heart Rates, fractional Brownian Motion, Lorenz System, Logistic Map, Correlation Sum,
Complexity Analysis, Statistical Signal Processing.
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Résumé

L′analyse de séries temporelles biomédicales chaotiques tirées de systèmes dynamiques
non-linéaires est toujours un challenge difficile à reveler puisque dans certains cas bien
spécifiques les techniques existantes basées sur les multi-fractales, les entropies et les
graphes de récurrence échouent. Pour contourner les limitations des invariants précé-
dents, de nouveaux descripteurs peuvent être proposés. Dans ce travail de recherche nos
contributions ont porté à la fois sur l’amélioration d’indicateurs multi-fractals (basés sur
une fonction de structure) et entropiques (approchées) mais aussi sur des indicateurs de
récurrences (non biaisés).

Ces différents indicateurs ont été développés avec pour objectif majeur d’améliorer la
discrimination entre des signaux de complexité différente ou d’améliorer la détection de
transitions ou de changements de régime du système étudié. Ces changements agissant
directement sur l’irrégularité du signal, des mouvements browniens fractionnaires et des
signaux tirés du système du Lorenz ont été testés. Ces nouveaux descripteurs ont aussi
été validés pour discriminer des fœtus en souffrance de fœtus sains durant le troisième
trimestre de grossesse. Des mesures statistiques telles que l’erreur relative, l’écart type, la
spécificté, la sensibilité ou la précision on été utilisées pour évaluer les performances de
la détection ou de la classification.

Le fort potentiel de ces nouveaux invariants nous laisse penser qu’ils pourraient constituer
une forte valeur ajoutée dans l’aide au diagnostic s’ils étaient implémentés dans des
logiciels de post-traitement ou dans des dispositifs biomédicaux. Enfin, bien que ces
différentes méthodes aient été validées exclusivement sur des signaux fœtaux, une future
étude incluant des signaux tirés d’autres systèmes dynamiques non-linéaires sera réalisée
pour confirmer leurs bonnes performances.

Mots clés : Analyse Multi-Fractale, Quantification d’entropie, Entropie Maximale,
Entropie d’Ordre-N, Le graphe de Récurrence, Le graphe de Récurrence Nonbiaisés,
Analyse de Quantification de Récurrence, Nouveaux Invariantes, Detection, Discrimination,
Diagnostiquer, Transition Dynamique, Suite Logistique, Système du Lorenz, Mouvements
Brownienes Fractionnaires, Coefficient de Corrélation, Analyse de Complexité, Traitement
Statistique du Signal, Rythme Cardiac Fœtal Doppler Ultrasonore.
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Chapter 1

DISSERTATION

p Often complexity challenges our lives and makes its analysis worthwhile three
years and more of hard-working y Amira Zaylaa.

1.1 Context

T he study of signals and systems, particularly in the biomedical field, is of concern
in the most developed countries in the world. However, their study is not simple as
biomedical systems building up living things are nonlinear processes. These nonlinear
processes exhibit complexity which makes linear analysis techniques unsatisfactory.

Complexity analysis is an alternative approach to the linear time series analysis. In
the 50’s, Kolomogorov was undoubtedly the first to address and characterize nonlinear
dynamical systems with a new insight based on seeking novel invariants. Kolomogorov
joined Sinai and both proposed metric invariants. Later, they proposed side-by-side the
well-known KS Entropy which was also called the correlation entropy [Sinai, 1959]. In
the 2000’s, a renewed interest in the characterization of nonlinear systems led researchers
to adopt KS entropy as their starting point.

Nowadays, chaotic systems are characterized by complexity parameters that practi-
cally reveal a part of their identity either based on the information theory (Entropy anal-
ysis), the geometrical theory (multi-fractal dimensions) or the chaotic theory (Recurrence
Plots RPs and their quantification parameters). The previous analysis methods include,
but not limited to, the Approximated Entropy (ApEn) [Pincus, 1991], the Sample Entropy
(SampEn) [Richman and Moorman, 2000], Similarity Entropy (SimEn) [Lake et al., 2002],
Fuzzy Entropy (FuzzyEn) [Liu et al., 2013], Permutation Entropy [Bandt and Pompe, 2002],
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Geostatistical Entropy (GeoEn) [Pham, 2010], Lempel-Ziv (LZ) [Ziv and Lempel, 1978,
Hu et al., 2006], Largest Lyapunov Exponent (LLE) [Perron, 1930], Multi-fractal parame-
ters [Peters, 1996], Recurrence Plots [Eckmann et al., 1987] and Recurrence Quantification
Analysis (RQA) [Marwan et al., 2002, Zbilut et al., 2002].

Instead of considering KS entropy the starting point of any research work, it is apparent
from the bibliography that the correlation sum [Grassberger and Procaccia, 1983] C(r)
could be considered the starting point, as it is commonly included in most existing com-
plexity descriptors. From our point of view, it seemed judicious to follow the correlation
sum from the onset of the research work and consider it as our guideline.

To introduce the correlation sum, recall that C(r) measures the mean probability
that two time series states at two different times exist within a tolerance r, this con-
dition is governed by the Heaviside function [Grassberger and Procaccia, 2004]. The
correlation sum C(r) was the core of both the entropy paradigm and certain descriptors
based on the recurrence paradigm. The correlation dimension D2, which is related to
(log(C(r))/log(r)), is a special case of the generalized dimension spectrum Dq for a set
of data points [Akay, 2000]. D2 is used for deciding whether the object is a multi-fractal
and whether we could apply the multi-fractal analysis on a certain time series or not.

To illustrate the three analysis techniques we set out Fig. 1.1. Fig. 1.1 represents the
major phases of the time series (TS) analysis, it shows the common point between the
three analysis methods highlighted in a dashed orange rectangle.

C(r) was a must to decide whether one should use a fractal analysis or a multi-fractal
analysis, since the condition that should be satisfied in order to use the multi-fractal
analysis depends on the computation of the box-counting dimension D0, information
dimension D1 and correlation dimension D2. If the three latter dimensions are not equal
then the multi-fractal analysis has to be used [Akay, 2000]. Moreover, C(r) was required
to fill the Recurrence matrix in the Recurrence Plot analysis, and C(r) was needed to
compute the entropy parameters (see Fig. 1.1).

Although our research work could be applied to any nonlinear dynamical system, we
decided to test and evaluate our different contributions on fetal heart rate (FHR) time
series, as FHR analysis is of major concern in the two laboratories we are attached to.
This dissertation focuses on the study of Entropy analysis, multi-fractal analysis and RPs
to analyse chaotic biomedical signals. We emphasize on our motivation in improving
the discrimination between different chaotic signals to detect certain problems, such as
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Figure 1.1 – Schematic illustration of the phases of the time series analysis, the origin of the three different complexity
analysis techniques and the common point between them.

Intrauterine Growth Restriction (IUGR) inferred from FHR recordings, and to detect
intrinsic dynamic transitions which could amend the knowledge of biomedical systems.

1.2 Statement of Problem

The direct computation of correlations and autocorrelations from dynamic system’s time
series were insufficient and ambiguous. Fourier transform was insufficient to distinguish
chaos from noise [Trauth et al., 2010]. This follows that the great challenge is to have
a deep look on the chaotic time series and extract its complexity in order to analyze it
vividly and predict future states. Until now, there is no optimal and robust tool to analyse
chaotic signals, as well as not all the aspects of recurrence plots and entropy parameters
are analysed to detect anomalies. Based on what preceded, time and frequency analysis
techniques in hands, the comparison of each recording with either a control provided
by hospitals and current programmed monitors are not sufficient [Trauth et al., 2010,
Yang et al., 2011]. Furthermore, rare are the cases were clinicians can make up their
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diagnostic or therapeutic decisions in medicine when the signal is chaotic and random,
and rare are the cases were the classical parameters such as the acceleration can achieve
the discrimination of medical states of patients [Voicu and Girault, 2012a], here, fetuses.

As FHR signals are nonstationary and nonlinear in nature, many cutting-edge stud-
ies have used nonlinear processing tools in order to extract the complexity from such
signals [Oudjemia et al., 2013, Zaylaa et al., 2014a, Zaylaa et al., 2014b]. Consequently,
complexity analysis has became popular for FHR signals. Moreover, as preterm de-
liveries for instance, that is giving birth before the 37th week of pregnancy, remains a
major problem in obstetrics, and as it has been reported that children born before the
third trimester present a high risk of mortality as well as health and development hard-
ships [Goldenberg et al., 2008], recent studies were keen on applying nonlinear techniques
to FHRs.

For instance, Dima et al. have used frequent classification techniques by introducing
both linear and nonlinear features (Lyapunov exponent, SampEn and Variance Entropy)
to optimize the selection of features that could lead to the best classification accuracy of
uterine signals [Alamedine et al., 2013]. The latter study was tailored by the detection of
uterine contractions and sensing its resulting electrohysterogram (EHG).

Regardless of the sensed biomedical signal, clinicians can merely extract few features
such as the beats-per-minute (bmp), acceleration in addition to heart rate variability
(HRV) for diagnosing the fetus heart. They proposed a common criteria to decide when
the fetus is distressed and when it is in a healthy state. Clinicians consider that the
normal FHR amplitude level ranges between 110-160 bmp [Voicu et al., 2014].

The study of FHR time series could be further accomplished by a model capable
of displaying the chaotic signals and extracting the complexity parameters out of these
signals. The model includes RQA, determinism (DET), recurrence rate (RR) and other
invariant parameters.

From a computational prospect, analysis of biomedical time series could lead to the
following question: why are we keen on finding new invariant parameters or improving
existing invariants ? From a medical prospect, analysis of biomedical time series could
lead to the following questions: what could be the result if electrocardiograms (ECGs),
electroencephalograms (EEGs) and Doppler US FHR machines are meant to classify
habitual signals from strange ones ? What if strange chaotic signals were obtained ? Is it
sufficient to observe temporal representation of the signals on a monitor to write a medical
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report ? Are available monitors capable of analysing all chaotic signals ? Particularly, to
which extent are the current recurrence tests and their corresponding plots accurate ?

The former and latter questions caused the problem to be more critical and made us
keen on treating it. We hypothesize that a lot of information hidden in such complex time
series can be extracted by entropy, multi-fractal and recurrence analyses.

1.3 Objectives
This dissertation presents both theoretical and numerical investigations of chaotic biomed-
ical systems, particularly fetal heart, by means of Entropy and Multi-fractal Analysis and
Recurrence Plots. Our aim is to improve complexity techniques available in the literature
and propose new paradigm, complexity parameters and novel clean techniques to improve
the diagnosis and detect the fetus medical state. Generally, we hypothesized that improved
complexity parameters and novel complexity invariants improve the diagnosis of fetal
Intrauterine Growth Restriction (IUGR) due to hypoxia.

In this dissertation we propose new methods capable of extracting and displaying the
complexity hidden in chaotic signals. We have introduced the theory of our techniques,
applied them on mathematical systems which model and resemble biomedical systems,
and finally applied the novel techniques on real fetus heart Doppler US signals. These tech-
niques were both programmed and validated on the fractional Brownian Motion (fBm),
Lorenz System in the chaotic regime and Logistic Map. Our novel codes were written to
build up cutting-edge portable machines capable of analysing chaotic biomedical signals
in the field of medicine.

The three major complexity analysis techniques realized to study the random and
biomedical signals throughout this dissertation were demonstrated in Fig. 1.2. The first
technique is a direct quantification analysis in which we have developed two novel entropy
parameters (methods). The second technique is a geometric quantification analysis and
the third is a geometric qualitative technique. In this dissertation we also present new
extensions and definitions of recurrence plots and their application especially on chaotic
FHR signals.

1.4 Structure

The dissertation is divided into three major parts, part-I general introduction and ma-
terials used, part-II complexity analysis and application to biomedical signals and part-
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Figure 1.2 – Schematic illustration of the three different complexity analysis techniques.

III summary of the dissertation, conclusion and perspectives. A general introduction is
provided in part-I including a methodical overview of existing works (chapter 1), and the
materials used are introduced in chapter 2. The three theoretical and numerical contribu-
tions to the complexity analysis techniques are introduced in part-II. Chapter 3 in Part-II
constitutes the entropy, chapter 4 the multi-fractal analysis and chapter 5 recurrence
analysis. Each of the previous chapters in part-II was made up of a theoretical part
followed by numerical applications on both simulated and real systems for classification,
detection and diagnosis purposes. Finally, a general comparison of complexity analysis
techniques, the conclusion and perspectives are given in chapter 6 in part-III to sum up
the whole dissertation results and open the door for future works and inventions.

The existing entropy pseudocodes are provided in Appendix A. The pseudocodes of
recurrence plots developed are provided in Appendix B, my Ph.D. activities in Appendix
C, the List of Publications in Appendix D and the first page of the three articles that
were written are supported in Appendix E.
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Chapter 2

MATERIALS

The fractional Brownian motion, Lorenz and logistic times series are good archetype
of biomedical signals [Marwan et al., 2002, Marwan et al., 2007, Oudjemia et al., 2013].
These well-known systems were simulated and used to validate the developed complexity
parameters and Unbiased Recurrence Plots.

2.1 Fractional Brownian Motion

To illustrate fBms, three different fBm time series are depicted for different H parameters
(called Hurst index) [Mandelbrot and Van Ness, 1968] in Fig. 2.1. Fig. 2.1 represents (a)
a negatively correlated fractional Gaussian noise as H < 0.5, (b) the Brownian motion as
H = 0.5 and (c) a positively correlated fractional Gaussian noise as H > 0.5.

2.2 Lorenz System

Lorenz System originally founded in (1963) is given below:

dx
dt

= a(y − x)

dy
dt

= ρx− y − xz


a = 10

ρ = 28

c = 8/3
dz
dt

= xy − cz
x(0) = 8, y(0) = 9, z(0) = 25

(2.1)
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16 / 43

Figure 2.1 – Fractional Brownian Motion. (top) A negatively correlated fractional Gaussian noise. (center) Brownian
motion. (bottom) Positively correlated fractional Gaussian noise.

where a, ρ and c are constants to be set. In order to achieve chaotic Lorenz system
the parameters should be chosen as shown in Eq. 2.1. The initial conditions were chosen
as x(0) = 8, y(0) = 9, z(0) = 25.

This system was used to validate the developed high order entropy parameters prior
to their application to FHRs and it served as a chaotic system.

2.3 Logistic Map

In order to mimic dynamic biomedical systems, the five RP techniques used in chapter
5 were applied to the simulated nonlinear biologically inspired system, known as the
logistic map [Trulla et al., 1996]. This type of system is characterized by periodic and
chaotic dynamic regimes, it was defined as:
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xγ+1 = b ∗ xγ ∗ (1− xγ). (2.2)

where b stands for the control parameter of the logistic map and γ the iteration number.

Figure 2.2 – The bifurcation diagram and different dynamic regions of the Logistic Map.

Fig. 2.2 represents the famous bifurcation diagram of the logistic map for b ∈ [3.5, 4].
The different dynamic regimes were highlighted in a green color. The idea of using such
type of system to model fetal heart rates was inspired from the works of N.Marwan et
al. who made use of the logistic map to model adult heart rates [Marwan et al., 2002,
Marwan et al., 2007].

2.4 Real Fetal Heart Rate Time Series

2.4.1 Multichannel Doppler Ultrasound Device and Fetal Heart

Rates

Multi-channel Doppler Ultrasound (MCDUS) device was the system used for monitoring
FHRs. MCDUS (by ALTHAÏS Technologies, University of Tours in France) is a portable
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device shown in Fig. 2.3. MCDUS in Fig. 2.3 was connected to a personal computer (PC).
MCDUS comprised a Doppler acquisition board and three groups of four transducers (12
probes×5 gates). The operating functions of the acquisition board (1-6) were explained in
details in [Rouvre, 2006]. This system which transmits ultrasound waves of 2.25 MHz for
an acoustic power limited to 1 mW/cm2 [Voicu and Girault, 2012b, Voicu et al., 2014],
was developed to measure both the FHR and fetal movements (pseudo-breathing and
limb movements).

Altaïs+Technology%University+of+Tours,+France+

!!

2.2. Partie matérielle 47

2.2.1 Les transducteurs (capteurs)

Le transducteur (capteur) définit le champ d’observation et donc la qualité des mesures.

Chaque capteur est constitué d’un seul élément piézoélectrique fonctionnant alternative-

ment comme émetteur et récepteur. Le diamètre est de 13,2 mm pour une profondeur

maximum de 20,6 mm. Le diamètre de chaque élément actif de chaque transducteur est

de 12,2mm. la figure 2.2 présente les capteurs dans leur support en silicone souple.

Fig. 2.2 – Les groupes de transducteurs (capteurs) d’Actifoetus. Chaque groupe est composé de quatre
transducteurs ultrasonores maintenus entre eux par un support en silicone souple.

Les capteurs ont été réalisés par nous, au sein de la société Ultrasons Technologies.

Nous les avons conçus divergents afin de maximiser la région d’exploration, ceci permet

de diminuer les risques de perte de signal dus aux déplacements du foetus. La profondeur

d’exploration standard va de 1,88 cm à 15 cm, découpé en cinq portes.

La fréquence d’émission choisie est de 2,25 MHz, cette fréquence représente un bon

compromis entre la résolution Doppler, qui est d’autant plus grande que la fréquence

d’émission est élevée, et l’atténuation des ultrasons dans les tissus qui croit linéairement

avec la fréquence. A cette fréquence d’émission, le décalage Doppler est d’approximative-

ment 100 Hz pour les mouvements du coeur foetal, 50 HZ pour les mouvements du corps

et 200Hz pour les mouvements brusques des extrémités.

54 Chapitre 2. Le dispositif Actifoetus

Fig. 2.7 – Le module électronique est composé de trois cartes d’emission - reception Doppler et d’une
carte électronique d’acquisition de données permettant de transférer les données aux PC. Celles-ci sont
ensuites enregistrées sur un disque dur.

Principe de fonctionnement

Le signal d’émission est une sinusoïde à la fréquence de 2,25MHz. Un multiplexeur

permet d’adresser l’un des quatre transducteurs commandés par la carte. On réalise la

démodulation analytique. Les composantes directes I(t) et en quadrature Q(t) sont échan-

tillonnées puis converties par un convertisseur analogique-numérique. La figure 2.8 pré-

sente l’architecture d’une des cartes du module.

Les douze capteurs sont excités par une sinusoïde de fréquence 2,25 Mhz pendant 10µs

(Vpp = 7, 3V ). La fréquence de répétition des tirs (PRF) est de 1KHz sur chaque capteur.

On notera par ailleurs que les capteurs de chaque groupe fonctionnent séquentiellement,

et non simultanément. Toutefois, les trois différents groupes de capteurs sont sollicités en
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Figure 2.3 – Schematic illustration of the application setup from Doppler Ultrasound Fetal Heart Rate detection to Fetal
Heart Rate extraction.

Two FHR recordings are displayed in Fig. 2.4. Fig. 2.4 represents (a) a healthy fetal
heart rate (H-FHR) shown in orange and (b) a distressed fetal heart rate (D-FHR) shown
in gray. H-FHR ranges from 110 to 160 beats per minute during the third trimester of
pregnancy [Voicu et al., 2014]. These FHR recordings were then windowed and 3-minute
sub-FHRs were produced.
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The fetal distress was due to hypoxia i.e. placental insufficiency which causes the
reduction of oxygenated blood from the uterus to the placenta, thereby reducing the
amount of oxygenated blood reaching the fetus [Maslova et al., 2003, Habek et al., 2001].
The interest of studying such medical problem was to reduce the death of fetuses and
decide for caesarean section prior to Fetal death. As the data base was provided by
Bretonneau Hospital (CHRU) in Tours, the obstetric department was able to decide that
fetuses were suffering from hypoxia by chemically analyses. However according to our
knowledge, this medical problem has not been fully understood and detected by the
direct analysis of FHR recordings.
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Figure 2.4 – Fetal Heart Rate (FHR) recordings from two different fetal groups for 30-minutes at Bretonneau Hospital
in Tours (France). (a) A Healthy Fetal Heart Rate (H-FHR) recording and (b) a Distressed Fetal Heart Rate (D-FHR)
recording.
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2.4.2 Case Study and Protocol

One group of Doppler system electrodes was dedicated to explore the fetus heart. The
transducers exploring the fetus heart were non-focused and mono-element, they were
also circular with a diameter of 13.5 mm each. Geometrically, each electrode comprised
transducers located at both the top of an equilateral triangle of side 40.7 mm and at its
center.

Transducers were placed on the mother’s abdomen and were adjusted to transmit a
sinusoidal pulse at 2.25 MHz with a pulse repetition frequency (PRF) of 1 KHz. US was
transmitted to the fetus heart through the mother’s abdomen. During its transmission,
US interacted with the moving structures of the heart such as the walls and valves. This
interaction has modified the transmitted frequency of the pulse. The frequency content
of the backscattered signal carried the heart signature when recorded from a volume
containing the fetus heart. In order to divide the volume, the backscattered signal was
recorded from five different depths.

The echo was converted into an electrical signal and amplified to compensate for
the attenuation of 1 dB/cm/MHz. The signal was then demodulated [Jensen, 1996] and
digitized. The digital output of the converter represented the digital Doppler signal.
Once the digital signal was obtained, Doppler signals were processed numerically to
find FHR [Voicu et al., 2009, Voicu et al., 2010]. FHR was computed every 250 ms, the
interval corresponding to the average of consecutive heart beat intervals.

Our database included 80 FHR recordings collected by our MCDUS from 80 pregnant
women (40 healthy recordings and 40 distressed ones). The women were in their third
trimester (fetus age ranged from 25 to 39 weeks). The consent of each patient was obtained
and the study was approved by the ethical committee of the Clinical Investigation Center
for Innovative Technology of Tours (CIC-IT 806 CHRU of Tours).
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Chapter 3

ENTROPY ANALYSIS

p As words uttered are temporal events, it is crucial to balance these events
and distinguish whether they are regular or irregular prior to uttering them y

Amira Zaylaa.

3.1 Introduction

Entropy which is the measure of the degree of irregularity and disorder of analyzed time
series is the core of this chapter. Entropy was realised by evaluating the probability of find-
ing m-similar patterns, and various Entropy descriptors were derived from the latter con-
cept. It is a nonlinear processing tool originating from the Information theory and charac-
terized by its prompt application to time series [Ash, 1990]. Serving as an algebraic quan-
tification parameter, entropy was used in this dissertation to characterize the complexity of
the biomedical-like random signals such as the fractional Brownian Motion (fBm) and later
Fetal Heart Rates (FHR). Approximate Entropy (ApEn), Sample Entropy (SampEn),
multi-scale Entropy, Similarity Entropy (SimEn) and the Fuzzy Entropy (FuzzyEn) were
involved as alternative techniques. However, a high order entropy in which two novel
entropy parameters were developed, Maximum Entropy and n-order Entropy was used
to improve the discrimination of biomedical signals in general and Fetal heart Rates in
particular. In addition, the problem of setting the pattern value for entropy computation
has been optimally carried out.

3.2 Major Existing Entropy
Entropy, originally developed by Shannon [Shannon, 1948], measures the randomness of
data and is given as:

En = −
M∑
i=1

ΩilogΩi, (3.1)
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where M is the length of the time series and Ωi is the probability of finding tem-
plates that constitute the dictionary of events. This entropy was then generalized by
Rényi [Rényi, 1961]. Shannon’s entropy, which was applied to analyze chaotic time series
in the phase space, and the formula given by Eq. 3.1 were not immediately useful and
depended on two factors. First, Shannon’s entropy depended on the box size chosen to
compute the probability through, and second, it depended on the intrinsic properties of
the attractor [Cross, 2000]. To make the formula useful scientists proposed i) scaling the
entropy by reducing the box size and/or ii) using the algorithm of Kolmogorov and Sanai
and thus KS entropy [Kolmogorov, 1959, Sinai, 1959].

Kolmogorov and Sanai thought that by KSEn profound knowledge of the complexity
of systems can be acquired. Then another advanced forms based on i) entropy showed up
such as ApEn, SamEn, SimEn, FuzzyEn and Permutation En [Bandt and Pompe, 2002,
Riedl et al., 2013].

GeoEn has been proposed by Pham [Pham, 2010] and the tolerance r was set to a
value inferred from the computation of the difference in the range of the distorted signal
(variance of the signal) and its advanced version. However, in our work the value of r was
set at 10%×SD(signal). GeoEn refers to the metric distance between distorted signals,
additional conditions has been applied on this distance computation. It employs another
concept of computation involving the semi-variance of semi variogram model.

To take the full advantage of both SimEn and FuzzyEn, the maximum and n-order
ideas were introduced. We hypothesized that the two novel entropy descriptors enhance
the differentiation between distressed and healthy fetuses, i.e. healthy fetuses and fetuses
subjected to severe Intrauterine Growth Restriction (IUGR). ApEn, SampEn, SimEn and
FuzzyEn also used by Xie et al. [Xie et al., 2008] were computed as alternative methods.

3.2.1 Approximate Entropy

ApEn is the quantification of regularity in data. A deterministic signal is usually composed
of few patterns whose occurrence is very high, thus its entropy is low. A random signal is
composed of a huge number of patterns whose occurrence is low, therefore its entropy is
very high. A chaotic signal is composed of patterns whose occurrence is medium, hence
its entropy is medium.

It is applied to relatively short and noisy data [Behnia et al., 2008], it takes into
account the length of the signal and self-matches and it requires a heavy implementation.
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A time series xn of length M is divided into a set of m-length vectors um(i). Then the
number of vectors um(i) and um(j), close to each other, in distance Γ [um(i), um(j)] ≤ r,
is expressed by the number Pm

i (r). This number is used to calculate the probability of
vectors being close Cm

i (r) =
∑
P
(
r, Γmi,j

)
/(M−m+1) [Pincus, 1991, Spilka et al., 2012].

The distance Γ(i, j,m) between the two m-patterns X(i,m) and X(j,m) is defined as
follows:

Γ(i, j,m) = Γ (X(i,m),X(j,m)) = max
k∈(0,m−1)

|x(i+ k)− x(j + k)| . (3.2)

Define the following state function:

φ(m)(r) = − 1

M − (m− 1)

M−(m−1)∑
i=1

logCm
i (r), (3.3)

and the consecutive state function:

φ(m+1)(r) = − 1

M −m
M−m∑
i=1

logCm+1
i (r). (3.4)

C(m)
i (r) accounts whether a vector X(i,m) and another vector X(j,m) exist within a

tolerance r. Consequently ApEn is written as:

ApEn(m, r) = φ(m+1)(r)− φ(m)(r). (3.5)

Fig. 3.1 represents a schematic illustration of Entropy computation for a pattern of
2 samples. ApEn measures the sum of the probability that patterns existing within r,
such as, [u(4), u(5)] and [u(16), u(17)] match. Note that ApEn considers the template
self-match, i.e. takes into account that [u(4), u(5)] matches itself. The pseudocode of this
entropy is found in Appendix A.

3.2.2 Sample and Multi-Scale Sample Entropy

SampEn is designed to reduce the bias of ApEn and has a closer agreement with theory
for dataset with known probabilities. SampEn overcomes shortcomings of ApEn, i.e. self-
matches calculated by ApEn, and it is computed to quantify the complexity of short heart
rate time series [Richman and Moorman, 2000, Javorka et al., 2008].
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Figure 3.1 – Schematic Illustration of Entropy compution from a chaotic time series using a pattern of m = 2.

SampEn is the negative logarithm of the probability that one templatem finds a match
at m+1 [Spilka et al., 2012] simultaneously within tolerance r. SampEn does not depend
on the length of the signal and exhibit a trouble-free implementation. Fig. 3.1 demon-
strates, for instance, how SampEn considers that both [u(4), u(5)] and [u(16), u(17)],
and both [u(3), u(4), u(5)] and [u(15), u(16), u(17)] are matching for a choice of m = 2

and m = 3, respectively. However, it does not take into account that [u(4), u(5)] or
[u(3), u(4), u(5)] templates match themselves.

The multi-scale SampEn possesses the same formulation of SampEn except that it is
applied on scales produced from the original time series. It requires generating scales of
a signal x by applying the following equation:

ys
j =

1

s

js∑
k=(j−1)s+1

xk, (3.6)

where s stands for the scale, j is the index of the sample of the scaled time series and
ysj the scaled templates of x [Baumert et al., 2012, Costa et al., 2005], the first two scales
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are illustrated in Fig. 3.2.

x1 x2 xM-1  xM 

y2=x(k) 

y1=x(k) 

y2(1) y2(1) y2(M)=(xM-1-xM)/2 …. …. 

…. …. Scale+1+

Scale+2+

…. 

…. 

Figure 3.2 – Schematic Illustration of an example of coarse graining for s = {1, 2} and k={1, ...M} .

Both SampEn and ApEn were used to measure the disorder of the heart rate time se-
ries [Richman and Moorman, 2000]. Moreover, multi-scale SampEn was recently applied
to FHRs to detect acidemia [Costa et al., 2014]. The detailed pseudocode of this entropy
type is found in Appendix A. The formula of SampEn is the same as Eq. 3.5, however:

φ(m)(r) = −log
(

1

M −m
M−m∑
i=1

Cm
r (i)

)
, (3.7)

and

φ(m+1)(r) = −log
(

1

M −m
M−m∑
i=1

Cm+1
r (i)

)
. (3.8)

3.2.3 Similarity and Multi-Scale Similarity Entropy

SimEn is based on the computation of centered patterns which are similar within tolerance
r [Lake et al., 2002]. Two patterns of m samples were assigned similar after:

o Subtracting the mean of the patterns (centering process);

o Testing whether the new samples of the centered patterns were enclosed within a
tolerance r or not.

Fig. 3.1 demonstrates how similar patterns with an orange background appear in the
time series. SimEn considers both [u(4), u(5)] and [u(21), u(22)] similar even-though they
do not exist within the same tolerance r.
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Multi-scale SimEn is a modified version of SampEn, however, taking into account pat-
terns at all amplitude levels [Girault et al., 2013]. Therefore, a centered vector sequence
X(m, i) is formed from a time series vector composed of M points:

X(m, i) = {x(i), x(i+ 1), ..., x(i+m− 1)} −X(i,m), (3.9)

with

X(i,m) =
1

m

m−1∑
l=0

x(i+ l),

SimEn = Ep(1,m) = φp(m+ 1)− φp(m). (3.10)

where φp(m) is similar to Eqs. 3.7 and 3.8 and p = ∞ when the Heaviside function is
considered, and the 1 in Ep(1,m) corresponds to the measure of the difference between two
consecutive state functions. The necessary steps used to compute multi-scale SimEn were
identical to those used to compute SampEn applied on the scaled time series Eq. 3.6,
however, after removing the baseline (i.e. subtracting the mean). The computation
of SimEn was based on the work of [Voicu and Girault, 2012b] and its pseudocode is
summarized in Appendix A.

3.2.4 Fuzzy Entropy

In contrary to ApEn, SampEn, and SimEn in which the degree of similarity between
two vectors is strictly constrained by the Heaviside function depicted on the right of
Fig. 3.1 and shown in an orange color, FuzzyEn was constrained by a fuzzy membership
function. The fuzzy membership function was set out on the right of Fig. 3.1 and shown
in a black color, it bounds the similarity of two vectors and ensures statistical stabil-
ity [Liu et al., 2013]. Using a Heaviside function, the boundary is rigid: the contributions
of all the data points inside it are treated equally, whereas the data points outside it are
discarded.

The strict boundary nature causes discontinuity, which may lead to abrupt changes
in entropy values when r changes slightly, moreover, it may fail to find a SampEn value
if no template match was found using a small tolerance.

On the other hand, a fuzzy membership function imposes a smooth boundary and
continuity for different values of tolerance r. All data points, where the membership
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Figure 3.3 – The membership function.

function and the tolerance r are satisfied, are considered to be members of the function.
For a vector Xm

i , similarity is indicated by the fuzzy membership function value: the
closer the neighbouring vector Xm

j , the more similar Xm
j to Xm

i . Furthermore, the degree
of similarity between Xm

j and Xm
i is almost zero when Xm

j is distant from Xm
i . Using

a fuzzy membership function, FuzzyEn is continuous and does not change dramatically
with a slight change in r. This type of entropy was applied on heart rate variability and
took high values for healthy cases compared to distressed cases [Liu et al., 2013].

The degree of similarity Pp(i, j,m) between the X(i,m) and X(j,m) vectors within a
fixed tolerance r and Eq. 3.10 can be calculated through an exponential fuzzy function as
follows:

Pp(i,m, r) = e
−
(
Γ(i,j,m)

r

)p

. (3.11)

When the family of exponential functions is selected as a membership function, setting
the parameter p becomes a necessity. Fig. 3.3 represents the membership function when
p = ∞ and p = 2. For p = ∞ the membership function is said to be the Heaviside
function, and for p = 2 the membership function is equivalent to the Gaussian function.
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The pseudocode of FuzzyEn is found in Appendix A.

3.3 High Order Developed Entropy

One of the most promising ways for detecting different dynamical states lies in quan-
tifying the complexity of time series. Among the possible complexity descriptors, en-
tropy [Pincus, 1991, Ferrario et al., 2006, Chen et al., 2009, Liu et al., 2011, Liu et al., 2013]
indicators are undoubtedly effective.

However, entropy descriptors are highly dependent on the setting parameters (m, r)

[Restrepo et al., 2014], and the choice of these parameters is critical, especially for moder-
ately sized signal lengths [Boskovic et al., 2012]. Chon et al. [Chon et al., 2009] claimed
that entropy descriptors such as ApEn and SampEn are not accurate in assessing signal
complexity using the recommended values in the literature [Pincus, 1991].

Though it has been suggested by [Pincus and Keefe, 1992] to set the tolerance r em-
pirically between 0.1 and 0.2 times the standard deviation of the time series, recent studies
focusing on improving the detection of transitions [Lu et al., 2008, Restrepo et al., 2014]
have shown the interest of setting it at another value. This suggested value, adapted for
the detection of transitions, has been proposed to maximize entropy E(m, r):{

E∗ = E(r∗,m),

r∗ = argmaxr (E(r,m)) ,

where r is the tolerance and m is the pattern size.

On the other hand, for setting the pattern size m, few studies have focused on finding
the optimal value of m, and the only studies published focused on the reconstruction
of the original phase spacea [Kennel et al., 1992, Cao, 1997] rather than the detection of
transitions. However, the recent study by Restrepo et al. [Restrepo et al., 2014] tested
several sizes of pattern m. Basically, the most commonly used values of m were set at 1,
2 or 3 [Pincus and Goldberger, 1994, Ferrario et al., 2009]. These low values of m were
proposed because a too high value of m leads to a poor estimation of the entropy E(m, r)
[Restrepo et al., 2014] or to a poor reconstruction of the system dynamics.

aThe principle of reconstruction consists of finding the minimum embedding dimension d that
corresponds to a sudden change in the nearest false neighbors.
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As entropy descriptors E(m, r) suffer from setting problems and as there are no
satisfactory solutions, the main purpose of this study was to extend the studies re-
cently undertaken by [Lu et al., 2008, Chon et al., 2009, Restrepo et al., 2014] based on
the search for parameter settings leading to maximum entropy.

The first challenge to resolving the setting problems was investigating the value of m∗

to maximize entropy E(m, r):{
E∗ = E(r,m∗),
m∗ = argmaxm (E(r,m)) .

As this study was devoted only to searching for the optimal value m∗ with a constant
value r, the latter was fixed at r = 0.2 for the remainder of the study. The variable r was
therefore deliberately omitted from the subsequent equations.

The study reported in this dissertation showed that examining the role of the pattern
size m could provide important insights into quantifying the complexity of time series,
thus leading to improved understanding of nonlinear dynamic systems. Furthermore, it
was shown that the combined use of m∗ and E∗ can provide a more consistent method to
distinguish between different dynamics.

In response to the lack of a satisfactory method, the need to find a new transition
detector or a discriminator is greatly needed. The second aim of this study was to establish
a new paradigm to provide important insights into quantifying the complexity of time
series. This new concept, for which, as suggested by [Liu et al., 2013], a membership
function was introduced, encompassed the standard definition of entropy descriptors. The
general framework of "n-order fuzzy entropy" on which the new paradigm is based depends
on the following equation:

E(n,m) = φ(m+ n)− φ(m) (3.12)

where n is the order, and φ is the average of the natural logarithm of the probability of
finding similar patterns of size m. By setting n = 1 in equation 3.12, ApEn is recognized.

The concepts of maximum entropy and n-order entropy were then introduced in
subsections 3.3.1 and 3.3.2 to achieve the above aims. The two new paradigms were
then evaluated through simulations on real FHR recordings.
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3.3.1 Maximum Entropy

The aim of this subsection is to introduce the maximum entropy E∗ = E(m∗), and
demonstrate that it is effective for discrimination purposes. For this reason and for a
more general framework, SimEn was used as the alternative entropy since it was recently
shown that it is superior to ApEn [Liu et al., 2013]. SimEn was defined by Eq. 3.10.

The entropy in Eq. 3.10 can be calculated through the exponential fuzzy function
defined by Eq. 3.11. To guarantee that φp(m) varies between 0 and 1, a normalized
version is proposed as follows:

Φp(m) = 1 +
φp(m)

log(M)
, (3.13)

where M is the length of the time series.

Finally, the 1-order entropy reduces to:

Ep(1,m) = Φp(m+ 1)− Φp(m), (3.14)

The optimization process described by the search for m∗ maximizing the entropy
Ep(1,m) and thus the maximum entropy E∗p leads to the following equations:{

m∗ = argmax
m

(Ep(1,m)) ,

E∗p = Ep(1,m∗).

with p =∞ for non-fuzzy estimations and p = 2 for fuzzy estimations.

Note that the search for the optimal set of parameters (r∗,m∗) to optimize the entropy
E∗∗ = E(r∗,m∗) is the subject of a future study.

3.3.2 N-Order Entropy

The monotonicity feature of Φp(m) was not used profitably in the maximum entropy, and
this was the starting point of N-order entropy. To benefit from the slope-dependence of
Φp(H), the discrimination function is defined by:

ΨEp(n) = |Φ(1)
p (1 + n)− Φ(2)

p (1 + n)|, (3.15)
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and is based on Φ(i)
p (n + 1), where i = 1 corresponds to fBm of H = 0.07 and i = 2

corresponds to fBm of H = 0.3, and i = 1 corresponds to H-FHR and i = 2 corresponds
to D-FHR. By slightly modifying the definition of ΨEp(n) as follows:

ΨEp(n) =
∣∣∣(Φ(1)

p (1 + n)− Φ(1)
p (1)

)
−
(
Φ(2)
p (1 + n)− Φ(2)

p (1)
)∣∣∣ , (3.16)

and by setting Φ(1)
p (1) = Φ(2)

p (1) (made possible by the normalisation outlined in Eq. 3.13)
the definition of the n-order SimEn previously presented in Eq. 3.10 is recognized with
m = 1: E (i)p (n, 1) = Φ(i)

p (1 + n)− Φ(i)
p (1), leading to

ΨEp(n) = ΨEp(n, 1) =
∣∣E (1)p (1 + n, 1)− E (2)p (1 + n, 1)

∣∣ . (3.17)

Although it is probable that the following equation Φ(1)
p (m) = Φ(2)

p (m) is not always
guaranteed, Eq. 3.17 can be generalized ∀m as follows:

ΨEp(n,m) =
∣∣E (1)p (n,m)− E (2)p (n,m)

∣∣ , (3.18)

based on the n-order entropy E (i)p (n,m) is defined by:

E (i)p (n,m) = Φ(i)
p (m+ n)− Φ(i)

p (m), (3.19)

where p =∞ corresponded to non-fuzzy estimations and p = 2 to fuzzy estimations.

All possible values of E (i)p (n,m) are gathered in the symmetrical matrixM(i)
p defined

by:

M(i)
p =


0 E (i)p (1, 1) E (i)p (2, 1) E (i)p (3, 1) ...

E (i)p (1, 1) 0 E (i)p (1, 2) E (i)p (2, 2) ...

E (i)p (2, 1) E (i)p (1, 2) 0 E (i)p (1, 2) ...

E (i)p (3, 1) E (i)p (2, 2) E (i)p (1, 3) 0 ...

... ... ... ...

 (3.20)

whereM(i)
p (k, l) = |Φ(i)

p (k)−Φ(i)
p (l)|. This matrix is symmetrical since |Φ(i)

p (k)−Φ(i)
p (l)| is

equal to |Φ(i)
p (l)−Φ(i)

p (k)|. The structure of this matrix is specific since its main diagonal
is null (M(i)

p (k, k) = 0). The main diagonal corresponds to the 0-order entropies and the
diagonals just above and below the main diagonal correspond to the 1-order entropies
shown in blue, 2-order entropies shown in green, 3-order entropies shown in red, etc.

51



CHAPTER 3. ENTROPY ANALYSIS

Finally, the discrimination function ΨMp based on the MatrixM(i)
p was defined by:

ΨMp =
∣∣M(1)

p −M(2)
p

∣∣ . (3.21)

3.3.3 Results of Fractional Brownian Motion and Lorenz System

In entropy analysis, 200 normalized fBms comprised 1024 samples were simulated for
discrimination purposes. 100 fBms for H = 0.07 and 100 for H = 0.3 were selected since
Oudjemia et al. showed that such fBms could coarsely model fetal heart rate signals for
distressed and healthy cases, respectively [Oudjemia et al., 2013].

3.3.3.1 Maximum entropy

After introducing the theoretical aspects of the maximum entropy it was then important
to demonstrate the significance of determining the maximum value of entropy E∗p through
simulations. These simulations were based on fBm and Lorenz time series for i) they are
good archetypes of biomedical signals and ii) their degrees of irregularity can easily be
varied through the Hurst exponent H or the Rayleigh number ρ, respectively.

Note that Φp(m) were monotonic decreasing functions and their slopes depended on
the Hurst exponent.

In order to show that E∗p and m∗ could be related to the intrinsic features of fBm, 100
normalized fBms of unitary energy composed of M = 1024 samples were simulated with
Hurst exponents ranging from H = 0.1 to 0.9. To guarantee that the maximum entropy
was reached, the size of the pattern m was varied from 1 to 150 and r = 0.2.

Figs. 3.4 (a) and (c) represent the mean of Φ∞(m) and Φ2(m). From these graphs, it
can be seen that Φp(m) functions, that quantified the probability of finding patterns of size
m were monotonic, decrease from 1 to 0 as m increases. These functions that represented
a cumulative effect possess slopes depending on the Hurst exponent: the higher the Hurst
exponent, the lower the slope. It can also be seen that Φ∞(m) and Φ2(m) decrease as the
size of the pattern increases. Therefore, the greater the sizes of patterns, the lower the
probability of finding large patterns.

Figs. 3.4 (b) and (d), represent the mean of E∞(1,m) and E2(1,m). From these
graphs, it can be seen that Ep(1,m) functions, that represented discrete derivatives of
Φp(m) functions (cumulative effect removed), are non-monotonic, reaching a maximum
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Figure 3.4 – Complexity measurement for different fBm with H ranging from 0.1 to 0.9 (r = 0.2). (a) Non-fuzzy estimations
with Φ∞(m). (b) Non-fuzzy estimations with E∞(1,m). Red dots correspond to maxima. (c) Fuzzy estimations with
Φ2(m). (d) Fuzzy estimations with E2(1,m). Red dots correspond to maxima.

Ep(1,m∗) corresponding to m∗ that depended on the value of the Hurst exponent. These
curves start from 0 and rise to a maximum and then decrease as H increases. As fBms are
self-affine time series, their autocorrelations are decreasing functions and their correlation
length depends on the Hurst exponent value: the lower the Hurst exponent value, the
shorter the correlation length and the lower the pattern size m. Figs. 3.4 (b) and (d)
show m values that are particularly interesting, the most visible are those maximizing the
1-order entropy. These m values, which are dependant on the Hurst exponent, represent
points of inflection in the Φp(m) functions and are highlighted in the Ep(1,m) functions
representing the discrete derivatives of Φp(m). As points of inflection can still be seen
in the 1-order entropy Ep(1,m), then calculating high order derivatives of the functions
Φp(m) should provide additional insight in the study of fBm. This will be developed in
the next section.
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Figure 3.5 – 1-order entropies (non-fuzzy and fuzzy) of 100 fBms with H ranging from 0.1 to 0.9 (r = 0.2). (a) C∗∞(H). Dots
correspond to the mean estimation and red lines correspond to the standard deviation. Arrows represent a limit between
anti-correlation and correlation. (b) C∗∞(1,m∗). Lozenges represent the standard deviation of m∗ and C∗∞. (c) C∗2 (H).
Dots correspond to the mean estimation and the red lines correspond to the standard deviation. Arrows represent a limit
between anti-correlation and correlation. (d) Fuzzy estimation with C∗2 (1,m

∗). Lozenges represent the standard deviation
of m∗2 and C∗2 . (e) Zoom of (b). From the zoom it is easier to discriminate between high complexity and low complexity.
(f) H(m∗). (g) Zoom of (d). From the zoom it is easier to discriminate high complexity from low complexity. (h) H(m∗).

Figs. 3.5 (a) and (c) represent E∗2 (H) and E∗∞(H) derived from Figs. 3.4 (b) and (d).
Similarly, Figs.3.5 (f) and (h) represent m∗ and H(m∗) derived from Figs. 3.4 (b) and
(d). Moreover, Figs. 3.5 (b) and (d) represent E∗2 (1,m∗) and E∗∞(1,m∗) derived from Figs.
3.4 (b) and (d). Figs. 3.5 (e) and (g) represent a zoom of Figs. 3.5 (b) and (d) for low
values of H.

Figs. 3.5 (a) and (c) show that E∗2 (H) and E∗∞(H) increase up to a limit defined byH =

0.5 and then decrease. This limit of H = 0.5 seemed to be determined by the negatively
correlated (H < 0.5) or positively correlated (H > 0.5) nature of the time series under
study. Such behavior was not observed from estimation of m∗(H) that grew continuously
as the Hurst exponent increased. By combining the two parameters (m∗, E∗p ) that seemed
related to the intrinsic parameter H, it was possible to discriminate different fBms. On
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Figure 3.6 – 1-order entropies for Lorenz time series (r = 0.2). (a) Non-fuzzy estimations with E(1)∞ for chaotic behavior
(ρ = 28) (represented in blue) and E(2)∞ for periodic behavior (ρ = 215) (represented in green). (b) Fuzzy estimations with
E(1)2 for chaotic behavior (ρ = 28) (represented in blue) and E(2)2 for periodic behavior (ρ = 215) (represented in green).

the other hand, it was easier to make this discrimination forH < 0.5 than forH > 0.5 (see
the zoom in Figs. 3.5 (e) and (g)). This outcome augured well for discriminating between
healthy and distressed fetuses, since it was recently shown [Oudjemia et al., 2013] that
the Hurst exponent of FHR signals was between 0.07 and 0.3.

In order to confirm that both m∗ and E∗p also perform for other types of complexity,
Lorenzb time series were examined. Two different operating modes of the Lorenz system
were examined: a chaotic behavior with ρ = 28 and a periodic behavior with ρ = 215.
Two sets of 100 trials were produced for each value of the Rayleigh parameter ρ, each with
2000 points for different initial conditions randomly chosen from a uniform distribution. In
order to avoid the influence of transients, the first 500 points of each trial were discarded.
The resulting signals composed of 1500 points were normalized to achieve unitary energy.

Figs. 3.6 (a) and (b) represent E (i)∞ (1,m) and E (i)2 (1,m), with i = 1 for ρ = 28 and
i = 2 for ρ = 215. The size m ranged from 1 to 200 to guarantee the presence of maximum
entropy. From these graphs, it can be seen that there are two different signatures that
illustrates the chaotic and non-chaotic natures of the system. For a periodic operating

bThe Lorenz equations were: ẋ = σ(y − x), ẏ = −xz + ρx − y and ż = xy − βz, where σ = 10,
ρ = {28, 215}, β = 8/3 and the step size was selected as 0.01.
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mode, the green curves increase gradually up to the maximum and then decrease slowly
(see Fig. 3.6). From Fig. 3.6, it can be seen that maxima are aroundm∗ = 70 andm∗ = 80

for E (2)∞ (1,m) and E (2)2 (1,m), respectively. Although high values of m∗ were not expected,
the latter proved their usefulness for discrimination purposes.

For a chaotic operating mode, the blue curves increase rapidly up to the maximum
and then decrease slowly (see Fig. 3.6). From Fig. 3.6, it can be seen that maxima are
located at low values of m∗ = 7 and m∗ = 8 for E (1)∞ (1,m) and E (1)2 (1,m), respectively.
It can be seen that the maximum values E (1)∗∞ , E (2)∗∞ , E (1)∗2 , E (2)∗2 were of the same order,
whatever the operating mode of the system and whatever the algorithm version (fuzzy or
not). It can therefore be asserted that the element that was sensitive to discerning the
two operating modes was m∗. Finally, the level of the standard deviation of the entropy
estimation (bars in Fig. 3.6) is relatively high in relation to the mean value (dots in
Fig. 3.6) since on average it is about 110% for non-fuzzy estimations and 102% for fuzzy
estimations. It was clear that the fuzzy estimator whose main feature was to reduce the
statistical instability fulfilled its role.

To sum up this subsection, it can be asserted that the maximum amplitude E∗p and
location m∗ of the 1-order entropy were good descriptors, directly related to intrinsic
features of the time series under study, and were also powerful indicators to discriminate
different levels of complexity while keeping the tolerance fixed at r = 0.2. A limitation
of the study of the proposed maximum entropy was the maximum value of m chosen
(m=150 for fBm and m=200 for Lorenz system). Although the maximum of entropy and
its location augured well for the complexity analysis over the studied range of m, not all
features of the functions Φp(m) were used profitably. This latter point is the subject of
the next subsection.

3.3.3.2 N-order entropy

The feasibility of this new concept was validated on fbm by the simulation results reported
in Figs. 3.7 and 3.8 using the materials in chapter 2. For discrimination purposes, the
size of m varied from 1 to 30 to guarantee that the maximum was reached, and therefore
Φp(m) and Ep(1,m), as well as a discrimination function ΨEp(n) were calculated for the
simulated fBm.

Figs. 3.7 (a-c) represent Φ(1)
∞ (m), Φ(2)

∞ (m), |E (1)∞ (m)|, |E (2)∞ (m)|, ΨE(1,m) and ΨE(n, 1).
Figs. 3.7 (d-f) represent the latter functions with fuzzy estimations. In Figs. 3.7 (a) and

56



3.3. HIGH ORDER DEVELOPED ENTROPY

(d) the deviation between Φ(1)
∞ (m) and Φ(2)

∞ (m) is in yellow and in Figs. 3.7 (c), 3.7 (f)
it is in green. It can be seen from Figs. 3.7 (c), 3.7 (f) that the maximum ΨEp(n∗, 1) is
defined by: {

Ψ∗Ep = max (ΨEp(n, 1)) ,

n∗ = argmaxn ΨEp(n, 1).

ψ
∞
#

ψ
∞
#

)

Figure 3.7 – Complexity measurements for two different fBms with H = 0.07 and H = 0.3, (r = 0.2). (a) Non-fuzzy
estimations with Φ(1)

∞ (m) (in blue) for H = 0.07 and Φ(2)
∞ (m) (in red) for H = 0.3 Deviation between Φ(1)

∞ (m) and Φ(2)
∞ (m)

represented by the yellow area. (b) Non-fuzzy estimations with |E(1)∞ (1,m)| (in blue), |E(2)∞ (1,m)| (in red). Deviation
between |E(1)∞ (1,m)|, |E(2)∞ (1,m)| represented in the blue area. (c) Non-fuzzy estimation with ΨE∞(n, 1) (in black) and
ΨE∞(1,m) (in magenta). Deviation between ΨE∞(n, 1) and ΨE(1,m) represented by the green area. (d) Fuzzy estimations
with Φ(1)

2 (m) (in blue) for H = 0.07 and Φ(2)
2 (m) (in red) for H = 0.3. (e) Fuzzy estimations with |E(1)2 (1,m)| (in blue),

|E(2)2 (1,m)| (in red). (f) Fuzzy estimations with ΨE2(n, 1) (in black) and ΨE2(1,m) (in magenta). Deviation between
ΨE2(n, 1) and ΨE2(1,m) represented by the green area.
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and the maximum ΨEp(1,m∗) is defined by (Figs. 3.7 (b), 3.7 (e)):{
Ψ∗Ep = max (ΨEp(1,m)) ,

m∗ = argmaxm ΨEp(1,m).

It can be inferred from these graphs that

ΨEp(n
∗, 1) > ΨEp(1,m

∗).

For p = ∞, Ψ∗E∞ = |E (1)∞ (4, 1) − E (2)∞ (4, 1)| and Ψ∗E∞ = |E (1)∞ (1, 6) − E (2)∞ (1, 6)| were
obtained and for p = 2, Ψ∗E2 = |E (1)2 (3, 1) − E (2)2 (3, 1)| and Ψ∗E2 = |E (1)2 (1, 5) − E (2)2 (1, 5)|
were obtained. This suggests that it is more advantageous to use n-order entropy rather
than 1-order entropy. Another interesting point in favour of n-order entropy is that SD
(represented by bars in Fig. 3.7) is always smaller for n-order entropy than for 1-order
entropy. Several values derived from Fig. 3.7 are reported in Tables 3.1 and 3.2. The
results derived from Table 3.1 showed that:

• the lowest SD is obtained for E∞(4, 1) since it represented on average (23+ 32)/2 =

27.5% of the mean value of entropy (dots in Fig. 3.7) while it represented (82 +

105)/2 = 93.5% and (80 + 75)/2 = 77.5% of E∞(1, 6) and E∞(1, 3), respectively;

• the lowest SD is obtained for fuzzy estimations was compared to non-fuzzy esti-
mations. Reductions of the SD (27.5 − 23) = 4.5%, (93.5 − 81) = 12.5% and
(77.5− 76.5) = 1% are obtained, respectively.

The results derived from Table 3.2 shows that:

• Ψ∗E∞(4, 1) > Ψ∗E∞(1, 6) for non-fuzzy estimations and Ψ∗E2(3, 1) > Ψ∗E2(1, 5) for fuzzy
estimations;

• the lowest SD was obtained for fuzzy estimations since it represents 30% of the mean
value of Ψ∗E∞(4, 1) and 86% of Ψ∗E∞(1, 6) and 29% of Ψ∗E2(3, 1) and 85% of Ψ∗E2(1, 5).
It was advantageous to use fuzzy estimations since SDs were the smallest, however,
it can be seen that the mean values obtained from fuzzy estimations are lower than
those obtained from non-fuzzy estimations. This latter point was not in favour of
fuzzy estimations when fBms were considered.
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Figure 3.8 – Representation of the matrix M(i)
p for two different fBm. (a) Non-fuzzy estimations �

(1)
1 (m) (blue line)

and �
(2)
1 (m) (red line) with H = 0.07 and H = 0.3, respectively. (b) Non-fuzzy estimations with M(1)

1 . (c) Non-fuzzy
estimations with M(2)

1 . (d) Non-fuzzy estimations with difference between M(1)
1 and M(2)

1 . (e) Fuzzy estimations with
�

(1)
2 (m) (blue line) and �

(2)
2 (m) (red line) with H = 0.07 and H = 0.3, respectively. (f) Fuzzy estimations with M(1)

2 . (g)
Fuzzy estimations with M(2)

2 . (h) Fuzzy estimations with difference between M(1)
2 and M(2)

2 .

the standard deviation (represented by bars in Fig. 3.7) was always smaller for n-order
entropy than for 1-order entropy.

Several values derived from Fig. 3.7 are reported in Tables 3.1 and 3.2. The results
derived from Table 3.1 showed that:

• the lowest standard deviation was obtained for E1(4, 1) since it represented on
average (23 + 32)/2 = 27.5% of the mean value (dots in Fig. 3.7) while it repre-
sented (82 + 105)/2 = 93.5% and (80 + 75)/2 = 77.5% for E1(1, 6) and E1(1, 3),
respectively;

• the lowest standard deviation obtained for fuzzy estimations was compared to non-
fuzzy estimations. Reductions of (27.5 � 23) = 4.5%, (93.5 � 81) = 12.5% and
(77.5� 76.5) = 1% were obtained, respectively.
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Figure 3.8 – Representation of the matrix M(i)
p for two different fBms. (a) Non-fuzzy estimations Φ(1)
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and Φ
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∞ (m) (red line) with H = 0.07 and H = 0.3, respectively. (b) Non-fuzzy estimations with M(1)
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∞ . (d) Non-fuzzy estimations with difference between M(1)
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M(1)
p and M(2)

p are reported in Figs. 3.8 (b) and (c) for non-fuzzy estimations, and
reported in Figs. 3.8 (f) and (g) for fuzzy estimations. It can be seen from Figs. 3.8 (b),
(c), (f) and (g) that the more interesting values were located on the border of the matrix,
i.e. for small values of n when m was fixed and vice versa.

The matrix difference ΨMp reported in Fig. 3.8 (d) for non-fuzzy estimations and in
Fig. 3.8 (h) for fuzzy estimations, showed that the best values were between n = 4 and
8 when m = 1 and between n = 25 and 30 when m = 6. These results indicate that
it is worthwhile using the n-order entropy for discriminating fBms of different levels of
complexity.

It was shown that it was more advantageous to use n-order entropy rather than 1-
order entropy. This was confirmed for high values of entropy and for the lowest standard
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Table 3.1 – Average ± standard deviation of specific values of Ep(n,m) for two fBms with i = 1, H = 0.07 and i = 2,
H = 0.3. Values in parentheses represent the standard deviation normalized by the average value.

hhhhhhhhhhhhhhHurst Exponent
Entropy Type Non-Fuzzy Fuzzy

H E∞(4, 1) E∞(1, 6) E∞(1, 3) E2(3, 1) E2(1, 5) E2(1, 3)

0.3 0.565 ±
0.129

0.188 ±
0.154

0.076 ±
0.061

0.452 ±
0.099

0.129 ±
0.106

0.081 ±
0.065

(i=2) (23%) (82%) (80%) (22%) (82 %) (80%)

0.07 0.120 ±
0.039

0.006 ±
0.0063

0.040 ±
0.030

0.123 ±
0.03

0.014 ±
0.0112

0.037 ±
0.027

(i=1) (32%) (105 %) (75 %) (24 %) (80 %) (73 %)

Table 3.2 – Average ± standard deviation of specific values of discrimination function ΨEp(n,m) for two fBms with H =
0.07, 0.3. Values in parentheses represent the standard deviation over the average value and the asterisk represents the
maximum.

Non-Fuzzy Fuzzy

Ψ∗E∞(4, 1) Ψ∗E∞(1, 6) Ψ∗E2(3, 1) Ψ∗E2(1, 5)

0.447 ± 0.132 0.182 ± 0.150 0.329 ± 0.096 0.121 ± 0.103

(30%) (86%) (29%) (85%)

deviation. These results were obtained for fBms that were hypothesized as a coarse model
of FHR signals. In order to confirm that n-order entropy works on biomedical signals, the
examination of FHR signals is reported in the subsection below.

3.4 Application to Fetal Heart Rates

3.4.1 Results of Fetal Heart Rate Complexity Detection

From 80 clinical recordings of 30 minutes, the discrimination functions ΨEp(n,m) =∣∣∣E (1)p (n,m)− E (2)p (n,m)
∣∣∣ based on n-order similarity entropies E (i)p (n,m) (i = 1 for healthy

and i = 2 for distressed fetuses) were calculated through a short term analysis using
centered X vectors composed of 720 points and overlapping by 97%. From each recording
composed of 7200 points (one point every 250 ms), 349 non-fuzzy estimations E∞(n,m)

and 349 fuzzy estimations E2(n,m) were evaluated.
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From a total number of 2 × 2 × (40 + 40) × 349 of n-order entropies, i) ΨM∞ were
reported from non-fuzzy estimations (Table 3.3), ii) ΨM2 were evaluated from fuzzy
estimations (Table 3.4), and iii) average values and relative accuracy of discrimination
functions ΨEp(n,m) and ΨEp(1,m) (Table 3.5), iv) boxplots (Fig. 3.9), and v) sensitivity
and specificity (Table 3.6) were determined.

Table 3.3 – Discrimination functions ΨM∞ from non-Fuzzy estimations derived from FHR signals with k, l ranging from 1
to 7. Italic values correspond to 1-order similarity entropies. Bold values correspond to the maximum of n-order similarity
entropies.

k/l 1 2 3 4 5 6 7

1 0.000 0.068 0.137 0.186 0.203 0.193 0.173

2 0.068 0.000 0.070 0.118 0.135 0.126 0.105

3 0.137 0.070 0.000 0.049 0.066 0.056 0.036

4 0.186 0.118 0.049 0.000 0.017 0.007 0.013

5 0.203 0.135 0.066 0.017 0.000 0.009 0.030

6 0.193 0.126 0.056 0.007 0.009 0.000 0.020

7 0.173 0.105 0.036 0.013 0.030 0.020 0.000

Table 3.4 – Discrimination functions ΨM2 from fuzzy estimations derived from FHR signals with k, l ranging from 1 to
7. Italic values correspond to 1-order similarity entropies. Bold values correspond to the maximum of n-order similarity
entropies.

k/l 1 2 3 4 5 6 7

1 0.000 0.067 0.131 0.177 0.201 0.206 0.202

2 0.067 0.000 0.064 0.110 0.134 0.140 0.135

3 0.131 0.064 0.000 0.046 0.070 0.076 0.071

4 0.177 0.110 0.046 0.000 0.024 0.030 0.025

5 0.201 0.134 0.070 0.024 0.000 0.006 0.001

6 0.206 0.140 0.076 0.030 0.006 0.000 0.005

7 0.202 0.135 0.071 0.025 0.001 0.005 0.000

From Tables 3.3 and 3.4 it can be seen that the lowest values belonged to the 1-order
entropy estimations. The best values of ΨEp(n∗, 1) and ΨEp(1,m∗) are reported in bold in
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Tables 3.3 and 3.4, and the maximum values of 1-order entropies corresponded to Ψ∗E∞(1, 2)
and Ψ∗E2(1, 1). Of all Ψ∗ it was obvious that the best values did not correspond to the 1-
order entropies but rather to ΨE∞(4, 1) and ΨE2(5, 1) for non-fuzzy and fuzzy estimations,
respectively. This outcome confirmed that it was advantageous to use n-order over 1-order
based-estimators of complexity.

Table 3.5 – Average values (aver.) and relative accuracy (standard deviation/ average = std./aver.) of discrimination
functions ΨEp(n,m) derived from FHR signals. Fuzzy estimations were of benefit for reducing estimation fluctuations
(std/aver.)

ΨEp(1, 1) Ψ∗Ep(1, 2) ΨEp(4, 1) ΨEp(5, 1)
Non-fuzzy aver. 0.07 0.07 0.20 0.19

std/aver. 45% 50 % 50 % 54%
Fuzzy aver. 0.07 0.06 0.20 0.21

std/aver. 44% 49 % 48 % 49%

Results shown in Table 3.5 demonstrated that it was preferable to use fuzzy algorithms
since i) the relative precision (standard deviation/average) was lower for fuzzy than
for non-fuzzy estimations and ii) average values were similar for fuzzy and non-fuzzy
estimations, and no bias was reported.

Table 3.6 – Sensitivity of discrimination functions ΨEp(n,m) calculated from FHR signals. Note that Ψ∗Ep(n, 1) was equal
to Ψ∗E∞(4, 1) for non-fuzzy estimations and to Ψ∗E2(5, 1) for fuzzy estimations. Fuzzy estimations were of benefit since a
slight improvement in both sensitivity and specificity can be seen.

ΨEp(1, 1) Ψ∗Ep(1, 2) Ψ∗Ep(n, 1)
Non-fuzzy Sensitivity 87.3% 87.7% 88.5 %

Specificity 87.3% 87.7% 88.5 %
Fuzzy Sensitivity 87.7% 88.5 % 90.1 %

Specificity 87.7% 88.5 % 90.1 %

The findings shown in Fig. 3.9 demonstrated that meaningful classifications were ob-
tained using fuzzy estimations since outliers were removed only for ΨE2(1, 2) and ΨE2(5, 1).
It can be seen that the level of similarity was lower for distressed fetuses than for healthy fe-
tuses. This outcome corroborated the results previously reported in [Ferrario et al., 2009].
Furthermore, it can be seen that the similarity measurements were fairly homogeneous.
This was certainly due to the good homogeneity of the fetus groups. Note that the
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TN

Figure 3.9 – Boxplots of 1-order entropies and n-order entropies calculated from FHR signals. (left) Non-fuzzy estimations.
Boxplot of 1-order entropies E(1, 1), E∗(1, 2), and n-order entropy E(4, 1) for healthy (in green) and distressed fetuses (in
blue). (right) Fuzzy estimations. Boxplot of 1-order entropies E(1, 1), E∗(1, 2) and n-order entropy E(5, 1) for healthy (in
green) and distressed fetuses (in blue).

high level of performance of n-order entropies was confirmed by the very good values of
sensitivity and specificity reported in Table 3.6.

The findings reported in Table 3.6 showed that the sensitivity and specificity were good
since they were above 87%. Fuzzy estimations were preferable since slightly improved
sensitivity and specificity were found. The best performance was obtained for Ψ∗E∞(5, 1),
suggesting that n-order fuzzy entropy parameters were better than 1-order fuzzy entropies.

3.4.2 Discussion

In this chapter, which is dedicated to the discrimination of time series exhibiting different
complexity by entropy analysis, four key points were emphasized.

The first main result was derived from the search for the best setting parameter i.e.
pattern size m∗ when the tolerance r was constant and fixed at r = 0.2. As a follow-up
of previous studies by [Lu et al., 2008, Restrepo et al., 2014], and based on the research
for the best setting r∗ to maximize entropy E∗ = E(r∗), our findings showed that it was
also of benefit to find out the pattern size m∗ that maximized entropy E∗ = E(1,m∗). In

63



CHAPTER 3. ENTROPY ANALYSIS

particular, it was shown that both m∗ and E(1,m∗) were related to intrinsic features of
the system, such as the Hurst exponent of fBm.

Moreover, it was shown that it was easy to discriminate fBm for Hurst exponents
H < 0.5. Surprisingly, it was even shown that E∗(H) was sensitive to the anti-correlated
and correlated nature of the time series under study. In any event, both m∗ and E(1,m∗)
were sensitive to the complexity changes. This latter behavior was also observed when
the operating mode of the Lorenz system changed from a periodic to a chaotic regime.
This outcome augured well for detecting complexity changes of other nonlinear dynamic
systems or for discriminating other kinds of signals of different complexity. One of the
novel findings were the significant values for pattern size m∗ since values lower than 20
were often observed [Restrepo et al., 2014]. However, what was even more surprising, the
huge gap between the two m∗ values obtained when the system was in periodic regime
(m∗ = 70) and in chaotic regime (m∗ = 7). Finding the best setting of m was interesting
since it provides a complementary insight into the role of m that was now no longer
equivalent to the role of embedding dimension. It can therefore be confirmed that it is
necessary to seek both the value of m∗ that maximizes the entropy and the value of the
maximum entropy E(1,m∗).

The second main result was linked to the development of a new paradigm that en-
compasses the 1-order similarity entropy. The development of this new concept took
advantage of the monotonic decrease in the function Φ(m), a feature that has never
been used to date. As for m∗ and E∗, it was shown that the n-order similarity entropy has
quite easily discriminated fBms with low Hurst exponents. This outcome augured well for
discrimination of biomedical signals since it had been reported in [Oudjemia et al., 2013]
that such low Hurst exponents are measured for FHR signals.

The third important outcome concerned the validation of the different descriptors
of complexity in the discrimination between healthy and distressed fetuses. Using the
best discrimination function based on the n-order similarity entropy, it was shown that
it was fairly easy to discriminate between fetuses without disorders and fetuses with
IUGR. It seemed clear that the difference in complexity between the two groups of
fetuses was behind the good discrimination. In this study, a considerable relative error
of (0.20 − 0.07)/0.07 = 186% (see Table 3.5) between n-order similarity entropy and 1-
order similarity entropy was obtained. Although the n-order similarity entropy was very
appealing, it was still difficult to identify exactly what led the n-order similarity entropy
to outperform the other methods. It was probably a mixture of several elements based
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on i) the monotonic decrease in the probability of finding similar patterns of size m, ii)
the maximum gap between similarity measurements of patterns of non-consecutive size
and iii) other features that remain hidden. The high level of performance in terms of
sensitivity and specificity obtained for all complexity descriptors used in this study was
certainly due to the level of homogeneity of each group. Nevertheless, it is important that
this study be extended to greater numbers of recordings. In any event, these findings
augur well for the discrimination of other kinds of biomedical signals.

In the entropy analysis part of this dissertation the:

• problem of setting entropy descriptors was solved by varying the pattern size and
fixing the tolerance;

• optimal pattern sizes that maximizes the similarity entropy were found;

• intrinsic features of the time series and systems were linked to the optimal pattern
sizes;

• FHR discrimination was improved by the new developed paradigm that encompasses
the standard similarity entropy: n-order fuzzy similarity entropy;

• sensitivity and specificity of the discrimination between healthy and distressed
fetuses with IUGR confirmed the improvement in FHR discrimination for n = 4

SimEn and n = 5 for FuzzySimEn.

3.5 Conclusion

Profound investigations of the link betweenm-patterns was carried out in this chapter. By
introducing the maximum and n-order concepts to entropy, it was possible to improve the
discrimination between different FHRs and more robustly classify healthy and distressed
fetuses as compared to the standard ApEn, SampEn, SimEn and FuzzyEn. N-order
entropies combined with fuzzy frameworks are effective for diagnosing the state of the
fetus. This new paradigm has an overwhelming potential and could be applied to other
applications seeking the extraction of complexity invariant. The problem of setting
entropy descriptors was solved by varying the pattern size leading an optimal value
that maximizes the n-order FuzzySimEn. FHR discrimination was improved by the new
developed paradigm that encompasses the standard SimEn. However, there is no explicit
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correspondence between regularity and complexity. Predictable (i.e. periodic) time series
did not necessary possess the minimum entropy, also, non-predictable signals (noisy or
uncorrelated) did not possess the maximum entropy. Therefore, complexity could not
be written in an explicit form, and there is no consensus on its definition. Intuitively,
complexity is associated with significant incorporation in the correlated structures on
multiple spatio-temporal samples. To track the complexity, it is judicious to understand
the phenomena associated with it such as the spatio-temporal incorporated structures.
This induced the use of the multi-fractal analysis which will be the subject of chapter 4.
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Chapter 4

MULTI-FRACTAL ANALYSIS

p It is popular that one should count till ten before taking any action. Why
a scale of ten ? Some situations requires counting till more than this scale,
multi-fractality of situations leads the correct analysis, scaling and counting y

Amira Zaylaa.

4.1 Introduction

T his chapter deals with the Multi-fractal analysis of signals. Such analysis was trig-
gered by the scale invariance properties observed through the power law spectral den-
sity [Kobayashi and Musha, 1982] of heart rate variability (HRV). Multi-fractal analy-
sis can be achieved by various significant approaches such as box-counting, Detrended
Fluctuation Analysis (DFA), length techniques, and wavelet transform. The core of the
technique we present in this chapter is the proposition of a structure function along with
coarse-graining. The latter contribution to the field is under the category of multi-fractal
analysis by length methods.

In Euclidean space, a point has a dimension 0, a line has a dimension 1 and a
surface has a dimension of 2 etc. A fractal object is any object having a non-integer
dimension [Akay, 2000]. This ameliorates the classification of objects into either standard
or fractal. The multi-fractal analysis is a generalization of the fractal analysis, and the
major multi-fractal analysis techniques are summarized in Fig. 4.1. The first and simplest
method is box-counting, it is called the Kolmogorov capacity and leads to the singularity
spectrum. A major problem with box-counting is to cover all the system with small sized
cells [Akay, 2000]. Grassberger and Procaccia have proposed an algorithm to compute the
correlation sum C(r) approximately based on the Heaviside function. Then, they assumed
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CHAPTER 4. MULTI-FRACTAL ANALYSIS

that the correlation dimension (D2) is deduced from the slope of the curve log(C(r)) versus
log(r). However, the previous assumption is not accurate and subject to errors, and the
value of r was inferred empirically [Akay, 2000].

Researchers have applied multi-fractal analysis to various applications using box-
counting, differential box-counting, Renyi dimension, wavelet transform, wavelet trans-
form modulus maxima (WTMM) and direct length methods (see Fig. 4.1) [Keller et al., 1989,
Levy-Vehel, 1995, Chaudhuri and Sarkar, 1995, YUM and Kim, 2002, Arneodo et al., 2003,
Popivanov et al., 2005, Xia et al., 2006, Wang et al., 2007, Hsu et al., 2007]. One of the
techniques of multi-fractal analysis is the length or the direct determination method. It
is highlighted in an orange color in Fig. 4.1 as it is the core method in which we built our
investigation.
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Output 
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++ Segmenta$on+
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Figure 4.1 – Schematic illustration of the common multi-fractal analysis techniques.

Ivanov et al. were the first to demonstrate multi-fractality in cardiac dynamics as well
as in physiological dynamics [Ivanov et al., 1996, Ivanov et al., 1999, Ivanov et al., 2001].
Recently, HRV analysis proposed by Ferrario et al. was built on multi-fractal analy-
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sis [Ferrario et al., 2006, Ferrario et al., 2009]. These studies were associated multi-fractal
analysis of physiological time series [Wang et al., 2003, Wang et al., 2005, Sassi et al., 2009,
Humeau et al., 2010]. Since the time scale dependency of the multi-fractal features is still
ambiguous, we proposed a combination of the coarse-graining approach, structure function
and multi-fractal analysis and applied them on FHRs. The technique discussed in this
chapter is based on two pioneer works; the first is the work of Wang et al. that combined
the multi-fractal analysis of adult ECG with the coarse-graining approach proposed
by Zhang [Zhang, 1991], and the second is based on a structure function after which
the multi-fractal indicators are extracted [Barabasi and Vicsek, 1991, Muzy et al., 1993,
Lin and Hughson, 2001, Ching and Tsang, 2007, Frisch and Parisi, 1985]. We hypothe-
sized that the profound investigation of the time-scale dependence of the multi-fractal
features of FHRs improves the discrimination between distressed and healthy FHRs.

4.2 Multi-Fractal Descriptors

Multi-fractal analysis is a geometric quantification of the output of nonlinear systems.
Various multi-fractal complexity parameters can be extracted simultaneously from the
time series. Multi-fractal parameters involved in our dissertation are the Hurst Exponent
H, Singularity Spectrum (D(q)), Holder spectrum (h(q)) and the scaling parameters τ(q)
and η(q).

4.2.1 Singularity Spectrum

The singularity spectrum D(q) measures the variation of the density of multi-fractals
relative to the scale length. The structure function used in this dissertation is de-
fined [Frisch and Parisi, 1985] for q > 0 as follows:

Q(q, ε) =

(∫
|y(i)α (t+ ε)− y(i)α (t)|qdt

)1/q

, (4.1)

it is a length measurement [Girault et al., 2010] where |y(i)α (t+ ε)− y(i)α (t)|q reveals a local
behavior while

(∫
...dt

)q reveals a global behavior and ε reveals the increment or tolerance.
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If the structure function Q(q, ε) = k.εη(q) then:

η(q) = lim
ε→0

log(Q(q, ε))

log(ε)
, (4.2)

For fBm which models stochastic signals of Hurst exponent H, the scaling exponent
is η(q) = H.

From the previous equation, the singularity spectrum D(q) is evaluated based on the
previous length method and given as follows:

D(q) = q2
dη(q)

dq
+ 1, (4.3)

where q is the number of order or the information dimension. The singularity spectrum
D(q) can also be obtained through a Legendre transform from the scaling parameter τ(q):

D(q) = q
dτ(q)

dq
− τ(q), (4.4)

where τ(q) is another scaling exponent defined by Eq. 4.5 and dτ(q)/dq is the approxi-
mation of the Holder coefficient h [Lopes and Betrouni, 2009].

τ(q) = qη(q)− 1. (4.5)

4.2.2 Hurst Exponent

It is the index reflecting the long-range dependence of states of the time series [Hurst, 1951,
Hurst et al., 1965, Mandelbrot and Wallis, 1969, Mesa and Poveda, 1993]. This parame-
ter measures the rate at which the autocorrelations of time series decrease as the time
delay between values increases.

As the fractal dimension D = 2 − H, this implies that the Hurst exponent H =

2−D [Lopes and Betrouni, 2009].

4.2.3 Holder Spectrum

The Holder spectrum is a multi-fractal parameter measuring the uniformity of a time
series, it is written as:
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h(q) = q
dη(q)

dq
+ η(q), (4.6)

This parameter could also be written as:

h(q) =
dτ(q)

dq
. (4.7)

4.3 Contribution to Multi-Fractal Analysis

This work was based on the use of a structure function. As there are a lot of multi-
fractal parameters that could be extracted from the studied time series using the structure
function, we have tried to calculate the major parameters and compare their performance
for discrimination purposes. The block diagram demonstrating our contribution to multi-
fractal analysis and its prior requirements is set out in Fig. 4.2. The method is not applied
simultaneously on the original time series, rather it is applied on the coarse-grained time
series. The process of coarse-graining [Zhang, 1991] was applied as proposed by Zhang:

• For instance, each FHR time series x(n) composed of M points is analyzed;

• Multi-scale analysis is introduced to capture the fluctuations present in the time
series at different scales. It consisted of evaluating approximate versions of the
original time series from a local average of neighbouring points;

• A new reduced time series composed of M/α samples at α scales are produced by
coarse-graining using Eq. 3.6, where α = s.

It is worthwhile highlighting the difference between the work of Wang et al. and
the work proposed in this chapter. Wang et al. proposed the use of a partition func-
tion [Wang et al., 2005], while we proposed a structure function a more mathematically
easier approach.

Due to the nonstationary nature of the coarse-grained time series, a short-term proce-
dure comprised evaluating multi-fractal descriptors from y(i)α (k) sub-signals composed of
M = 720 points and issued over 3-minutes.

Among all existing methods making use of multi-fractal descriptors, we used Q(q, ε).
Although it has been theoretically demonstrated that for certain types of signals the
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Figure 4.2 – The Block Diagram of the proposed multi-fractal analysis.

methods based on structure function of order q is limited for q < 0, we believe that this
approach is still worth using because of the following:

• Q is by far the simplest method to implement compared to box counting and wavelet
methods.

• For q < 0 it is valuable to analyze very small variations in time series. However, as
time series were mostly corrupted with noise, clear probing of small variations in the
time series was not trivial. The practical value of a negative order q was strongly
limited by the presence of noise.

• The signals under consideration were not theoretical signals. This means that math-
ematical demonstrations operating exclusively on theoretical signals are not system-
atically applicable in practice.

• Several multi-fractal analyses showed that it was more possible to discriminate
between healthy and distressed subjects for q > 0 than for q < 0. This was supported
by the work of Ivanov et al. [Ivanov et al., 2001] where they have showed that the
difference between the scaling exponent τ(q) obtained for healthy and distressed
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subjects was greater for q > 0 than for q < 0. It was also supported by the works
of Stanley et al. [Stanley, 1996, Amaral et al., 2001] where they have showed clearly
that for q > 0 it was possible to discriminate patients better with atropine than
with placebo. The structure function was defined by Eq. 4.1.

2 Computational and Mathematical Methods in Medicine
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Figure 1: Time and spectral representations of a Brownian motion.
(a) Original time series superimposed on the coarse-grained time
series (! = 8) and the resampled coarse-grained time series (! = 8).
(b) Spectrum of each time series depicted in (a).

Although the present study has certain similarities to
those proposed byWang et al. [15], our study was different in
twoways. First, unlike the study based on a partition function
proposed by [15], our studywas based on a structure function.
The second difference was that our coarse-graining analysis
was performed on the foetal heart rate, whereas that proposed
by [15] was evaluated on adult electrocardiograms.

Our study aimed to improve the differentiation between
normal and distressed foetuses by investigating the time scale
dependency of the multifractal features of the FHR in depth.
To do so we investigated the multifractal analysis originating
from a structure function from a coarse-graining point of
view.

To demonstrate the value of our approach, we tested the
proposed method on a dataset derived from normal and
distressed foetuses.

2. Materials

Our system comprised a personal computer and a Doppler
ultrasound unit. The latter device contained three groups
of four transducers and a Doppler acquisition board. The
transducers exploring the foetal heart were nonfocused
and monoelement. The transducers placed on the mother’s

abdomen were circular in shape, with a diameter of 13.5mm
and an acoustic power of 1mW/cm2. Each transducer trans-
mitted a sinusoidal pulse at 2.25MHz with a pulse repetition
frequency of 1 kHz. The wave was propagated through the
mother’s abdomen towards the foetal heart.

The backscattered signal was converted into an electrical
signal and amplified to compensate for the attenuation of
1 dB/cm/MHz.The signal was then demodulated in phase (I)
and quadrature (Q).

The Doppler signals were acquired at CHRU “Breton-
neau”Tours, France.The consent of each patientwas obtained
and the study was approved by the Ethics Committee of
the Clinical Investigation Centre for Innovative Technology
of Tours (CIC-IT 806 CHRU of Tours). All patients were
over eighteen years of age and pregnancies were single. One
hundred examinations (eighty normal foetuses and twenty
distressed foetuses) were recorded in this study. Gestational
ages of foetuses ranged from 25 to 39 weeks were monitored
for 30 minutes. FHR was evaluated as proposed by [24, 25],
that is, every 250ms, yielding 7200 samples for a recording of
30minutes.

3. Methods

As previously reported, the foetal heart rate was estimated in
real time from ultrasound Doppler signals [24, 25] and then
recorded. The coarse-graining from HRV recordings proce-
dure was performed offline.Then segmentation was applied.
Scaling factors and multifractal spectra were subsequently
evaluated using the structure function (see the scheme in
Figure 2).

3.1. Coarse-Grained Analysis. Each time series "(#) com-
posed of $ = 7200 points was analysed from FHR
recordings. Multiscale analysis was introduced to capture the
fluctuations present in the time series at different scales.This
method consisted of evaluating approximate versions of the
original time series from a local average of neighbouring
points. This procedure is named “coarse-grained” [18]. The
new reduced time series composed of$/! samples at scale !
was written as %! (&) = 1! "!∑#=("−1)!+1"#, (1)

for 1 ≤ & ≤ $/!, %1(&) = "(&) being the original time series.
Figure 1 sets out the time and the spectral representations

of coarse-grained Brownian motion time series used to
calculate one of the effects resulting from the coarse-grained
procedure. The time and the frequency were normalized.
Figure 1(a) shows the original time series superimposed on
the coarse-grained time series with ! = 8 and the resampled
coarse-grained time series with ! = 8. Note that a resampled
coarse-grained time series was an interpolated and filtered
time series by a factor !.The resampled coarse-grained times
series was composed of$ samples.

Figures 1(a) and 1(b) show clearly that the coarse-grained
time series were filtered time series. It can be claimed from

Figure 4.3 – Time and spectral representations of a Brownian motion. (a) Original time series superimposed on the coarse-
grained time series (s= 8) and the re-sampled coarse-grained time series (s= 8). (b) Spectrum of each time series depicted
in (a).
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4.4 Example On Fractional Brownian Motion

Fig. 4.3 sets out the time and the spectral representations of coarse-grained fBm time
series used to calculate one of the effects resulting from the coarse-grained procedure.
The time and the frequency were normalized. Fig. 4.3 (a) shows the original time series
superimposed on the coarse-grained time series with s = 8, and the re-sampled coarse-
grained time series with s = 8. Note that a re-sampled coarse-grained time series was
an interpolated and filtered time series by a factor of α. The re-sampled coarse-grained
times series was composed of s samples.
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Figure 2: Scheme of different processes used to calculate coarse-grained multifractal descriptors.
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Figure 3: Effects of coarse-graining on multifractal descriptors for different fBm of Hurst exponents ! = {0.1, 0.5, 1} with different scale
factors " = {1, 3, 6}. (a) Singularity spectrum# versus $. (b) Singularity spectrum# versus Holder spectrum ℎ. (c) Scaling exponent & versus$. (d) Holder spectrum.

these outcomes that the reducing duration of each coarse-
grained times series is a side effect that can be avoided by
resampling. In the following themultifractal descriptors were
evaluated from resampled coarse-grained time series.

As previously shown by [26], the more the fBm was
filtered, themore the filtered fBmwas regular: it can therefore
be claimed that the higher the scale factor ", the higher the

Hurst exponent!. In the study by [27], it was shown that the
coarse-graining affected the anticorrelated time series (! <0.5) in amore pronouncedway than the correlated time series
(! > 0.5). By supposing the coarse-grained effect to be a low
pass filtering effect, we suggest that this can be understood in
the following way.

Figure 4.4 – Effects of coarse-graining on multi-fractal descriptors for different fBm of Hurst exponents H = {0.1, 0.5, 1}
with different scale factor α = {1, 3, 6}. (a) Singularity spectrum D versus q, (b) Singularity spectrum D versus Holder
spectrum h, (c) Scaling exponent τ versus q and (d) Holder spectrum of healthy and distressed FHRs.
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Fig. 4.3 (a) and (b) show clearly that the coarse-grained time series were filtered
time series. It can be claimed from these outcomes that the reduced duration of each
coarse-grained times series is a side effect that can be avoided by re-sampling. Here, the
multi-fractal descriptors were evaluated from the re-sampled coarse-grained time series.
As previously shown by Girault and others [Girault et al., 2010], as the fBm is more
filtered it becomes more regular. Thus, it can be inferred that as the α scaling factor
increases, the Hurst exponent H increases. Xu et al. [Xu et al., 2011] showed that the
coarse-graining affected the anti-correlated time series (H < 0.5) in a more pronounced
way than the correlated time series (H > 0.5). By assuming that the coarse-graining
effect is equivalent to a low pass filtering, the coarse-graining filter performs as follows:

o For H < 0.5, fBm has several high frequency components that can be removed.
The time series before and after filtering are quite different, indicating that the
coarse-graining has a non-negligible effect on the time series.

o ForH > 0.5, fBm has several low frequency components that are slightly removed by
the coarse-graining effect. Time series before and after filtering were fairly similar,
indicating that the coarse-graining has a negligible effect on time series.

Fig. 4.4 represents different multi-fractal descriptors for different fBm of Hurst ex-
ponents H = {0.1, 0.5, 1} with different scale factors α = {1, 3, 6}. It shows the effect
of coarse-graining on the previous discussed multi-fractal parameters. The fBm under
consideration was composed of 720 samples. The results derived from Fig. 4.4 shows that
the anti-correlated fBm of Hurst exponent H= 0.1 is more affected by the coarse-graining
effect than the correlated fBm of Hurst exponent H= 1. These results were in accordance
with those reported in [Girault et al., 2010, Xu et al., 2011].

4.5 Application To Fetal Heart Rates

From our own dataset comprised 80 recordings, each time series of M=7200 points was
coarse-grained for 6 different scales. From each coarse-grained signal, sub-signals com-
posed of 720 points and overlapping by 97% were analyzed with multi-fractal tools.
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Multifractal parameters derived
from healthy and distressed foetuses
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Figure 4: Multifractal parameters for a normal foetus (in blue) and
a distressed foetus (in green). (a) Structure function !(", #) versus
scale. (b) Scaling exponent $ versus ". (c) Scaling exponent % versus". The two scaling exponents were more nonlinear for a healthy
foetus than for a distressed foetus.

(i) For & < 0.5, fBm has several high frequency
components that can be removed by the coarse-
graining. Time series before and after filtering are
quite different, indicating that the coarse-graining has
a nonnegligible effect on time series.

(ii) For & > 0.5, fBm has several low frequency
components that are slightly removed by the coarse-
graining effect. Time series before and after filtering
were fairly similar, indicating that the coarse-graining
has a negligible effect on time series.

Figure 3 represents different multifractal descriptors for
different fBm of Hurst exponents & = {0.1, 0.5, 1} with
different scale factors ' = {1, 3, 6}. The fBm under consid-
eration was composed of 720 samples. The results derived
from Figure 3 showed that the anticorrelated fBm of Hurst
exponent & = 0.1 was more affected by the coarse-graining
effect than the correlated fBmofHurst exponent& = 1.These
results were compatible with those reported by [26, 27].

3.2. Multifractal Analysis. Due to the nonstationary nature of
the coarse-grained time series analysed, a short-term proce-
dure was performed. This procedure consisted of evaluating

multifractal descriptors from subsignals ((!)" ()) composed of* = 720 points (3min).
Among all the existing methods supplying multifractal

descriptors, we used the structure function of order ".
Although it has been demonstrated theoretically that for
certain types of signals the methods based on structure
function of order " have limitations for " < 0, we believe
that this type of approach is still worth using because of the
following.

(i) The structure function is by far the simplest method
to implement compared to DFA, box counting, and
wavelet methods.

(ii) Using " < 0 is valuable for analysing very small
variations in time series. However, as time series
were mostly corrupted by noise, it was impossible to
probe small variations in the time series clearly. The
practical value of such a negative order "was strongly
limited by the presence of noise.

(iii) The real signals under consideration were not theo-
retical signals.This means that mathematical demon-
strations operating exclusively on theoretical signals
are not systematically applicable in practice.

(iv) Several multifractal analyses showed that it was more
possible to discriminate between normal and dis-
tressed subjects for " > 0 than for " < 0. This was
particularly the case in (i) [13] where it was shown
that the difference between the scaling exponent%(") obtained for healthy and distressed subjects was
greater for " > 0 than for " < 0 and in (ii) [28, 29]
where it was clearly shown that for " > 0 it was
possible to discriminate patients better with atropine
than with placebo.

The structure function that we used in this study is
defined [23] for " > 0 as follows:! (", #) = (∫ /////((!)" (0 + #) − ((!)" (0)/////#20)1/#. (2)

This structure function is a length measurement [26] where
the term |((!)" (0 + #) − ((!)" (0)|# reveals a local behaviour while
the term (∫ ⋅ ⋅ ⋅ 20)1/# reveals a global behaviour.

If !(", #) = 6#$(#), then the scaling exponent $(") is
expressed (demonstration: log!/ log # = $ − (log6/ log #)
and lim%→ 0(log!/ log #) = $) as$ (") = lim%→ 0 log (! (", #))log (#) . (3)

Note that for a fractional Brownianmotion ofHurst exponent&, the scaling exponent is $(") = &. From the previous
equation, the singularity spectrum 7(") can be evaluated as
follows: 7(") = "2 2$ (")2" + 1. (4)

Figure 4.5 – Multi-fractal parameters for a healthy fetus (in blue) and a distressed fetus (in green). (a) Structure function
Q(q, ε) versus scale.(b) Scaling exponent η versus q. (c) Scaling exponent τ versus q. The two scaling exponents were more
nonlinear for a healthy fetus than for a distressed fetus.

4.5.1 Results Discriminating Healthy from Distressed Fetuses

By analogy to the entropy work, the same FHR database was used. The structure function
Q(q, ε) and the scaling exponents η(q) and τ(q) for a healthy and distressed fetuses are
reported in Fig. 4.5. Fig. 4.5 (a) shows that the slopes of the curves obtained for different
values of q derived from the structure function Q(q, ε), are similar for the healthy fetuses.
By analogy to H-FHRs, similar results were derived for distressed fetuses. Figs. 4.5 (b)
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Figure 5: Multifractal parameters for a normal foetus (in blue) and a distressed foetus (in green). (a) Singularity spectrum ! versus ". (b)
Singularity spectrum!(") versus Holder spectrum ℎ("). (c) Holder spectrum ℎ versus ".
The Holder spectrum is written asℎ (") = "&' (")&" + ' (") . (5)

Note that this singularity spectrum !(") can be obtained
through a Legendre transform from (("):!(") = "&( (")&" − ( (") , (6)

where ((") is another scaling exponent defined by( (") = "' (") − 1. (7)

In this case, the Holder spectrum is written asℎ (") = &( (")&" . (8)

The structure function *(", +) and the scaling exponents'(") and ((") for a normal foetus and a distressed foetus
are reported in Figure 4 as an illustration. Figure 4(a) shows
that the slopes of the curves obtained for different values of" derived from the structure function *(&, +) were similar
for the normal foetus. Similar results were derived for a
distressed foetus. Figures 4(b) and 4(c) show that both scaling

Figure 4.6 – Multi-fractal parameters for a healthy fetus (shown in blue) and a distressed fetus (shown in green). (a)
Singularity spectrum D versus q. (b) Singularity spectrum D(q) versus Holder spectrum h(q). (c) Holder spectrum h versus
q.

and (c) show that both scaling exponents η(q) and τ(q) are more nonlinear for the healthy
fetus than for the distressed one.

Other multi-fractal descriptors such as the singularity spectrum D(q) and the Holder
spectrum h(q) are reported in Fig. 4.6. Fig. 4.6 sets out the results obtained from four
different signals: a signal from a distressed fetus of an estimated Hurst exponentH = 0.07,
a H-FHR of an estimated Hurst exponent H = 0.31, and two fBm signals of Hurst
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exponentsH = 0.07 andH = 0.31. These four signals were each composed of 720 samples.
Fig. 4.6 shows that the magnitude of the dynamics of the singularity spectrum D(q) and
the Holder spectrum h(q) is higher for the healthy fetus compared to the distressed fetus.

Similarly, the magnitude of the dynamics of D(q) and h(q) is higher for fetal signals
than for the fBm. This corroborates the studies based on the analysis of multi-fractal
HRV [Ivanov et al., 1999], where a more pronounced multi-fractal feature for healthy
subjects was demonstrated than for distressed subjects. The Holder spectrum for healthy
and distressed fetuses decreased with increasing values of q, thus supporting the multi-
fractal nature of FHR time series. Such results are consistent with previous similar
studies [Ivanov et al., 1999, Sassi et al., 2009]. Several measurements are performed in
order to quantify the different trends observed in the multi-fractal indicators D(q) and
h(q) for different α-scales.

To evaluate the performance of discrimination, the Relative Error (RE) is calculated
for all the involved multi-fractal parameters. RE1 (in %) of the Hurst exponent is defined
as follows:

RE1(α) =
|Hn(α)−Hd(α)|

Hn(α)
, (4.8)

where H = η(q) is the Hurst exponent for all q with H = η(1), Hn and Hd are the
mean Hurst exponents corresponding to the average value obtained for all healthy and
distressed fetuses, respectively.

The relative error RE2 (in %) of the dynamics of h(q) is defined as follows:

RE2 =
|∆hn −∆hd|

∆hn

, (4.9)

where ∆h = max(h)−min(h) stands for the dynamics of h(q), ∆hn and ∆hd stand for the
mean dynamics corresponding to the average value obtained for all healthy and distressed
foetuses, respectively.

The relative error RE3 of the singularity spectrum (in %) is defined as follows:

RE3 =
|Dn −Dd|

Dn

, (4.10)

where D = mean(D(q)) is the mean value of the singularity spectrum, Dn and Dd are the
mean values corresponding to the average values obtained for all healthy and distressed
fetuses, respectively.
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exponents !(") and #(") were more nonlinear for the healthy
foetus than for the distressed foetus.

Other multifractal descriptors such as the singularity
spectrum $(") and the Holder spectrum ℎ(") are reported
in Figure 5. The results set out in Figure 5 were obtained
from four different signals: a signal from a distressed foetus
of an estimated Hurst exponent & = 0.07, a signal from a
normal foetus of an estimated Hurst exponent & = 0.31,
and two fractional Brownian motion (fBm) signals of Hurst
exponents & = 0.07 and & = 0.31. These four signals
were each composed of 720 samples. Figure 5 shows that the
magnitude of the dynamics of the singularity spectrum$(")
and the Holder spectrum ℎ(") was higher for the healthy
foetus than for the distressed foetus. Similarly, the magnitude
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of the dynamics of $(") and ℎ(") was higher for foetal
signals than for the fBm of the Hurst exponent, as for foetal
signals. This corroborates most of the studies based on the
analysis of multifractal HRV [12] where a more pronounced
multifractal feature for healthy subjects was demonstrated
than for distressed subjects.The Holder spectrum for healthy
and distressed foetuses decreased with increasing values of ",
thus supporting the multifractal nature of FHR time series.
Such results are consistent with previous similar studies [12,
16]. Note that normal and distressed fetal heart rate time
series were reported in Figure 6 as an illustration.

Several measurements were performed in order to quan-
tify the different trends observed in the multifractal indica-
tors$(") and ℎ(") for different scales ).

Figure 4.7 – Boxplot of Hurst exponents versus scale for healthy (shown in blue) and distressed (shown in red) fetuses.

The relative error RE4 of the singularity spectrum difference (in %) is defined as
follows:

RE4 =
|∆Dn −∆Dd|

∆Dn

, (4.11)

where ∆D = max(D(q)) − min(D(q)) is the mean value of the singularity spectrum
difference, ∆Dn and ∆Dd are the mean values corresponding to the average value obtained
for all healthy and distressed fetuses, respectively.

Fig. 4.7 shows a boxplot representation of the mean Hurst exponent for scale values
ranging from 1 to 6. Red boxplots correspond to distressed foetuses, however blue boxplots
correspond to healthy fetuses. Fig. 4.7 shows that the mean Hurst exponent for healthy
fetuses was higher than that obtained for distressed ones. This meant that the signatures
of distressed fetuses were more irregular and complex than those obtained for healthy
fetuses. Furthermore, Fig. 4.7 shows that there is a sufficient deviation between the mean
Hurst exponent of H-FHRs and D-FHRs which serves well for discrimination purposes.
Fig. 4.7 also shows that as the scale increases, the more regular or filtered the signal
becomes (Fig. 4.7). This was in accordance with the results of [Girault et al., 2010] which
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Other multifractal descriptors such as the singularity
spectrum $(") and the Holder spectrum ℎ(") are reported
in Figure 5. The results set out in Figure 5 were obtained
from four different signals: a signal from a distressed foetus
of an estimated Hurst exponent & = 0.07, a signal from a
normal foetus of an estimated Hurst exponent & = 0.31,
and two fractional Brownian motion (fBm) signals of Hurst
exponents & = 0.07 and & = 0.31. These four signals
were each composed of 720 samples. Figure 5 shows that the
magnitude of the dynamics of the singularity spectrum$(")
and the Holder spectrum ℎ(") was higher for the healthy
foetus than for the distressed foetus. Similarly, the magnitude
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of the dynamics of $(") and ℎ(") was higher for foetal
signals than for the fBm of the Hurst exponent, as for foetal
signals. This corroborates most of the studies based on the
analysis of multifractal HRV [12] where a more pronounced
multifractal feature for healthy subjects was demonstrated
than for distressed subjects.The Holder spectrum for healthy
and distressed foetuses decreased with increasing values of ",
thus supporting the multifractal nature of FHR time series.
Such results are consistent with previous similar studies [12,
16]. Note that normal and distressed fetal heart rate time
series were reported in Figure 6 as an illustration.

Several measurements were performed in order to quan-
tify the different trends observed in the multifractal indica-
tors$(") and ℎ(") for different scales ).

Figure 4.8 – Boxplot of ∆h = max(h)−min(h) versus the scale for healthy (shown in blue) and distressed (shown in red)
fetuses.

reported that as the time series increases, the Hurst exponent increases.

Fig. 4.8 shows a boxplot representation of ∆h = max(h) −min(h). The parameter’s
behavior is represented for scale values ranging from 1 to 6. Red boxplots correspond
to distressed foetuses and blue boxplots to healthy fetuses. Fig. 4.8 shows that the
dynamics of ∆h for healthy fetuses were higher than that obtained for distressed fetuses.
This meant that the signatures for healthy fetuses were more multi-fractal than those
obtained for distressed fetuses. This has already been reported in recent studies such
as [Ivanov et al., 1999]. Furthermore, Fig. 4.8 shows that there is a sufficient deviation
between the two plotted dynamics leading the discrimination between healthy and dis-
tressed fetuses by means of ∆h.

Fig. 4.9 shows a boxplot representation of the mean singularity spectrum Dmean. This
parameter was represented for scale values ranging from 1 to 6. Red boxplots correspond
to distressed fetuses and blue boxplots to healthy fetuses. Fig. 4.9 shows that the values
of D are higher for distressed fetuses than for healthy fetuses. The signatures of healthy
fetuses are more regular than those corresponding to distressed fetuses. Fig. 4.9 shows
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Other multifractal descriptors such as the singularity
spectrum $(") and the Holder spectrum ℎ(") are reported
in Figure 5. The results set out in Figure 5 were obtained
from four different signals: a signal from a distressed foetus
of an estimated Hurst exponent & = 0.07, a signal from a
normal foetus of an estimated Hurst exponent & = 0.31,
and two fractional Brownian motion (fBm) signals of Hurst
exponents & = 0.07 and & = 0.31. These four signals
were each composed of 720 samples. Figure 5 shows that the
magnitude of the dynamics of the singularity spectrum$(")
and the Holder spectrum ℎ(") was higher for the healthy
foetus than for the distressed foetus. Similarly, the magnitude
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of the dynamics of $(") and ℎ(") was higher for foetal
signals than for the fBm of the Hurst exponent, as for foetal
signals. This corroborates most of the studies based on the
analysis of multifractal HRV [12] where a more pronounced
multifractal feature for healthy subjects was demonstrated
than for distressed subjects.The Holder spectrum for healthy
and distressed foetuses decreased with increasing values of ",
thus supporting the multifractal nature of FHR time series.
Such results are consistent with previous similar studies [12,
16]. Note that normal and distressed fetal heart rate time
series were reported in Figure 6 as an illustration.

Several measurements were performed in order to quan-
tify the different trends observed in the multifractal indica-
tors$(") and ℎ(") for different scales ).

Figure 4.9 – Boxplot of Dmean versus the scale for healthy (shown in blue) and distressed (shown in red) fetuses.

also that it is more difficult to discriminate between healthy and distressed fetuses by
means of D. This parameter did not seem efficient for discrimination purposes. Note that
the higher the scale, the lower the RE3.

Fig. 4.10 shows a boxplot representation of ∆D, i.e. the dynamics of D. This dynamic
parameter represented for scale values ranging from 1 to 6. Red boxplots correspond to
distressed fetuses and blue boxplots to healthy fetuses. Fig. 4.10 shows that ∆D was
higher for healthy fetuses than for distressed fetuses. Hence, the signatures of healthy
fetuses were more multi-fractal than those for distressed fetuses. Moreover, Fig. 4.10
shows also that there was a sufficient deviation between the dynamics of healthy and
distressed fetuses. Thus ∆D is a relevant parameter for discrimination purposes.

To sum up, Table 4.1 reports the REs of the four multi-fractal parameters. Table 4.1
shows that the best parameter permitting discrimination among fetuses was RE4, followed
by RE1 and then RE2. Furthermore, the best differentiation was obtained for a scale value
of 2 by RE4 and RE1 and a scale value of 3 by RE2. This confirms the need to coarse-grain
the FHR time series prior to multi-scale analysis. It is obvious from Table 4.1 that as
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(i) The relative error RE1 (in %) of the Hurst exponent is
defined as follows:

RE1 (") = #####$" (") − $# (")#####$" (") , (9)

where &(') = $ is the Hurst exponent for all '. Note
that $ = &(1). $" was the mean Hurst exponent
corresponding to the average value obtained for all
normal foetuses and $# was the mean Hurst expo-
nent corresponding to the average value obtained for
all distressed foetuses.

(ii) The relative error RE2 (in %) of the dynamics of ℎ(')
is defined as follows:

RE2 = #####Δ ℎ" − Δ ℎ######Δ ℎ" , (10)

where Δ ℎ = max(ℎ) − min(ℎ) are the dynamics ofℎ('), Δ ℎ" being the mean dynamics corresponding to
the average value obtained for all normal foetuses andΔ ℎ# the mean dynamics corresponding to the average
value obtained for all distressed foetuses.

(iii) The relative error RE3 (in %) is defined as follows:

RE3 = #####)" − )######)" , (11)

where ) = mean()(')) is the mean value of the
singularity spectrum,)" being the mean value corre-
sponding to the average value obtained for all normal
foetuses and)# the mean value corresponding to the
average value obtained for all distressed foetuses.

(iv) The relative error RE4 (in %) is defined as follows:

RE4 = #####Δ!" − Δ!######Δ!" , (12)

where Δ! = max()(')) − min()(')) is the
mean value of the singularity spectrum, Δ!" being
the mean value corresponding to the average value
obtained for all normal foetuses and Δ!" the mean
value corresponding to the average value obtained for
all distressed foetuses.

4. Results and Discussion

From our own dataset composed of one hundred recordings,
each time series of 7200 points was coarse-grained for 6
different scales. From each coarse-grained signal, subsignals
composed of 720 points and overlapping by 97% were
analysed with multifractal tools.

Figure 7 shows a boxplot representation of the mean
Hurst exponent for different scale values ranging from 1 to
6. Red boxplots correspond to distressed foetuses and blue
boxplots correspond to normal foetuses. Figure 7 shows that
the mean Hurst exponent for normal foetuses was higher
than that obtained for distressed foetuses. This meant that
the signatures of distressed foetuses were more irregular
and complex than those obtained for normal foetuses. Fur-
thermore, Figure 7 shows that there was sufficient deviation
between the mean Hurst exponent to discriminate between
normal and distressed foetuses. Figure 7 also shows that the
higher the scale, the more regular or filtered the signal (as
shown in Figure 1). This corroborated the results of [26],
showing that the more filtered the time series the higher the
Hurst exponent.

Figure 8 shows a boxplot representation ofΔ ℎ = max(ℎ)−
min(ℎ). These dynamics are represented for different scale
values from 1 to 6. Red boxplots correspond to distressed
foetuses and blue boxplots to normal foetuses. Figure 8
shows that the dynamics were higher for normal foetuses
than that obtained for distressed foetuses. This meant that
the signatures for normal foetuses were more multifractal
than those obtained for distressed foetuses. This has already
been reported in recent studies such as [12]. Furthermore,
Figure 8 shows that therewas sufficient deviation between the
dynamics to distinguish normal from distressed foetuses.

Figure 9 shows a boxplot representation of the mean
singularity spectrum ) = )mean. This parameter was
represented for different scale values ranging from 1 to 6. Red
boxplots correspond to distressed foetuses and blue boxplots
to normal foetuses. Figure 9 shows that ) was higher for
distressed foetuses than for normal foetuses. This meant
that the signatures of healthy foetuses were more regular
than those corresponding to distressed foetuses. Figure 9 also
shows that it was more difficult to discriminate between
normal and distressed foetuses.This parameter did not seem
to be very relevant. Note also that the higher the scale, the
lower the relative error.

Figure 4.10 – Boxplot of ∆D versus the scale. Healthy fetus (in blue) and distressed fetus (in red).

Table 4.1 – Relative errors of different multi-fractal parameters between the two groups of fetuses for different scales.

hhhhhhhhhhhhRelative Error
Scale 1 2 3 4 5 6

RE1 0.37 0.40 0.33 0.29 0.26 0.24

RE2 0.32 0.37 0.38 0.37 0.36 0.35

RE3 0.11 0.12 0.11 0.10 0.09 0.08

RE4 0.41 0.42 0.41 0.38 0.36 0.33

the scale increases, RE decreases. The latter findings require choosing a maximum scale
that is not too high. A value set at 2 seems sufficient regardless of the type of RE used.
Furthermore, as the best RE4 was sensitive to the multi-fractal features of the time series
analyzed for a scale of 2, this finding confirms the need to analyze FHR from a coarse-
grained multi-fractal point of view. However, as the second discriminative parameter
was RE1, which is sensitive to mono-fractal features set at a scale of 2, a coarse-grained
mono-fractal approach is also relevant.

82



4.6. CONCLUSION

4.5.2 Discussion

Although the study present in this chapter was quite similar to that presented by Wang
et al. [Wang et al., 2005], our study was quite different from two aspects. First, our study
was dedicated to fetal discrimination, whereas the work of Wang et al. was dedicated to
adults. Second, our study was based on a much simpler structure function than the other
approach that was based on a partition function.

In addition, although a large number of research studies have mainly been based
on the use of partition functions (DFA, box-counting and wavelet approaches) on the
pretext that structure functions do not operate for negative orders, we have shown in this
dissertation that the use of such structure functions is fully justified due to the simplicity of
implementation, and that structure functions completely fulfil their role in distinguishing
between healthy and distressed fetuses.

4.6 Conclusion

Various works using multi-fractal analysis of chaotic and random time-series are avail-
able. The study present in this chapter is quite different as it was dedicated to fetal
discrimination, and was based on a much simpler structure function than the approach
of a partition function. We have shown that the use of the structure function predefined
in this chapter is fully justified due to the mathematical and computational simplicity.
In this study scaling the time series at 2 was enough to improve the classification, and
the mean of the singularity spectrum dynamic parameter and the mean Hurst exponent
insured the highest errors between fetuses of different medical states and consequently the
ultimate discernment as compared to other parameters. To analyze profoundly the time
series, a more general geometric but qualitative tool from which various quantifications
can be extracted was the subject of the next chapter, where physical recurrence notion
was the core.
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Chapter 5

RECURRENCE PLOTS AND
ANALYSIS

p Sweet life events make the person wishes they were continuously recurring,
while bitter events make the person wishes they never possessed the physical
phenomena of recurrence y Amira Zaylaa.

5.1 Introduction

N owadays, the complexity analysis of biomedical time series by means of various descrip-
tors, including, but not limited to, fractal dimension [Gough, 1993], multi-fractal spectra
and entropy [Voicu and Girault, 2012b, Pincus, 1991, Oudjemia et al., 2013] introduced
in chapters 2 and 3 are quantitative and of standard practice. Recently, vast studies
involving the analysis of biomedical signals use recurrence plots (RPs). RPs featured and
located in 2-dimension recurring states constituting the time series [Takens et al., 1981,
Eckmann et al., 1987, Gao and Cai, 2000, Thiel et al., 2004, Marwan and Kurths, 2002,
Marwan et al., 2007]. In order to extract some scalar indicators from RPs, quantita-
tive indicators named Recurrence Quantification Analysis (RQA) [Marwan et al., 2002,
Zbilut et al., 2002, Balibrea et al., 2008] have been computed.

One of the significant tasks of RQA was to detect the various dynamic transitions
of logistic maps [Marwan et al., 2002, Marwan et al., 2007, Iwanski and Bradley, 1998].
In addition, the determinism parameter (DET ) was employed to quantify the chaotic-
periodic and periodic-chaotic transitions [Marwan et al., 2002, Marwan et al., 2007]. The
detection of such transitions has been achieved in two different ways. The first way
was dedicated to the computation of RQA promptly from a single unembedded time
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series [Iwanski and Bradley, 1998]. This method was appealing due to its simple math-
ematical formulation. However, quantification was biased with a poor transition detec-
tion rate, due to the presence of sojourn points [Marwan et al., 2002, Zbilut et al., 2002,
Balibrea et al., 2008, Gao and Cai, 2000].

The second way was based on embedding the time series obtained from the system
in d [Takens et al., 1981, Eckmann et al., 1987, Marwan et al., 2002, Trulla et al., 1996].
Although the previous method required heavy computation, it empirically reduced sojourn
points [Marwan et al., 2002, Marwan et al., 2007] and promoted the transition detection.
However, to date no one has quantified such detection rate improvement, nor identified if
it was possible to enhance the transition detection rate. This leads to the question: what
is the best value of the embedding dimension that will allow the detection of all dynamic
transitions ?

This work describes our on-going efforts to extract and to cleanly quantify the dynamic
information from nonlinear dynamic systems, such as, the logistic map and fetal heart.
The goal of this work provided in this chapter is to improve the detection rate of transitions
by eliminating sojourn points present in recurrence plots. For the logistic map, the transi-
tions that are meant to be detected are periodic-chaotic and chaotic-periodic transitions,
while for the fetal heart the states that are meant to be detected are healthy-distressed and
distressed-healthy fetal heart rates (FHRs). The adopted solution consisted of eliminating
sojourn points present in recurrence plots. To find an efficient solution to the former
problems, several RPs were employed. The first empirical method was composed of two
plots having different embedding dimension values. The first plot required no embedding
as proposed in [Iwanski and Bradley, 1998] and was named the unembedded RP. The
second recurrence plot required an embedding dimension greater than 2 as suggested by
N. Marwan and others [Marwan et al., 2002, Marwan et al., 2007]. As the choice of the
embedding dimension in the second method is often arbitrary, we developed a new way
that consisted of finding out the optimal embedding dimension minimizing the number
of sojourn points. Furthermore, we developed two additional signal-based methods using
the derivative concept and the m-pattern concept, and compared them with the former
plots.

To quantify the level of performances of the proposed approaches, each technique was
applied to the nonlinear logistic map and to the FHR. In each case, both the sensitivity
and specificity were assessed.
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5.2 Recurrence Analysis

RP tool was used to display the recurrences of the states of the time series in 2-Dimensions
and to calculate its corresponding RQA [Hurezeanu et al., 2013]. Several Scientists have
modified the recurrence test expression by changing the nature of vectors involved, while
fixing the tolerance value to ensure an unbiased analysis. Unbiased recurrence plots have
been developed in our previous works [Zaylaa et al., 2013, Zaylaa et al., 2014a].

As URPs are cutting edge in FHR analysis, this work aims to evaluate and compare the
performance of URPs through an experimental measurement on real Doppler Ultrasound
FHR signals.

5.2.1 Recurrence Matrix

An RP is a two-dimensional squared matrix, with black and white dots and two time-axes.
Each black dot at the coordinates (i,j) represents a recurrence of the system’s state Xi

with another Xj. It is expressed for a tolerance r as follows:

RP = Θ(r − ‖Xi −Xj‖), Xi ∈ Rd, (5.1)

where Xi ∈ Rd stands for the points in the phase space at which the system is situated at
time i, Θ (·) is the Heaviside function, ‖ · ‖ is the L∞ norm, i, j = {1, . . . ,M − d+1 }, M
is the total number of points and d is the embedding dimension [Eckmann et al., 1987,
Marwan et al., 2002] and recently [Marwan et al., 2007, Kantz and Schreiber, 2004]. Note
that Θ (·) plays the role of the correlation sum that was discussed in chapter 1.

5.2.2 Recurrence Quantification Analysis and Our Descriptors

After reproducing the qualitative RP, scalar quantitative parameters are calculated. Of all
the existing RQA, DET [Marwan et al., 2002, Marwan et al., 2007, Zaylaa et al., 2014b]
seems to be the most sensitive for transition detection. The determinism in percent-
age [Zbilut and Webber, 1992, Nguyen et al., 2012, Manetti et al., 1999] is given as:

%DET =

(
# of Points in diagonal lines

# of recurring points

)
× 100, (5.2)
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The novel complexity descriptor that we have proposed in this type of analysis is the
Cross-Determinism (% CDET) defined by:

%CDET =

(
# of Points in cross− diagonal lines

# of recurring points

)
× 100, (5.3)

The Percentage of Reduced Sojourn Points PRSP in percentage is calculated from
%CDET as follows: (100−%CDET ).

RR which already exists and measures the density of recurrence points in RPs is
defined [Marwan et al., 2007, Marwan, 2003, Zbilut and Webber, 1992] in percentage for
a given window of size M by:

%RR =

(
1

M2
# of recurrent points

)
× 100, (5.4)

The entropy measure computed from the RP of the time series refers to Shanon’s
entropy [Zbilut and Webber, 1992, Webber Jr and Zbilut, 2005, Marwan et al., 2007]. It
measures the sum of the bin probability of distribution of each diagonal line for each
non-zero bin.

%En = −
(

M∑
l=lmin

PbinlnPbin

)
× 100. (5.5)

5.2.3 Sojourn Points Demonstration

In order to describe the challenge of using RPs, which comprised Sojourn Points (SPs), to
both discriminate and detect intrinsic dynamic changes of biomedical time series we illus-
trate the problematic of SPs. SPs are demonstrated starting from a single deterministic
signal (Fig. 5.1) and then on a chaotic time series (Fig. 5.2).

Fig. 5.1 presents a scheme of (a) a sine wave, x(t), made up of 200 sample points, its
time delayed version, y(t) = x(t+τ), their elliptical phase space (i.e. x(t) versus y(t)) and
(b) a sine wave, x(t), its derivative, ẋ(t) and their circular phase space (i.e. x(t) versus
ẋ(t)). Note that the size of a single chosen strip is called the tolerance r.

Fig. 5.1 (a) shows the points denoted 1 (red circles) and 3 (black cross) existing within
the same strip of size r. In reality, only the points denoted by 1 are truly recurring with
each other and not with points denoted by 3. According to the standard recurrence test
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Figure 5.1 – Schematic illustration of sojourn points and recurrence test computation of (a) a sine wave x(t) and y =
x(t+ τoptimal), (b) a sine wave x(t) and y=ẋ(t) and (c) an m-time pattern sine wave.

(of an unembedded time series), all 1’s and 3 were recurrences. This was vivid while
comparing all the points existing on the same amplitude level of x(t) to those of the
delayed signal and confined in tolerance r. By introducing a second signal y(t) (a delayed
or a derivative version of x(t)), it is now possible to remove sojourn points by comparing
points 2 and 4 of y(t) to the corresponding points 1 and 3 of x(t). Point 4 of y(t) which
corresponded to 3 in x(t) did not exist at the same amplitude level, whereas all the red
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circles were within r.
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Figure 5.2 – Schematic illustration of sojourn points for a chaotic time series (aperiodic). (left) Chaotic time series. (right)
Computation of the corresponding Recurrence Plot.

Consequently, point 3 was a sojourn point since it is not periodic a. This tolerance
value r is usually 10% of the standard deviation of x(t).

Fig. 5.2 represents how SPs contribute to cross-diagonal lines in the RPs of chaotic
time series. Although this case does not correspond to the periodic signal in Fig. 5.1, still
SPs constitute cross-diagonals lines. By choosing m = 1 the four black circles at u(1),
u(13), u(19) and u(32) are within r thus they are classically recurring, however u(19) is not
a true recurring point as it correspond to different variation compared to u(1), u(13) and
u(32). Analogous to the black circles, the triangle states and the squares are computed
in the same way. The resulting RP on the right of Fig. 5.2 shows how true recurrences
are basically diagonal lines and false recurrences form mostly cross-diagonal lines.

aIn 1-Dimension, sojourn points are non periodic points existing within the tolerance r. with 1’s.
However, in the two signal-based RPs Fig. 5.1 (a) and (b) this was overcame. The tolerance r was fixed
in Fig. 5.1 to insure a fair comparison
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5.3 Existing Recurrence Plots

5.3.1 Unembedded Recurrence Plots

An unembedded recurrence plot is that produced from a single time series, thus there is
no need for sub-time series. Eq. 5.1 becomes:

RP1 = Θ(r − ‖xi − xj‖), (5.6)

where xi stands for the time series points at time i. As reported by Iwanski and oth-
ers [Iwanski and Bradley, 1998], when d = 1, Eq. 5.1 is called unembedded RP. This plot
was denoted throughout this work by RP1 (see Table 5.4).

5.3.2 Embedded Recurrence Plots

Originally developed by Eckmann [Eckmann et al., 1987], embedded plots have been
used to track recurrences of systems’ states out of a reconstructed phase space of d-
embedding dimension. This was fulfilled using the embedding theorem [Trulla et al., 1996,
Takens et al., 1981, Marwan et al., 2002, Zbilut et al., 1998, Packard et al., 1980]. The
reconstructed RP was obtained by calculating a time delay τ and embedding dimension
d using the mutual information (M.I.) [Fraser and Swinney, 1986] and the false nearest
neighbour (F.N.N.) [Kennel et al., 1992, Kantz and Schreiber, 2004] methods, and subse-
quently computing Eq. 5.1, given that Xj =Xi+τ and d ≥2.

Analogous to previous investigations, d has been fixed to 3, i.e. three sub-time series
produced from x(t) were used to reconstruct RP [Trulla et al., 1996, Marwan et al., 2002,
Marwan et al., 2007, Ahlstrom et al., 2006]. The corresponding RP was denoted by RP2

(see Table 5.4). Note that such plot has been recommended to eliminate sojourn points
by using an embedding dimension of d ≥2 [Gao and Cai, 2000, Ahlstrom et al., 2006]. It
works well on stable and low noise systems. However, when the system is non-stationary
with much noise, such as the biomedical systems, it becomes not suitable for estimating
d. According to Webber [Webber and Zbilut, 1994] d is not appropriate to be set too high
or too low on the biological systems.

The second parameter to be set for RP2 is the time delay τ . It should be selected for
minimizing the interaction between the points of the measured time series. Fraser and
Swinney reported that the first minimum of MI can provide the best available systematic
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criterion for choosing time delays for phase portraits [Fraser and Swinney, 1986]. However
it should not be too high, otherwise RQA cannot provide the enough information to
distinguish the kinds of signals [Yan et al., 2010]. In RP2, the time delay was selected
from the mutual information.

The other parameter in RQA which needs to be set is the minimal diagonal line. N.
Marwan, who developed the software to calculate the RQA measures [Marwan, 2009],
specified a default value. But, we chose in this work to set it after testing a range of
values and tracking the minimum possible number of sojourn points that could show up.
According to our previous works [Zaylaa et al., 2013, Zaylaa et al., 2014a] the tolerance
r was set at 10% of the error of the fetal signals.

5.4 Developed Recurrence Plot Methods

5.4.1 Embedded Recurrence Plot With Specific Settings

Herein we provide our first signal-based RP that is responsible for enhancing the detection
of dynamic transitions. In this technique, instead of looking for the best embedding dimen-
sion and time delay that guarantee the independence of sub-time series, as already done
by Trulla et al. [Trulla et al., 1996] and later on by N. Marwan et al. [Marwan et al., 2002,
Marwan et al., 2007], we looked for the best value of the embedding dimension and time
delay that minimized the presence of sojourn points in an RP. Both d=doptimal and
τ=τoptimal were obtained by minimizing a cost function (J(dk, τk) = CDET ) charac-
terizing sojourn points.

In contrary to DET where P (l) was the number of diagonal lines, CDET was defined
by Eq. 5.2 for P (l) being the number of cross-diagonal lines of length l. It quantifies
the number of points constituting the diagonal lines perpendicular to the line of identity
(LOI). Instead of developing a new algorithm to assess CDET , it was obtained by Eq. 5.2
computed from the 90◦ rotation of the recurrence matrix. The optimization problem was
given as follows:

ϕ∗k = argmin
ϕ

(J(ϕk)), (5.7)

where ϕk=(dk, τk) is a vector composed of the kth embedding dimension and the kth time
delay to be optimized. An example of such optimization is presented in Fig. 5.3.
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The embedding dimension was chosen after minimizing a cost-function describing the
number of SPs in RPs. In this dissertation doptimal was set at 2 as defined in our previous
work [Zaylaa et al., 2013, Zaylaa et al., 2014a]. We denoted the resulting RP by RP3 (see
Table 5.4).

5.4.1.1 Examples of The Optimization of Both The Embedding Dimension
and Time Delay

Fig. 5.3 (top left) represents the cost function versus d, while τ = T/4 with T being
the period of the signal as indicated theoretically. τ could be also calculated by the
autocorrelation. Fig. 5.3 (center left) shows the first zero-crossing of J or Jminimum
occurring at d = 2. Consequently, d was set to 2 in the optimization. Fig. 5.3 (bottom
left) exhibits the cost function versus the time delay, while holding d fixed at 2. The
parameter τ was tested in the following range 0 6 τ 6 55. This led to an optimized range
rather than a unique value, τ ∈ {6,14} ∪ {26,34} ∪ {46,54} time unit. By analogy to the
sine wave, d and τ were optimized for the RP of both the logistic map and the FHRs. For
the logistic map, d was set to 2 and τ to 4. For the healthy FHR, Fig. 5.3 (center right)
shows that Jmin occurred at d = 2. The tested range of d was from 2 to 7 embedding
dimensions. Fig. 5.3 (bottom right) exhibits that Jmin occurred at τ = 1 time unit.

Instead of assessing the best embedding dimension and time delay, another RP has
been developed and discussed in the upcoming subsection.

5.4.2 Derivative-Based Recurrence Plot

Herein we provide our second signal based RP method. Starting from a single time series,
and instead of considering the independence between two sub-time series, we considered
the orthogonal data by involving the derivative principle (see the example in Fig. 5.1 (b)).
This approach neither required looking at the time delay nor embedding dimension. We
have denoted the resulting plot by RP4 (see Table 5.4).

5.4.3 M -Time Pattern Recurrence Plot

After introducing the derivative-based RPs, we provide our third nonlinear technique
which is them-time Pattern Recurrence Plot. This is a multi-pattern algorithm. However,
in this study it was used as a 2-point to 2-point recurrence computation. Fig. 5.1 (c)
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Figure 5.3 – The cost-function and optimization process of the embedding dimension and time delay (left) for a sine wave
and (right) for the healthy FHR.

represented the 2-point to 2-point computations. For m = 2, the m-time Pattern RP, i.e.
(RP (m = 2)) was denoted throughout this dissertation by RP5.

Table 5.4 summarizes the vectors involved in Eq. 5.1, d the embedding dimension, m
the number of pattern and d′ the virtual embedding dimension used in all the recurrence
plots discussed in this chapter.

Note that the flow charts of the three developed URPs are summarized in Fig. 5.4.

5.4.4 Example on Sine Wave

We illustrate in Fig. 5.5 an evaluation of the drop off in sojourn points for a sine wave
displayed within a window of 200 points (a) as compared to the unembedded RP1 (b).
It is an example of a simulated sine wave and its corresponding standard and developed
recurrence plots. Fig. 5.5 (a) sets out a sine wave and its corresponding (b) unembed-
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5.4. DEVELOPED RECURRENCE PLOT METHODS

Table 5.1 – The five nonlinear recurrence methods used in the complexity analysis for transition detection.

Method Notation Time Series d m d’

Unembedded RP RP1 Xj=xj 1 1 1

Embedded RP RP2 Xj=Xi+τ ≥2 1 ≥2

Embedded RP with specific
settings

RP3 Xj=Xi+τopt 2 1 2

Derivative-Based RP RP4 Xj=Ẋi - 1 2

M-Time Pattern RP RP5 Xi, Xj - 2 2

ded recurrence plot RP1, (c) embedded recurrence plot RP3 with specific settings, (d)
derivative-based recurrence plot RP4 and (e) 2-time pattern recurrence plot RP5.

The plots in Fig. 5.5 are arranged as follows: RP1, RP3 for (τ = T/4) where T is
the period of the sine wave, RP4 and RP5. Fig. 5.5 (b) demonstrates a few diagonal
and cross-diagonal lines revealing periodicity and uniformity, the crossing data being due
to the presence of sojourn points. Fig. 5.5 (c) merely reveals diagonal lines in RP3 and
the cross-diagonals which showed up in RP1 have vanished completely. This was due to
embedding the time series.

Moreover, RP4 manifested how the cross-diagonal lines totally vanished. However,
junction points connecting both diagonal and cross-diagonal lines vanished (see Fig. 5.5
(d)) at τ = 30 time units. This is due to the fact that the positions of crests and troughs
in the sine wave (a) did not correspond to the same positions in the derived signal. Thus
points constituting the crests and troughs did not exist within the same tolerance r, and
hence black points disappeared. This could be due to using the approximate derivative.

In Fig. 5.5 (e) RP5 shows how the cross-diagonal lines vanished differently. A few points
lying on the cross-diagonal lines persisted, as compared to RP3 and RP4. This might have
been due to the fact that the time delay was not set according to a formulation, but rather
it was by default equal to one. The time delay was less than T/4 (as for RP3). The two
signals adhered, consequently little cross-diagonal information showed up.

In Fig. 5.5 (e), RP5 shows how the cross-diagonal lines have vanished differently. Few
points lying on the cross-diagonal lines persisted as opposed by RP3 and RP4. This could
be due to the fact that the time delay was not set according to a formulation, rather it
was by default equals to one. The time delay was less than T/4 (as for RP3). The two
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Figure 5.5 – Example of a simulated sine wave and its corresponding standard and developed recurrence plots. (a) Sine
wave and its corresponding (b) unembedded recurrence plot (RP1), (c) embedded recurrence plot with specific settings
(RP3), (d) derivative-based recurrence plot (RP4) and (e) 2-time pattern recurrence plot (RP5).

signals were adhering, consequently few cross-diagonal information showed up.

As a global visual evidence, sojourn points have been eliminated using RP3, RP4 and
RP5. The evaluation of the performance of the transition detector and sojourn point
reduction was considered for the biologically inspired logistic map and for the real data of
healthy and distressed FHRs. For the logistic map, each detector operating on the DET
parameter was evaluated for the five different RPs over different values of the control
parameter b. Both a qualitative RP representation and a quantitative (the rate of the
reduced sojourn points, sensitivity and specificity) evaluations were obtained. For FHRs,
three parameters: DET , CDET and PRSP were evaluated from the five RPs over 30
minutes FHRs split into 10 windows of 3 minute each. The three statistical measures:
mean, Standard Deviation (SD) and the Relative Error (RE) were used to evaluate the
fetal transition detection. Simulations were obtained using Matlab (Mathworks, Natick,
MA, USA).

5.4.5 Results of Logistic Map

For each b value of the Logistic Map defined in chapter 2, a time series of lengthM = 1000

has been computed with a step of ∆b = 0.0005.
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CHAPTER 5. RECURRENCE PLOTS AND ANALYSIS

DET values were recorded relative to b and the detection of systems state transitions
has been evaluated qualitatively and quantitatively in the next subsection. Afterwards,
the time series corresponding to b = 4, i.e. the chaotic region, was simulated as suggested
by [Marwan et al., 2002, Marwan et al., 2007] and involved in the upcoming illustration
of sojourn point reduction. The preference of b = 4 maintained the maximum rate of
system’s growth (i.e. chaoticity) [Marek, 1995].

5.4.5.1 Qualitative Evaluation Of Sojourn Point Reduction

As there is a major interest in reducing the number of sojourn points, N. Marwan and
others [Marwan et al., 2002, Marwan et al., 2007] suggested that calculating a time series
for fixed value of b is better for this purpose. Furthermore, to illustrate the advantages of
our signal-based recurrence plots over existing plots, we simulated RP1 and RP2 for (b =
4) [Marwan et al., 2002, Marwan et al., 2007]. Fig. 5.6 represents the (a) unembedded
RP1, (b) embedded RP2 and three signal based recurrence plots arranged as follows:
(c) RP3 for τ = 4, (d) RP4 and (e) RP5. On each plot a zoomed portion of the RP
was imposed to highlight different cross-diagonal lines, in a red color, that seemed to
present the sojourn points, and were involved in the further quantitative evaluation. RP1

of the simulated time series x(t) showed various small diagonal and cross-diagonal lines
(i.e diagonals perpendicular to the main diagonal). The previous features reflected the
chaotic nature of the simulated system. RP2 resembled that simulated by N. Marwan and
others [Marwan et al., 2002, Marwan et al., 2007] for b = 4.

RP3 showed the least number of recurrences. It revealed that the major cross-diagonal
lines have vanished, also, significant vertical lines have vanished too. This could be due
to the choice of dopt = 2 based on the minimum number of sojourn points that could
be attained. RP4 elaborated how the cross-diagonal lines, which existed in the classical
image RP1 and in RP2, have vanished, whereas extra small structures and cross-diagonals
showed up instead.

RP5 revealed that there was a remarkable loss in the vertical information as compared
to RP4, especially in the small cross-diagonals. Thus sojourn points were reduced as a
consequence of the detection techniques, as it was obvious in Fig. 5.6 (c), (d) and (e).

5.4.5.2 Quantitative Evaluation Of Sojourn Point Reduction

As N. Marwan et al. [Marwan et al., 2002, Marwan et al., 2007] previously introduced
that DET parameters extracted from RPs seemed to be a good indicator for detecting
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5.4. DEVELOPED RECURRENCE PLOT METHODS

dynamic changes we made use of them.

Both CDET and DET given by Eq. 5.2 for l characterizing cross-diagonals and
diagonals, respectively, have been evaluated in percentage from the RPs of the simulated
Logistic time series. Quantitative results were depicted in Table 5.2. The tolerance r
was initially chosen to be 10% the standard deviation of the time series as suggested
in [Marwan et al., 2002, Marwan et al., 2007] to insure a noise-free situation.

Table 5.2 shows that DET changes from 78% by RP2 to 73% by RP3, i.e. the number
of points detected along the diagonal decreases slightly. This could be due to some large
diagonal lines that were transformed into separate discrete points to reinforce the chaotic
nature of the logistic map for (b = 4). Table 5.2 shows also that the number of points
detected along the cross-diagonal lines increases. The straight-forward comparison of
the cross-diagonal values relative to the detected points forming the cross-diagonal lines
obtained through the reference method, RP2, shows that (i) 27% out of 22% cross-diagonal
points are detected in RP3, (ii) 13.3% out of 22% cross-diagonal points are detected in
RP4, however, (iii) 13% out of 22% cross-diagonal points are detected in RP5.

As a result, the remaining percentages of SPs (% CDET out of % CDETRP2) are: (i)
6%, (ii) 3% and (iii) 2.9% in RP3, RP4 and RP5, respectively. Consequently, %PRSP
are:(i) 94%, (ii) 97% and (iii) 97.1% in RP3, RP4 and RP5, respectively. Table 5.2, shows
that the performance of the elimination of SPs can be arranged as follows: RP5 > RP4 >

RP3 > RP2.

Table 5.2 – % DET and % CDET quantifications of RP1, RP2, RP3 and RP4 for a logistic time series for b = 4.

Dynamic System Logistic Time Series

Quantification Parameters % DET % CDET % CDET out of
% CDETRP2

%PRSP

Unembedded RP [RP1] 0.0% 100.0% 22.0% 0.0%

Embedded RP [RP2] 78.0% 22.0% - -

Embedded RP with specific
settings [RP3]

73.0% 27.0% 6.0% 94.0%

Derivative-Based RP [RP4] 86.7% 13.3% 3.0% 97.0%

M-Time Pattern RP [RP5] 87.0% 13.0% 2.9% 97.1%
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Figure 5.6 – The standard and developed recurrence plots, originating from a simulated Logistic time series for b = 4. (a)
the unembedded recurrence plot (RP1), (b) embedded recurrence plot (RP2), (c) embedded recurrence plot with specific
settings RP3, (d) derivative-based recurrence plot (RP4) and 2-time recurrence plot (RP5).
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5.4. DEVELOPED RECURRENCE PLOT METHODS

5.4.5.3 Detection of Dynamic Transitions

To evaluate the performance of the three signal-based recurrence plot methods in detecting
dynamic changes relative to already existing techniques, simulations were performed and
reported in Fig. 5.7. Fig. 5.7 depicts the variation of the normalized determinism (shown
in blue) as a function of the control parameter of the logistic map. The quantification
parameter was computed from (a) RP1 (b) RP2, (c) RP3, (d) RP4 and (e) RP5, respec-
tively. The three developed methods exhibited the major peaks present in the bifurcation
diagram (diagonal information has been preserved).

In Fig. 5.7, the results of DET versus b of the developed techniques imitate that of
RP2 but are not the same. For instance, the amplitudes of peaks are not strictly equal
to 1 as in RP2. This triggered us to choose another detection criteria to discern between
transitions. Although tracking unity to distinguish between transitions was effective in
RP2, the number of peaks detected were not sufficient as compared to our developed
unbiased recurrence plots and the bifurcation diagram.

Despite this evaluation, a quantitative evaluation of the dynamic transition detection
was necessary to provide a solid interpretation. Statistical measures were used to evaluate
the performance of detection. On each DET versus b displayed in Fig. 5.7 a constant
threshold λ is applied and used as a detector. The value of λ was chosen from an empirical
inference, i.e. after trying several values then choosing the one permitting the detection
of the maximum number of peaks. Four cases were defined in the detection process: i)
True Positive, TP , represented the number of detected peaks/transitions in the right
place (where there was a real transition), ii) False positive, FP , exhibited the number
of detected peaks in the wrong place (where there was no transition), iii) False negative,
FN , reflected the number of undetected peaks in the right position and iv) True Negative,
TN , represented the number of undetected peaks in the wrong position. Finally, both
the Sensitivity = TP

TP+FN
and Specificity = TN

TN+FP
were calculated.

Based on Fig. 5.7 we carried out our quantitative evaluation of detection provided
the exact position of each transition (see Fig. 2.2). Table 5.3 reports the performance
of detection (PD), i.e. the percentages of both sensitivity and specificity of detecting
dynamic transitions.

The values depicted in Table 5.3 were calculated for b ∈ [3.64, 4], and the total number
of transitions was 11. According to Table 5.3, both m-time pattern and embedded
recurrence plots with specific settings possess both the ultimate sensitivity and specificity,
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Figure 5.7 – Qualitative detection of dynamic transitions of the logistic map through thresholding the determinism versus
the dynamic parameter, originating from both the standard and signal-based recurrence plots. (a) DET computed from
the unembedded recurrence plot (RP1), (b) the embedded recurrence plot (RP2), (c) the embedded recurrence plot with
specific settings (RP3), (d) the derivative-based recurrence plot (RP4) and (e) the 2-time recurrence plot (RP5).

i.e. 91% and 100%, respectively. In particular, the relative percentage of differences
between the sensitivities of detection was computed.
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5.5. APPLICATION TO FETAL HEART RATES

For instance, an increase of 25% ((91− 73)/73 ' 25%) in sensitivity of detection was
obtained by the m-time pattern and embedded recurrence plot with specific settings over
the embedded recurrence plot (RP2). Also, an increase of 52% ((91 − 60)/60 ' 52%)
in sensitivity of detection was obtained by the m-time pattern and embedded recurrence
plot with specific settings over the unembedded recurrence plot (RP1).

From Table 5.3, it was clear that the levels of performance, in terms of sensitivity and
specificity, were arranged as follows: RP5 = RP3 > RP4 > RP2 > RP1. This evidenced
that we could eliminate sojourn points without the requirements of embedding in high
dimension.

Table 5.3 – Performance of Detection (PD) of the logistic map dynamic transitions by means of the sensitivity and specificity
measures.

XXXXXXXXXTechnique
PD Sensitivity Specificity

RP1 60% 100%

RP2 73% 100%

RP3 91% 100%

RP4 80% 100%

RP5 91% 100%

5.5 Application To Fetal Heart Rates

Of all the FHR database available, the URPs were applied on 25 H-FHRs and 25 D-FHRs
to amend the diagnosis of IUGR.

5.5.1 Results of Diagnosing Fetal Heart Rate Distress

This subsection provides both the qualitative and the quantitative results of the evaluation
of the diagnosis of IUGR.
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Figure 5.8 – The Standard Recurrence Plots of FHRs. (a) The unembedded recurrence plot RP1 of the H-FHR. (b) The
unembedded recurrence plot RP1 of the D-FHR. (c) The 2− d embedded recurrence plot RP2 of the H-FHR. (d) The 2− d
embedded recurrence plot RP2 of the D-FHR.

5.5.1.1 Qualitative evaluation of diagnosis

Figs. 5.8 (a) and (c) represent RP1 and RP2 of a H-FHR, respectively, and Figs. 5.8 (b)
and (d) shows RP1 and RP2 of a D-FHR, respectively. Patterns present in Figs. 5.8 (a)
and (c) differ from the patterns present in Figs. 5.8 (b) and (d).

Fig. 5.9 shows the three simulated URPs. Fig. 5.9 (a) represents 3-d embedded
recurrence plot with specific settings RP3 of H-FHR, (b) the 3− d embedded recurrence
plot with specific settings RP3 of D-FHR, (c) the derivative-based recurrence plot RP4 of
the H-FHR, (d) the derivative-based recurrence plot RP4 of the D-FHR, (e) The m-time
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Figure 5.9 – The Unbiased Recurrence Plots of FHRs. (a) The 3−d embedded recurrence plot with specific settings RP3 of
H-FHR. (b) The 3− d embedded recurrence plot with specific settings RP3 of D-FHR. (c) The derivative-based recurrence
plot RP4 of the H-FHR. (d) The derivative-based recurrence plot RP4 of the D-FHR. (e) The m-time pattern recurrence
plot RP5 of the H-FHR. (f) The m-time pattern recurrence plot RP5 of the D-FHR.
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pattern recurrence plot RP5 of the H-FHR and (f) the m-time pattern recurrence plot
RP5 of the D-FHR. Note that the mean diagonal length is higher in case of the distressed
fetus, and LOI is more dense in case of the distressed fetus. This meant that the cardiac
activity of the distressed fetus is more predictable than that of the healthy one. A greater
predictability is possible when a loss in complexity of the heart system appears. The
previous fact could be triggered by the fragile interaction between brain and heart of the
fetus caused by hypoxia.

5.5.1.2 Quantitative evaluation of diagnosis

To evaluate the performance of diagnosis or discrimination of the fetus medical state while
taking the full advantage of the nonlinearity of FHR time series, both the Relative Error
(RE) and the Standard Deviation (SD) were calculated as in [Hazewinkel, 2001]. RE is
given as:

%RE(RQAi) =

(
RQA

(H−FHR)
i −RQA(D−FHR)

i

RQA
(H−FHR)
i

)
× 100, (5.8)

where i = {1, .., 10} and RQA’s are DET, CDET, PRSPs, RR and En.

SD which measures the amount of RQAi dispersion from its average value is given as
follows:

SD(RQAi) =


√

1
M

∑M
i=1

(
RQA

(H−FHR)
i −RQA(D−FHR)

i

)2
,

±δSD(RQAi)

(5.9)

where M is the total number of FHRs used.

Fig. 5.10 sets out the five recurrence quantification parameters computed from the
recurrence plots described in sections 5.3 and 5.4. Fig. 5.10 (a) shows the average of
DET(%) as a function of the unembedded RP, embedded RP in 3 − d, embedded RP
with specific settings, derivative-based RP and 2-time pattern RP, RP1, RP2, RP3, RP4

and RP5, respectively. Fig. 5.10 (b) represents the average CDET(%) relative to the
five techniques. Fig. 5.10 (c) shows the average PRSP(%) as a function of the five RPs.
Fig. 5.10 (d) represents the average RR(%) as a function of the five RPs. Finally, Fig. 5.10
(e) shows the average En(%) as a function of the standard and unbiased RPs. The
gray color is associated with H-FHRs and the orange color is associated with D-FHRs,
and REs in percentage were reported between the two different bar graphs of each RP
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5.5. APPLICATION TO FETAL HEART RATES

detection. Blue and red SDs were imposed on top of the bar graphs of H-FHRs and
D-FHRs, respectively.

Entropy bar plots in Fig. 5.10 (e) shows that H-FHRs are more irregular (∼65%)
compared to D-FHRs (∼55%). This finding was in accordance with the fact that some
diseases turn the FHR to be more regular than in its normal behavior.

Table 5.4 reports SDs of the five RQA issued for diagnosing fetal distress. All the
recurrence quantifications were computed from the unembedded RP, embedded RP in
3−d, embedded RP with specific settings, derivative-based RP and 2-time pattern RP. The
five RQA were manipulated for both H-FHRs and D-FHRs, and the minimum recurrence
parameter values were associated a blue color.

Table 5.4 – The Relative Errors (REs) of the five RQA issued for diagnosing fetal distress and computed from the
unembedded RP, embedded RP, embedded RP with specific settings, derivative based RP and 2-time pattern RP.

`````````̀SD(RQA)
FHR RP1 RP2 RP3 RP4 RP5

H-
FHR

D-
FHR

H-
FHR

D-
FHR

H-
FHR

D-
FHR

H-
FHR

D-
FHR

H-
FHR

D-
FHR

SD(DET ) ± 0.12

± 0

± 0.12

± 0

± 0.12

± 0 ±0.03 ± 0 ±
0.09

± 0.21

SD(CDET ) ± 0.18 ± 0.15 ± 0.20 ± 0.16 ± 0.18 ± 0.15

±
0.02

±
0.02

±
0.02

± 0.15

SD(PRSP ) ±
17.93

±
14.69

±
19.60

±
15.65

±
17.94

±
14.69 ±

2.37
±
1.59

±
14.45

±
14.62

SD(En) ±
10.48

±
12.08

±
10.65

±
11.99

±
10.47

±
12.08

±
16.28

±
15.26 ± 0

±
12.03

SD(RR)

±
0.02

±
0.03

± 0 ±
0.03

±
0.02

±
0.03

±
0.01

±
0.01

± 0 ±
0.03

Table 5.5 reports the Effectiveness of Discrimination (ED) of FHRs by both the sen-
sitivity and specificity measures in percentages of the Recurrence Quantification Analysis
(RQA) in addition to the accuracy and precision. Table 5.5 reveals that the ultimate
sensitivity and specificity belongs to CDET descriptor as it was proposed in our previous
paper [Zaylaa et al., 2013]. Moreover, both the precision and accuracy were computed
in this paper, and the best precision and accuracy corresponded to CDET descriptor
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Figure 5.10 – The Recurrence Quantification Analysis (RQA) relative to the standard and unbiased Recurrence Plots of a
healthy and distressed FHRs shown in gray and orange colors, respectively. (a) The mean DET(%) as a function of the
unembedded RP, embedded RP in 3− d, embedded RP with specific settings, derivative-based RP and 2-time pattern RP,
RP1, RP2, RP3, RP4 and RP5, receptively. (b) The mean CDET(%) relative of the five RP techniques. (c) The average
Percentage Reduced Sojourn Points (PRSP(%)) as a function of the five Recurrence Plots (RPs). (d) The average mean
RR(%) as a function of the five RPs. (e) The mean En(%) as a function of the five RPs.
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Table 5.5 – The Effectiveness of Discrimination (ED) of Fetal Heart Rates (FHRs) by the sensitivity,specificity, precision
and accuracy measures in percentages of the Recurrence Quantification Analysis (RQA).

PPPPPPPRQA
ED Sensitivity Specificity Precision Accuracy

DET 80% 20% 50% 50%

CDET∗ 80% 100% 100% 90%

PRSP 20% 80% 50% 50%

RR∗ 80% 100% 100% 90%

En∗ 80% 100% 100% 90%

followed by RR and En. The latter parameters are associated an asterisk in Table 5.5 to
highlight their importance.

Recall that the previous statistical measures were computed after choosing empirically
a threshold and imposing it on each bar-graph in Fig. 5.10. The criteria of classification
is as follows: there is a total of 10 bars, (i) True Positives (TP) are healthy bar-peaks cor-
rectly detected, (ii) False positive (FP) are distressed bar-peaks incorrectly detected, (iii)
False negative (FN) are healthy bar-peaks incorrectly undetected and (iv) True Negatives
(TN) are distressed bar-peaks correctly undetected. The different statistical parameters
used are defined as follows: Sensitivity = TP

TP+FN
, Specificity = TN

TN+FP
, P recision =

TP
TP+FP

and Accuracy = TP+TN
TP+FN+FP+TN

.

Of all the five RQA parameters, the sensitivity of healthy-distressed and distressed-
healthy FHR detections is arranged as follows: Sensitivity(CDET ) = Sensitivity(DET ) =

Sensitivity(RR) = Sensitivity(En) > Sensitivity(PRSP ). The specificity of discrim-
ination is as follows: Specificity(CDET ) = Specificity(En) = Specificity(RR) >

Specificity(PRSP ) > Specificity(DET ). REs(RQA) set out in Fig. 5.10 are arranged
in the following order: RE(CDET ) > RE(En) > RE(DET ) > RE(PRSP ) > RE(RR).

5.5.2 Discussion

The novel CDET descriptor that we have proposed through this dissertation has yielded
the maximum RE between the two FHR classes, a minimum SD and possessed a high
sensitivity and specificity values with 100% precision and 90% accuracy of diagnosis
and discrimination. Although most of SD(RR) and SD(DET) parameters values were
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comparable to those obtained by CDET, and both the sensitivity and the specificity of
discrimination of RR were the same as that of CDET, the specificity of DET was 80%
less than that of CDET.

RE values that both RR and DET have yielded were two to three times less than that
obtained by CDET, still they served as moderate generic markers of fetal state transitions.
Therefore, RR parameter was much more adapted for discrimination than DET but both
were less effective than CDET. Moreover, RE(En) shows that En was much more adapted
for discrimination than RR but still less efficient than CDET. SD(PRSP) was the highest
and SD(DET) the lowest, consequently DET data are less dispersed. While comparing
PRSP to DET, we noticed that the sensitivity was 60% higher in DET than in PRSP,
however the specificity was 60% lower for PRSPs than for DET, while the accuracy and
the precision were still 50%.

Of all RQA, CDET followed by En then RR were the most sensitive parameters to the
discernment of Intrauterine Growth Restriction (IUGR). Moreover, of all the RQA used,
CDET served as the ultimate generic marker for fetal state transition.

Furthermore, RR of FHRs was in general small (Fig. 5.10 (d)). Although RR values
were in general small, a higher RR characterized H-FHRs compared to RR of D-FHRs.
Moreover, H-FHRs were more irregular than D-FHRs (Fig. 5.10 (e)). The previous result
still emphasizes on the fact that healthy biomedical signals such as H-FHRs are chaotic
or pseudo-random in nature [Hurezeanu et al., 2013].

Discrimination of FHRs was not possible when the classical obstetrical parameters were
used, like accelerationsb which were surprisingly more visible in case of distressed fetuses
than healthy fetuses [Voicu and Girault, 2012a]. DET remained greater for healthy fe-
tuses compared to distressed fetuses. The previous behavior of H-FHRs was in accordance
with the results reported in [Ferrario et al., 2006].

The derivative-based RP is the least RP contaminated with SPs, or the cleanest RP,
followed by m-time pattern RP and RP with specific settings, then embedded RP and
finally RP1 (see Figs. 5.10 (b) and (c)). The previous result was in accordance with
the alternative works that experienced the presence of sojourn points and the bias of
RP1 [Iwanski and Bradley, 1998, Zaylaa et al., 2013].

One of the limitations of RP5 application to FHRs is the choice of m = 2 and the

bFHR acceleration is an increase of the heart beats by at least 15 bmp during at least 15 seconds.
This is the classical parameter with the smallest false positive rate in detecting hypoxia.
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computation of RQA from the 2-time pattern recurrence plot. As it was inferred that
CDET increased when d was increased, we believe that the performance of discrimination
of RP5 and its corresponding RQA’s for (m > 2) could surpass the alternative unbiased
RPs.

Moreover, by means of RP4 it was possible to detect more dynamic transitions taking
place for healthy fetal hearts compared to distressed fetal hearts. Although the difference
was not huge, yet it still shows the advantage of the unbiased RP4 not only based on
the discrimination related to differences in the RQA parameters between H-FHRs and
D-FHRs, but also based on the intrinsic behavior and dynamic transitions of each fetal
heart group.

The intrinsic transition detection findings were in accordance with the physiological
information, DET remained greater for healthy fetuses compared to distressed fetuses.
This is due to the complexity degradation of the heart rate in distressed fetuses compared
to healthy fetuses. An overwhelming predictability of D-FHRs is foreseen when the
complexity of the fetal heart is degraded. This complexity degradation can be due to
a lower interaction between the brain and the heart of the fetus as a consequence of
hypoxia, drop off in the concentration of oxygen in the fetal bloodstream.

The recurrence rate of FHRs was in general small and was in accordance with the
findings of Hurezeanu et al. [Hurezeanu et al., 2013]. Although RR values were in gen-
eral small, a higher RR descriptor characterized H-FHRs compared to RR of D-FHRs.
Moreover, H-FHRs were more irregular than D-FHRs, this emphasizes the fact that
healthy biomedical signals such as H-FHRs are more complex and random in nature.

One of the limitations of m-time pattern RP application to FHRs is the choice ofm = 2

and the computation of RQA from the 2-time pattern recurrence plot. As our novel CDET
marker increases when d increases, we believe that the performance of discrimination of m-
time pattern RP and accordingly RQA for (m > 2) could surpass the alternative unbiased
RPs.

5.6 Conclusion

By means of the unbiased derivative-based RP it is possible to detect more dynamic
transitions such as healthy-distressed and distressed-healthy fetal transitions. Although
the difference between URPs is not huge, it still shows the advantage of unbiased RP4 not
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only based on the discrimination offered by RQA between H-FHRs and D-FHRs, but also
based on the intrinsic behavior and dynamic transitions of each fetal heart group. Both
En and DET parameters served as moderate markers of fetal distress. While, the novel
CDET parameter proposed in this dissertation, served as the ultimate generic marker for
fetal heart rate distress.

The behaviors of similar fetal heart rates were demonstrated in this dissertation by
the transitions they undergo, and could pave the way for the detection of certain diseases
that encounter the fetus. This research should be extended to link certain diseases to
the detected complexities and distress. The diagnosis of fetal distress by the state-of-the-
art RPs was improved, which could open the door for advanced machines and advanced
detection of distress to decide for immediate and preterm deliveries.
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Chapter 6

CONCLUSION AND PERSPECTIVES

6.1 Comparison of Complexity Analysis Techniques

Among the scale-based entropy parameters, there are entropy based on the probability
principle and entropy based on permutation. The latter type of entropy is based on the
metric distance and measures the likeliness of occurrence of patterns at different time.
The former type of entropy measures the likeliness of similarly arranged patterns.

As the probability-based entropy parameters depended onm and r setting parameters,
r was set at a value inferred empirically, and the pattern m was optimized by tracking
the maximum entropy over a predefined range of m. Then the effect of increasing the
order of entropy was studied by n-order entropy. The previous two entropy parameters
have upgraded the discrimination of fetuses with IUGR from healthy fetuses.

The previous analysis was built on the probability of the correlation sum C(r) which
in turn depends on the distance Γ, and is computed directly from the time series.

The second type of analysis was a geometrical quantification based on computing
the multi-fractal dimension and others. The computation of multi-fractal dimension
depends on the correlation dimension D2 (the slope of the correlation sum curve versus
the tolerance r), the information dimension D1 and the box counting dimension D0. Such
that when D0 > D1 > D2 is valid, the system is said to be multi-fractal, consequently
the multi-fractal dimension is computed [Akay, 2000]. Our contribution to the previous
method aided in the progression of FHR classification. This was justified by the amended
relative error outcomes between healthy and distressed FHRs.

However, the third type of analysis realized by URPs provides a visual discrimination,
and the quantification parameters are linked to the visual discrimination. It is not based
on the probability of C(r) but rather on statistics and the count of recurrences assigned a
value of zero in the RP matrix. This analysis tool have provided overwhelming results of
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detection of IUGR among the tested FHRs. This was reflected by the enhanced sensitivity,
specificity, precision and accuracy outcomes. However, a pure alternative tool to quantify
the complexity and discrimination could be entropy discussed in chapter 3, which is
directly computed from the time series.

The main results of the application of the three different complexity analysis tools
and the novel methods that we have proposed to both simulated and real data were
summarized in Fig. 6.1.

Phase+Space+KS+Entropy+

Metric+KS+
Entropy+

Mul$%Scale+
Entropy+

RP+

RQA+

for+D0>D1>D2#

Dq#∆h(q)# !+∆D(q)#

TS+

Coarse+
Graining+

TS+

TS+

Discrimina3on#of#Time#Series#

Our#Unbiased#DET#detected#
Logis3c#map#transi3ons#more#
than#already#exi3ng#DETs##

m*#and#E(1,#m*)#were#
sensi3ve#to#intrinsic#

proper3es#of#the#system#

N?order#Entropy#was#
advantageous#over#1?order#

entropy#(FuzzySimEn)#

Fuzzy#algorithms#have#
overpassed#non?Fuzzy#ones#

FHR#Discrimina3on#and#
IUGR#detec3on#with#90.1#%#
sensi3vity#and#specificity#

The#reduc3on#of#sojourn#
points#in#RPs#was#
demonstrated#

FHR#Discrimina3on#and#IUGR#
detec3on#with#80#%#
sensi3vity#and#100%#

specificity#

CDET#invariant#we#developed#
has#ul3mately#detected#IUGR###

The#mul3?fractal#
discrimina3on#
#∆D(q)>#!#>#∆h(q)#>#Dq#

fBm#are#good#models#of#
FHRs#

Figure 6.1 – Schematic illustration of the primary results and major findings provided by our dissertation.

The proposed processing tools of FHRs aided to detect severe IUGR which could be
caused by but not limited to, respiratory, cardiovascular and digestive problems. These
tools might help obstetricians opt to immediate delivery through a caesarean section. It
might also provide the fundamental reason leading to fetal distress. Still, FHR processing
and analysis are not trivial due to both the wide range of possible pathologies that could
be encountered during the gestational period and the chaotic nature of the signals.
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6.2 Conclusions

The three developed complexity analysis techniques resulting from the entropy quantifi-
cation, multi-fractal analysis and recurrence plots and their quantification analysis were
proven to be sensitive to the changes in the chaotic, random and/or biomedical time series
compared to alternative analysis techniques.

We used several complexity descriptors for either detecting medical state transitions
or discriminating between different fetuses and consequently predicting future states.

Geometric quantifications such as Hurst exponent, singularity and holder spectra
were employed as fractal descriptors. They were obtained by contributing to multi-
fractal analysis, i.e. coarse graining the time series and defining a specific structure
function. These two steps amended the discrimination of fBm, as well as Fetal heart rates,
accordingly the enhanced performance achieved by the mean of the singularity spectrum
descriptor and the mean hurst exponent was reflected by the high relative errors between
healthy and distressed cases as compared to alternative multi-fractal parameters.

Entropy descriptors derived from the information theory were involved as well. These
included, but not limited to ApEn, SampEn, SimEn and FuzzyEn. Inspired from these
latter complexity descriptors, alternative entropies descriptor were introduced in this
dissertation. The first novel descriptor was the N-order En which is equivalent to N-order
FuzzySimEn. It is based on permitting the selection of any pattern composed of 1-point,
2-points, or n-points for fuzzy similarity entropy computation. This new paradigm has an
overwhelming potential and could be applied to other applications seeking the extraction
of complexity invariant. The problem of setting entropy descriptors was solved by varying
the pattern size leading an optimal pattern size that maximizes the n-order FuzzySimEn.
FHR discrimination was improved by the new developed paradigm that encompasses the
standard SimEn.

Another geometrical analysis tool was involved in the analysis of chaotic time series
named recurrence plot. Three contributions to the already existing RPs has been done.
Accordingly, three Unbiased RPs were developed to avoid the presence of sojourn points
contaminating standard RPs. Such clean and URPs serve as geometrical analysis tech-
niques from which significant recurrence quantification descriptors can be extracted. The
determinism descriptor was involved due to its feasibility in detecting dynamic changes
and state transitions. Two novel recurrence descriptors were extracted from RPs and
introduced as a result of the development of clean RPs.
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These descriptors were Cross-Determinism and the Percentage of Reduced Sojourn
Points, they aided in the process of time series analysis based on URPs. The three
recurrence descriptors were invariants for the fetal heart and were mainly used to detect
healthy-distressed and distressed-healthy FHRs.

So far regarding Fetal Heart Rates, it was confirmed throughout this dissertation that
the detection of Intrauterine Growth Restriction and indirectly the presence of hypoxia
reduces the variability of Fetal Heart Rate time series and changes the values of the
complexity parameters. Mainly, our novel CDET parameter is the strongest indicator of
fetal distress and is powerful for discrimination purposes.

Furthermore, three multi-fractal descriptors (singularity spectrum, hust exponent then
holder spectrum parameter) along with two entropy descriptors (n-order entropy and
maximum entropy), and corss-determinism CDET parameter were mainly dedicated to
discrimination purposes. They were employed to discern fetal IUGR due to hypoxia,
improve the diagnosis and give hand in the therapeutic uptaking.

6.3 Limitations

• The N-order entropy paradigm was built by fixing the tolerance value and optimizing
merely the number of pattern points.

• The performance of discrimination of Multi-fractal method extracted from the method
proposed was compared with respect to the multi-fractal parameters extracted.
However, the general technique was not compared to alternatives.

• Only a value of m = 2 for m-time Unbiased Recurrence Plots was simulated.

• The three complexity analysis approaches were paramountly applied to Fetal heart
rate solely. Moreover, Intrauterine Growth Restriction caused by hypoxia was
considered, while other physiological causes could be studied.

6.4 Outlook

The new ideas involved in the three major nonlinear analysis techniques provided an
advanced knowledge of the underlying physical properties of the biomedical system under
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study. It pave the way for and an early detection of distress, as well as, it gives information
whether the system is predictable or not.

In regards to the recurrence analysis, as the recurrence matrix is a special case
of isometric transformations, other types of transformations could be involved in the
future as statistical signal processing tools to detect specific diseases reflecting certain
features. Moreover, all the developed algorithms and post-processing codes will build
programmable portable medical devices providing enhanced discrimination of medical
states after detecting the signals, particularly FHRs and will pave the way for a degraded
risk of fetal death.

Furthermore, the following points should be considered:

• Optimization of the tolerance value in the N-order entropy paradigm and apply it
to biomedical signals;

• The search for the optimal set of parameters (r∗,m∗) to optimize the maximum
entropy;

• Investigation and comparison the performance of discrimination of Multi-fractal
method proposed were compared to alternatives;

• The evaluation of multi-fractal descriptors online in the near future, as our proposed
methodology in multi-fractal analysis was based on offline investigation;

• Test the performance of m-time Recurrence Plot for m greater than 2;

• Other biomedical signals and diagnostic purposes will be considered.
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Appendix A

Pseudocodes of Existing Entropy
Parameters

ApEn:

Initialize The System’s Output x(n)
Divide um(i)← x(n)

Fix r ← tolerance (0.15, 0.2)×S.D.(x(n)) according to the theoretical
inference
Set m ← length of the pattern, default is 2
Compute Pm

i (r) (the number of vectors) ← Γ [um(i), um(j)] ≤ r

Generate Cm
i (r) (the probability of vectors) ← P n

i /(M −m+ 1)

Evaluate φ(m)(r)← − 1

M − (m− 1)

M−(m−1)∑
i=1

logCm
i (r)

Increase the pattern size m by 1

Calculate φ(m+1)(r)← − 1

M −m
M−m∑
i=1

logCm+1
i (r)

Evaluate ApEn(m,r) ←
[
φ(m+1)(r)− φ(m)(r)

]
Output The Approximate Entropy.

SampEn:
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APPENDIX A. PSEUDOCODES OF EXISTING ENTROPY PARAMETERS

Initialize The Biomedical System’s Output x(n)
Divide um(i)← x(n)

Fix r ← tolerance (0.15, 0.2)×S.D.(x(n)) according to the theoretical
inference
Set m ← length of the pattern, default is 2
Compute Pm

i (r) (the number of vectors) ← Γ [um(i), um(j)] ≤ r

Generate Cm
i (r) (the probability of vectors) ← P n

i /(M −m+ 1)

Calculate φ(m)(r)← −log
(

1

M −m
M−m∑
i=1

Cm
r (i)

)
φ(m+1)(r)← −log

(
1

M −m
M−m∑
i=1

Cm+1
r (i)

)
Evaluate SampEn(m,r) ←

[
φ(m+1)(r)− φ(m)(r)

]
It is equivalent to counting the number of vectors of length (m) and

(m+1) that exist within the tolerance r excluding self-matches.
Output The Sample Entropy.

SimEn: SimEn pseudocode is given as follows:

Initialize The Biomedical System’s Output x(n)
Declare Xi ← [x(i), x(i+ 1), . . . , x(i+m− 1)]

Compute mean X i of the vector Xi

Evaluate Xc ← [xj(i)−X i, xj(i+ 1)−X i, . . . , xj(i+m− 1)−X i]

Xc ← [x(i), x(i+ 1), . . . , x(i+m− 1)]

Find For each Xc(i) the vectors Xc(k) which have the same derivative
sign as that of Xc(i)

Compute the number Pi of similar vectors (Γ(Xc(i), Xk(i)) ≤ r)
Exclude the self-similarity (i 6=j) in the calculation of P

(
r, Γmi,j

)
For i ← 1, . . . ,M −m+ 1

Compute the probability vector Cm
r (i)← 1

M −m+ 1
Pm
i

Evaluate φ(m)(r)← −log
(

1

M −m
M−m∑
i=1

Cm
r (i)

)
φ(m+1)(r)← −log

(
1

M −m
M−m∑
i=1

Cm+1
r (i)

)
Evaluate SimEn(m,r,M) ← φm+1(r)− φm(r)
Output The Similarity Entropy.

FuzzyEn:
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Initialize The Biomedical System’s Output x(n)
Declare Xm

i ← [x(i), x(i+ 1), . . . , x(i+m− 1)]− υX̄
(m)
i

X̄
(m)
i =

1

m

m−1∑
l=0

x(i+ 1) and

υ =

{
0 if the baseline exists

1 if the baseline is eliminated

Declare these m-patterns X
(m)
i ← directly formed from the original m-

consecutive values extracted from the time series. This step is dedicated to
remove the base line of each m-pattern in the time series
Test whether a vector X(m)

i is similar to X(m)
j within a tolerance r

Evaluate the correlation summation C(m)
i (r) by:

Cm
r (i)← P

(
r, Γmi,j

)
/(N −m+ 1)

Compute Γmi,j ← the distance between the two m-patterns X(m)
i

and X(m)
j defined as follows:

Γmi,j ← Γ
(
X

(m)
i , X

(m)
j

)
= max

k∈(0,m−1)
|x(i+ k)− x(j + k)|

Declare P the number of similar patterns:

P
(
r, Γmi,j

)
← e

−

Γmi,j
r

p

Evaluate φm(r)← −log
(

1

M −m
M−m∑
i=1

Cm
r (i)

)
Increase the pattern size m by 1

Calculate φm+1(r)← −log
(

1

M −m
M−m∑
i=1

lnCm+1
r (i)

)
Evaluate FuzzyEn(m,r,M) ← φm+1(r)− φm(r)
Output The Fuzzy Entropy.
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APPENDIX A. PSEUDOCODES OF EXISTING ENTROPY PARAMETERS
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Appendix B

Pseudocodes of Developed Unbiased
RPs

Pseudocode of embedding recurrence plot with specific settings:

Initialize The Biomedical System’s Output, x(t) and sample
it
Fix τ ← number inspired from a theoretical inference
Set d ← A range for the embedding dimension
Repeat

For each value of d
Generate RP3 ← Eq. 5.1, for Xi+τ ←Xj

Evaluate J as in Eq. 5.7
While (J 6= 0)
do Optimize the cost function J

Select Jop ← Jmin
Output The optimal Embedding dimension (d← dop)
Fix d← dop
Set τ ← A range for the time delay
Repeat

For each value of τ
RP3 ← max(|Xi −Xj |), Eq. 5.1, for Xi+τ ←Xj ;
While (J 6= 0)
do Optimize the cost function J

Until The optimum time delay (τ ← τop) is gained
Set τ ← τop and d← dop
Generate RP3 ← Eq. 5.1, for Xi+τop ←Xj

Output The Embedding Recurrence Plot with Specific
Settings.
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APPENDIX B. PSEUDOCODES OF DEVELOPED UNBIASED RPS

Pseudocode of the derivative-based recurrence plot:

Initialize The Biomedical System’s Output x(t) and sample
it
Generate The derivative of the sampled time series

y(n) ← ẋ(n) ' x(n)− x(n− 1)

Set M ← total number of points in the time series
d′ ← number of operations
i← 1, . . . , N − d′ + 1

Declare Xi ← [x(i), x(i+ 1), . . . , x(i+ d
′ − 1)] and

Xj = Ẋi ← [ẋ(i), ẋ(i+ 1), . . . , ẋ(i+ d
′ − 1)]

Set Xj ← 0 for Xj ≤ 10−6

Repeat
For i=j ← 1, . . . ,M −m+ 1

RP ← Eq. 5.1, for Xi and Ẋi ←Xj

Until RP4 ← All matrix is filled
Output The Derivative-Based Recurrence Plot.

Pseudocode of the m-time pattern recurrence plot:

Initialize x(n)← Output of the Biomedical System and sample it
Set d← 1

M ← total number of points in the time series
m ← number of patterns
i← 1, . . . ,M −m+ 1

Declare Xi ← [x(i), x(i+ 1), . . . , x(i+m− 1)] and
Xj ← Xj

Generate RP ← Eq. 5.1
Declare For m←2

Xi ← [x(i, j), x(i, j), . . . , x(i, j)] and
Xj ← [x(i, j), x(i+1, j+1), . . . , x(i+m− 1, j+m− 1)]

For i← 1, . . . ,M −m+ 1 and j← 2, . . . ,M −m+ 2

Generate RP5 ← Eq. 5.1, for Xi and Xj

End
Output The M-Time Pattern Recurrence Plot.
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Appendix C

Ph.D. Activities

Awards

1. Ph.D. Scholarship for 3 Years (2011-2014). National Council For Scientific Research
in Lebanon (CNRS-L) and the Lebanese University.

2. Best Oral Presentation Award in Biomedical Engineering. Rector of the Lebanese
University. 3rd Doctoral Forum, Doctoral School of Sciences and Technology,
Lebanese University, July 4th and 5th 2013.

!
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APPENDIX C. PH.D. ACTIVITIES

Acquired Ph.D. Courses

1. Advanced Signal and Image Processing. Responsible: Dr. Jean-Marc Girault

2. Optical and Molecular Imaging. Responsible: Dr. Darine Abi-Haidar

3. Modeling and Simulation Using Matlab. Responsible: Miss Christelle Suppo

4. Two French Courses: Intermediate and Advanced Levels. Responsible: Miss Magali
Sabio

5. Initiation and Processing of a Scientific Text, LateX. Responsible: Mr. Hubert
Cardot

6. Electronic Thesis Online. Responsible: Mr. Gerard Bruere

7. Oral and Written Scientific Communication. Responsible: Mrs. Patricia Volland-
Nail

8. The Public Research, Which job ? How is it prepared ? Responsible: Mrs. Anne
Cheignon Sred

9. Promoting Research. Responsible: Mrs. Anne Cheignon Sred

10. Knowledge of the Enterprise, Market and Expectations of Recruiters. Responsible:
Miss Anne Cheignon Sred

11. Mastering Technical and Scientific Information. Responsible: Mrs. Patricia Volland-
Nail

12. Professional Risk Prevention. Responsible: Mr. Aline Dingremont
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List of Publications

Journal Publications

Published Articles

A. Zaylaa, J. Charara and J.-M. Girault, "Reducing Sojourn Points From Recurrence
Plots To Improve Transition Detection: Application To Fetal Heart Rate
Transitions". Computers In Biology and Medicine, Elsevier, 2014.
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Appendix E

Journal Papers
n-order and maximum fuzzy similarity entropy for dis-
crimination of signals of different complexity: applica-
tion to fetal heart rate signals

Amira Zaylaa1,2, Souad Oudjemia3, Jamal Charara2 and Jean-Marc Girault1

1University François Rabelais of Tours, UMR Brain-Imaging, INSERM U930, Tours,
France
2Department of Physics and Electronics, Faculty of Sciences, Lebanese University, Beirut,
Lebanon
3University of Mouloud Mammeri, Tizzi Ouzou, Algeria
Abstract-This paper presents two new concepts for discrimination of signals of different
complexity. The first focused initially on solving the problem of setting entropy descriptors
by varying the pattern size instead of the tolerance. This led to the search for the optimal
pattern size that maximized the similarity entropy. The second paradigm was based on the
n-order similarity entropy that encompasses the 1-order similarity entropy. To improve the
statistical stability, n-order fuzzy similarity entropy was proposed. Fractional Brownian
motion and Lorenz time series were simulated to validate the different methods proposed,
and fetal heart rate signals were used to discriminate normal from abnormal fetuses. In all
cases, it was found that it was possible to discriminate time series of different complexity
such as fractional Brownian motion, Lorenz time series and fetal heart rate signals. The
best performance in terms of sensitivity (90 %) and specificity (90 %) was obtained with
the n-order fuzzy similarity entropy. However, it was shown that the optimal pattern size
and the maximum similarity measurement were related to intrinsic features of the time
series.
keyword: Maximum similarity, n-order, Fetal heart rate, Entropy, Fuzzy, Complexity,
fetal distress.
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APPENDIX E. JOURNAL PAPERS

Reducing Sojourn Points From Recurrence Plots To
Improve Transition Detection: Application To Fetal
Heart Rate Transitions

Amira Zaylaa1,2, Jamal Charara2 and Jean-Marc Girault1

1Department of Medical Biophysics and Imaging, Signal-Imaging Group, Team-5, François-
Rabelais University of Tours, France
2Department of Physics and Electronics, Faculty of Sciences, Lebanese University, Beirut,
Lebanon

Abstract-The analysis of biomedical signals demonstrating complexity through recur-
rence plots is challenging. Quantification of recurrences is often biased by sojourn points
that hide dynamic transitions. To overcome this problem, time series have previously
been embedded at high dimensions. However, no one has quantified the elimination of
sojourn points and rate of detection, nor the enhancement of transition detection has been
investigated . This paper reports our on-going efforts to improve the detection of dynamic
transitions from logistic maps and fetal hearts by reducing sojourn points. Three signal-
based recurrence plots were developed, i.e. embedded with specific settings, derivative-
based and m-time pattern. Determinism, cross-determinism and percentage of reduced
sojourn points were computed to detect transitions. For logistic maps, an increase of 50%
and 34.3% in sensitivity of detection over alternatives was achieved by m-time pattern and
embedded recurrence plots with specific settings, respectively, and with a 100% specificity.
For fetal heart rates, embedded recurrence plots with specific settings provided the best
performance, followed by derivative-based recurrence plot, then unembedded recurrence
plot using the determinism parameter. The relative errors between healthy and distressed
fetuses were 153%, 95% and 91%, respectively. More than 50% of sojourn points were
eliminated, allowing better detection of heart transitions triggered by gaseous exchange
factors. This could be significant in improving the diagnosis of fetal state.

keyword:Recurrence Plots, Signal-Based Recurrence Plots, Sojourn Points, Dynamic
Transitions, Detection, Complexity Analysis, Fetal Heart Rate.
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Coarse-Grained Multifractality Analysis Based on
Structure Function Measurements to Discriminate
Healthy From Distressed Foetuses

Souad Oudjemia1,2, Amira Zaylaa1,3, Salah Haddab2 and Jean-Marc Girault1

1University François Rabelais of Tours, UMR Brain-Imaging, INSERM U930, Tours,
France
2University of Mouloud Mammeri, Tizzi Ouzou, Algeria
3Department of Physics and Electronics, Faculty of Sciences, Lebanese University, Beirut,
Lebanon

Abstract-This paper proposes a combined coarse-grained multifractal method to dis-
criminate between distressed and normal foetuses. The coarse-graining operation was
performed by means of a coarse-grained procedure and the multifractal operation was
based on a structure function. The proposed method was evaluated by one hundred
recordings including eighty normal foetuses and twenty distressed foetuses. We found
that it was possible to discriminate between distressed and normal foetuses using the
Hurst exponent, singularity and Holder spectra.

keyword: Foetal heart rate, coarse-graining, multifractal, distressed foetus, Doppler
ultrasound monitor.
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Amira ZAYLAA
Analysis and Extraction of Complexity Parameters of Biomedical Signals

Abstract : The analysis of biomedical time series derived from nonlinear dynamic systems is challenging due to the chaotic nature
of these time series. Only few classical parameters can be detected by clinicians to opt the state of patients and fetuses. Though there
exist valuable complexity invariants such as multi-fractal parameters, entropies and recurrence plots, they were unsatisfactory in certain
cases. To overcome this limitation, we propose in this dissertation new entropy invariants, we contributed to multi-fractal analysis and
we developed signal-based (unbiased) recurrence plots and unbiased recurrence descriptors based on the dynamic transitions of time series.

Principally, we aim to improve the discrimination between healthy and distressed biomedical systems, particularly fetuses by
processing the time series using our techniques. These techniques were either validated on Lorenz systems, logistic maps or fractional
Brownian motions which model chaotic and random time series. Then the techniques were applied to real fetus heart rate signals
recorded from patients in the third trimester of pregnancy. Statistical measures comprising the relative error, standard deviation,
sensitivity, specificity, precision and accuracy were employed to evaluate the performance of detection.

Elevated discernment outcomes were realized by the high-order entropy invariants developed. Multi-fractal analysis using a
structure function and coarse-graining enhanced the detection of the medical states of the fetuses. Unbiased cross-determinism invariant
developed amended the discrimination process. The significance of our techniques lies behind their post-processing codes which could
build up cutting-edge portable machines offering advanced discrimination and detection of Intrauterine Growth Restriction prior to
fetal death. This work was devoted to Fetal Heart Rates but time series generated by alternative nonlinear dynamic systems should be
further considered.

Keywords : Multi-fractal Analysis, Entropy Quantification, Maximum Entropy, N-Order Entropy, Recurrence Plots, Unbiased
Recurrence Plots, Recurrence Quantification Analysis, New Invariants, Discrimination, Detection, Diagnosis, Doppler Ultrasound Fetal
Heart Rates, fractional Brownian Motion, Lorenz System, Logistic Map, Correlation Sum, Complexity Analysis, Statistical Signal
Processing.

Résumé : L′analyse de séries temporelles biomédicales chaotiques tirées de systèmes dynamiques non-linéaires est toujours
un challenge difficile à reveler puisque dans certains cas bien spécifiques les techniques existantes basées sur les multi-fractales,
les entropies et les graphes de récurrence échouent. Pour contourner les limitations des invariants précédents, de nouveaux
descripteurs peuvent être proposés. Dans ce travail de recherche nos contributions ont porté à la fois sur l’amélioration d’indicateurs
multi-fractals (basés sur une fonction de structure) et entropiques (approchées) mais aussi sur des indicateurs de récurrences (non biaisés).

Ces différents indicateurs ont été développés avec pour objectif majeur d’améliorer la discrimination entre des signaux de
complexité différente ou d’améliorer la détection de transitions ou de changements de régime du système étudié. Ces changements
agissant directement sur l’irrégularité du signal, des mouvements browniens fractionnaires et des signaux tirés du système du Lorenz ont
été testés. Ces nouveaux descripteurs ont aussi été validés pour discriminer des fœtus en souffrance de fœtus sains durant le troisième
trimestre de grossesse. Des mesures statistiques telles que l’erreur relative, l’écart type, la spécificté, la sensibilité ou la précision on été
utilisées pour évaluer les performances de la détection ou de la classification.

Le fort potentiel de ces nouveaux invariants nous laisse penser qu’ils pourraient constituer une forte valeur ajoutée dans l’aide
au diagnostic s’ils étaient implémentés dans des logiciels de post-traitement ou dans des dispositifs biomédicaux. Enfin, bien que ces
différentes méthodes aient été validées exclusivement sur des signaux fœtaux, une future étude incluant des signaux tirés d’autres
systèmes dynamiques non-linéaires sera réalisée pour confirmer leurs bonnes performances.

Mots clés : Analyse Multi-Fractale, Quantification d’entropie, Entropie Maximale, Entropie d’Ordre-N, Le graphe de Récurrence,
Le graphe de Récurrence Nonbiaisés, Analyse de Quantification de Récurrence, Nouveaux Invariantes, Detection, Discrimination,
Diagnostiquer, Transition Dynamique, Suite Logistique, Système du Lorenz, Mouvements Brownienes Fractionnaires, Coefficient de
Corrélation, Analyse de Complexité, Traitement Statistique du Signal, Rythme Cardiac Fœtal Doppler Ultrasonore.


