
HAL Id: inserm-04859303
https://inserm.hal.science/inserm-04859303v1

Submitted on 30 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

The Wilms’ Tumor Suppressor WT1 in Cardiomyocytes:
Implications for Cardiac Homeostasis and Repair

Sandra Díaz del Moral, Nicole Wagner, Kay-Dietrich Wagner

To cite this version:
Sandra Díaz del Moral, Nicole Wagner, Kay-Dietrich Wagner. The Wilms’ Tumor Suppressor WT1
in Cardiomyocytes: Implications for Cardiac Homeostasis and Repair. Cells, 2024, 13 (24), pp.2078.
�10.3390/cells13242078�. �inserm-04859303�

https://inserm.hal.science/inserm-04859303v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Díaz del Moral, S.; Wagner,

N.; Wagner, K.-D. The Wilms’ Tumor

Suppressor WT1 in Cardiomyocytes:

Implications for Cardiac Homeostasis

and Repair. Cells 2024, 13, 2078.

https://doi.org/10.3390/

cells13242078

Academic Editor: Lei Ye

Received: 21 November 2024

Revised: 11 December 2024

Accepted: 15 December 2024

Published: 17 December 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

The Wilms’ Tumor Suppressor WT1 in Cardiomyocytes:
Implications for Cardiac Homeostasis and Repair
Sandra Díaz del Moral, Nicole Wagner and Kay-Dietrich Wagner *

Université Côte d’Azur, CNRS, INSERM, iBV, 06107 Nice, France;
sandra.diaz-del-moral@univ-cotedazur.fr (S.D.d.M.); nicole.wagner@univ-cotedazur.fr (N.W.)
* Correspondence: kwagner@unice.fr

Abstract: The Wilms’ tumor suppressor WT1 is essential for the development of the heart, among
other organs such as the kidneys and gonads. The Wt1 gene encodes a zinc finger transcription factor
that regulates proliferation, cellular differentiation processes, and apoptosis. WT1 is also involved in
cardiac homeostasis and repair. In adulthood, WT1-expression levels are lower compared to those
observed through development, and WT1 expression is restricted to a few cell types. However,
its systemic deletion in adult mice is lethal, demonstrating that its presence is also key for organ
maintenance. In response to injury, the epicardium re-activates the expression of WT1, but little
is known about the roles it plays in cardiomyocytes, which are the main cell type affected after
myocardial infarction. The fact that cardiomyocytes exhibit a low proliferation rate in the adult heart
in mammals highlights the need to explore new approaches for cardiac regeneration. The aim of this
review is to emphasize the functions carried out by WT1 in cardiomyocytes in cardiac homeostasis
and heart regeneration.

Keywords: Wilms’ tumor suppressor 1 (WT1); cardiomyocyte; epicardial cells; epicardium; heart;
homeostasis; regeneration

1. Introduction

The Wilms’ tumor suppressor WT1 was first identified as a tumor suppressor due to
its inactivating mutations in Wilms’ tumor (WT) or nephroblastoma, which is the most
common pediatric renal cancer, caused by both excessive cellular proliferation and defective
differentiation [1–5]. However, it is now known that only about 5% of nephroblastoma
incidence is caused by mutations in WT1; and most Wilms’ tumors exhibit high levels of
WT1, which is also the case for most solid cancers as well as leukemia. [6–11]. This, in
addition to the identification of WT1 as a predictor of acute myeloid leukemia relapse and
the fact that its overexpression is related to poor prognosis, has led to the consideration of
WT1 as an oncogene [12–15]. Nowadays, the WT1 protein has been identified as a tumor
antigen and is one of the top target molecules for immunotherapy in cancer [14,16–19].

There are up to 36 different WT1 isoforms based on combinations of alternative tran-
scription and translation start sites, RNA editing and splicing, and post-translational modi-
fications (PTMs) [20–23]. All isoforms encode a protein that contains four C2H2/Krüppel
type zinc fingers that can act as either a transcription factor or an RNA-binding pro-
tein [23,24]. Among the plethora of potential isoforms, there are two alternative splicing
events, in exon 5 and exon 9, that give rise to the most relevant WT1 isoforms [25]. Alterna-
tive splicing of exon 5 generates two isoforms that vary in the presence of 17 amino acids,
while the splicing of exon 9 gives rise to isoforms that differ in the insertion of three amino
acids, lysine, threonine, and serine (KTS) between zinc fingers 3 and 4 [25]. WT1 isoforms
containing the +KTS fragment are involved in RNA processing due to their higher affinity
for RNA than DNA. WT1-KTS isoforms bind specifically to DNA, participating in gene
transcription, activation, or repression of other genes, depending on the context (reviewed
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in [22]). The WT1 protein is present in the cell nucleus, but it can shuttle to the cytoplasm,
which demonstrates that WT1 functions at different levels of gene expression [26].

The role of WT1 in kidney development, homeostasis, and disease is well-known.
However, embryonic Wt1 deletion is lethal because of cardiac abnormalities, which puts
the focus of WT1 function in heart development. Since 1993, it has been demonstrated that
mouse embryos carrying the systemic Wt1 ablation exhibit heart hypoplasia with rounded
ventricular apex and thinning of the ventricular walls among other organ abnormalities
and die during mid-gestation [27]. Many years later, the epicardial-specific Wt1 deletion
was analyzed using a conditional knockout mouse model, and again, the embryos died
presumably due to cardiovascular failure, between embryonic days (E) E16.5 and E18.5 [28].
More recently, conditional Wt1 deletion in the troponin-T lineage (cardiomyocytes) has
been performed, and although it did not cause the death of the embryos, they exhibited
severe cardiac malformations that persisted in adult mice [29]. The differences in these
mouse models point to the fact that cardiac development and the role of WT1 therein is
complex and its function is not restricted to epicardium and epicardial-derived cell types.

In the heart, WT1 expression has been identified in fibroblasts, endothelial, epicardial,
and smooth muscle cells, along with the processes it regulates through development
and after injury (reviewed in [30]). Although WT1 expression has also been described
in cardiomyocytes [31], the functional significance of WT1 expression in this cell type
remained unclear until recently. In this review, we summarize the emerging knowledge
about cardiomyocyte-WT1 expression in the embryonic and adult heart and the functions
that are carried out in homeostasis as well as during regeneration, with the perspective to
develop new therapeutic strategies for cardiac repair.

2. The Roles of WT1 in Cardiomyocytes in Heart Development and Homeostasis

WT1 is first detected in the mouse at embryonic day 9.5 in the coelomic epithelium
and the proepicardium, which is a transitory group of cells that gives rise to the mesothelial
lining of the heart, the epicardium [32,33]. A group of WT1-positive proepicardial cells
form contacts with the primitive heart tube and proliferate and spread over the myocardial
surface to establish the epicardium [32–35]. Epicardial WT1-expression has been described
as being crucial in a subset of cells where it regulates the epithelial-to-mesenchymal tran-
sition (EMT), thereby generating epicardial-derived cells (EPDCs) [27,33,34,36,37]. These
multipotent mesenchymal progenitor cells later differentiate into fibroblasts, smooth mus-
cle cells, endocardial cells, and cardiomyocytes [34,38,39]. For years, EPDCs were thought
to be the only source of the cardiomyocyte lineage [34,40,41], but more recently, a common
progenitor pool of the epicardium and the myocardium has been described, providing an
additional and independent origin of cardiomyocyte formation [42].

The abnormal epicardium formation, caused by the absence of WT1, in addition to the
lethality observed in the epicardial-Wt1 knockout mouse embryos, led to its consideration
as a general epicardial marker [28,33]. Moreover, throughout heart formation, the high-
est levels of WT1 have been observed in epicardial cells at E12.5 during the EMT, where
WT1 regulates the Wnt/β-catenin pathway, and also affects Snai1 and E-cadherin expres-
sion [28,36]. In addition, WT1 has been suggested to regulate the retinoic acid system by
directly activating RALDH2 in epicardial cells [43], but it was later shown that the retinoic
acid system is also activated in cardiomyocytes during development and in response to
injury [44]. At later stages of cardiac embryogenesis, WT1 expression decreases, a tendency
that is also maintained postnatally [31,33].

In the developing mouse heart, WT1 expression is not only restricted to epicardial
cells, as it has also been described in endothelial cells, where it is required for the formation
of coronary vessels [45–47] through activation of the TrkB neurotrophin receptor [45]. WT1
can be detected in developing blood vessels in both the subepicardial area and in the
myocardium (Figure 1) [31,45,47–49]. Endothelial-specific inducible Wt1-knockout mice
have been generated [15], and it has been shown that the developmental deletion of Wt1 in
endothelial cells not only disrupts coronary vessel formation, but also affects myocardial
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compaction [50]. A very similar observation has been published recently using a different
endothelial-specific Cre line [51].
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Figure 1. Illustration of WT1 expression in different cardiac cell types in the embryonic, adult, and
injured heart. Through cardiac development (left), high levels of WT1 are detected in the epicardium,
endothelial cells, fibroblasts, and cardiomyocytes. In the adult heart (central), its expression is
reduced and limited to a subset of epicardial cells, cardiomyocytes, and endothelial cells. After
ischemia (right), high re-expression of WT1 is observed in the cardiomyocytes, endothelial, epicardial,
and smooth muscle cells, mainly located in the border zone of infarction. Cells that express WT1
are colored in green. The infarcted area is represented by the red and black halo. MI: myocardial
infarction. Created with BioRender.com.

WT1 expression and function in cardiomyocytes remained a controversial issue for
a long time, regardless of its detection in some cells years ago [34,52]. A more detailed
characterization of cardiomyocyte-specific WT1 expression and function through cardiac
development, neonatal stages, and adulthood is summarized in detail in this review. The
more recent data are mainly supported by different conditional Wt1 deletion models in
mice and zebrafish models that have been reported for the different developmental time
points and adult hearts [29,31,53,54].

Immunohistochemical analyses of embryonic, postnatal, and adult cardiac tissues led
to the identification of Wt1 positive cardiomyocytes from developmental day E10.5 until
adulthood. As presented in Figure 1, we demonstrate that WT1 is highly expressed in
cardiomyocytes during development, and although its expression diminishes postnatally,
its expression persists in some cardiomyocytes throughout adulthood [31]. Activation of
the Wt1 locus in embryonic cardiomyocytes has also been investigated using Wt1GFP/+

knock-in mice [55]. For this purpose, heterozygous Wt1GFP/+ knock-in embryos were
analyzed at different developmental stages by flow cytometry [29]. Between E10.5 and
E11.5, the highest percentage of cardiomyocytes showed activation of the Wt1 locus, as
indicated by GFP expression. The percentage was already lower at E14.5 and declined
further by E17.5. The immunohistochemistry evaluation of tissue sections from E9.5 and
E11.5 embryos confirmed WT1 expression in a fraction of cardiomyocytes. The WT1 signal
co-localized to some extended with cardiac troponin T, which was used for cardiomyocyte
characterization. Some of these cardiomyocytes were in the wall of the right sinus venosus.
In addition, using the lineage tracing model Wt1Cre/+;R26REYFP [39,56], the frequency of
cardiomyocytes that had the Wt1 locus activated during cardiac development was also
measured. The results confirmed that at stage E12.5, almost one fifth of cardiomyocytes had
expressed WT1, with only a slight increase by E15.5, confirming the lower percentage of
WT1 expressing cardiomyocytes with progressing development and differentiation [29,31].
Immunofluorescence detection of WT1 in this lineage tracing model revealed that positive
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cardiomyocytes were mainly located in the left ventricle, the sinus venosus, and the left
side of the interventricular septum [29]. Recently, WT1 expression has also been found in
embryonic cardiomyocytes from the atria, the compact and the trabecular myocardium of
fetal porcine hearts [57], and in cardiac progenitor cells from ischemic human hearts [58].

To explore the functions of WT1 in embryonic cardiomyocytes, a deletion model in
the troponin-T lineage was generated (Tnnt2Cre;Wt1Flox/Flox) [28,59]. WT1 loss of function
did not cause embryonic death but increased perinatal mortality [29]. This points to the
importance of cardiac WT1 expression in other cell types of the heart such as epicardial
and endothelial cells (reviewed in [30]). Embryos with cardiomyocyte-specific Wt1 dele-
tion showed irregular hearts with severe cardiac malformations from the developmental
stage E13.5 onward. The irregularities consisted of abnormal atrium and sinus venosus
development, thin ventricular myocardium, less developed or lack of pectinate muscles,
and in a lower proportion, defects in the interventricular septum and the cardiac wall.
Transcriptomic analysis performed at E13.5 revealed alterations in calcium and potassium
handling in embryonic hearts with Wt1 ablation. This study included the evaluation of
adult mice that carried the embryonic Wt1 deletion. Mutant mice exhibited alterations in
electrocardiographic parameters, such as a decreased PR interval and increased QRS and
RR intervals, in addition to fibrosis and cardiac anomalies, like the absence of pectinate
muscles, aneurism, or even an ectopic muscular septum, among other malformations. The
frequency of these cardiac abnormalities was, however, very variable [29].

As already described, although WT1 expression diminishes from embryonic stage
E14.5 throughout cardiac development, mRNA expression continues to be detected in
the mouse heart after birth, and WT1 continues to be expressed in some cardiomyocytes
throughout the lifespan [31]. Cardiomyocytes exhibited WT1 expression in a speckled
manner, which leads to the suggestion that the +KTS isoform, which regulates RNA
processing, might be involved [31]. In order to identify regulatory functions of WT1
in cardiomyocytes, we performed silencing experiments using ex vivo isolated neonatal
cardiomyocytes. Wt1 silenced cardiomyocytes showed alterations in the expression of genes
related to calcium and potassium regulation including Stim1 and Kcnk2 (also known as
Trek-1). Furthermore, the lack of WT1 expression decreased the mitochondrial membrane
potential in neonatal cardiomyocytes, and the loss of WT1 also induced variations in
the regulation of intracellular calcium levels compared with the control cardiomyocytes
(Figure 2) [53].
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Figure 2. Consequences of in vitro Wt1-silencing in neonatal cardiomyocytes. Cultured neonatal
cardiomyocytes were transduced with lentiviral particles expressing NC-RNA (non-coding RNA) as
the control, or Wt1 shRNA (short hairpin RNA). Wt1 silencing causes a reduction in STIM1 expression
levels, a gene directly regulated by WT1 [60], and CaMKIIδ. This, in combination with the possible
additional alteration of other genes that may participate in calcium homeostasis (represented by a
question mark), triggers an increase in the intracellular levels of this ion. The lack of WT1 expression
in neonatal cardiomyocytes also lowers the mitochondrial content and alters their polarization state.
Ca2+: calcium. Schematic representation from the Wt1 silencing performed in [53]. Created with
BioRender.com.
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In cardiomyocytes, calcium regulation is essential for excitation–contraction coupling
(ECC), and is also involved in gene expression, among other cellular processes. Alterations
in the intracellular levels of calcium can trigger cardiomyocyte malfunction, hypertrophy,
and apoptosis [61]. The implication of WT1 in calcium homeostasis is still unclear, although
it can be explained by the direct regulation of STIM1 (stromal interaction molecule 1),
an activator of the store-operated Ca2+ entry (SOCE) [62,63]. Ritchie et al. identified in
HEK293 cells that WT1 represses Stim1 expression through binding to a response element
in the STIM1 promoter [60]. In contrast, WT1 silencing in neonatal cardiomyocytes led to
a reduction in Stim1 expression [53], suggesting a cell-specific regulation. Therefore, the
increase in intracellular calcium in neonatal cardiomyocytes silenced for WT1 might be due
to the downregulation of STIM1. Low levels of STIM1 would reduce Ca2+ stores and cause
its accumulation in the cytoplasm, in combination with the also observed diminution of
CaMKIIδ (calcium/calmodulin-dependent protein kinase II delta) expression [53]. CaMKIIδ
is the major isoform in the heart, and it is known to participate in calcium reuptake through
SERCA (sarcoplasmic/endoplasmic reticulum Ca2+ ATPase), which is one of the main
proteins that resolve cytosolic calcium clearance [64]. However, further research is needed
to determine whether WT1 is controlling the expression of other key genes that take part in
the regulation of calcium homeostasis in cardiomyocytes, in order to fully elucidate its role.

In the adult heart, WT1 transcripts were initially observed in rat tissues in 1994 [65].
In homeostasis, WT1 expression is reduced compared to the developmental and neonatal
stages, and restricted to epicardial cells, some endothelial cells, and a small number of
cardiomyocytes in the adult heart (Figure 1) [37].

While the roles of WT1 after cardiac injury were postulated many years ago, as will
be discussed below, little is known about its functions and the pathways it modulates in
the correct functioning of the adult heart. To assess this, conditional Wt1 deletion in adult
cardiomyocytes has been performed, using a αMHCmerCremer/+;Wt1Flox/Flox transgenic
mouse model (Figure 3). This mouse line presents the Cre-recombinase fused to two
binding domains of the mutant estrogen receptor (mer), which is inducible by tamoxifen
administration, under the control of the α-myosin heavy chain promoter [66]. Fifteen days
after tamoxifen administration, a reduction in the QRS interval in mice carrying the Wt1
deletion could be noted [53]. Proteomic analysis, performed one month after Wt1 ablation,
demonstrated that the lack of Wt1 altered the metabolism of adult cardiomyocytes. This
assumption is based on the downregulation of proteins involved in the electron transport
chain (ETC) and oxidative phosphorylation pathways, in addition to an abnormal fatty
acid metabolism. Flow cytometry analysis from hearts 2 months after tamoxifen ingestion
revealed that, as observed in neonatal cardiomyocytes ex vivo, Wt1 deletion induced
mitochondrial dysfunction in this cell type in adult mice. Mutant cardiomyocytes were
bigger in size than the controls, however, the heart/body weight ratio was not changed.
Picrosirius red staining 2 and 6 months after tamoxifen administration indicated high levels
of fibrosis in the mutant animals [53].

Although WT1 is expressed in only a fraction of cardiomyocytes, and its expression
levels decrease after birth and remain low in adult mice, its presence is critical for the
proper development of the heart and its maintenance in cardiac homeostasis. This notion
is based on the consequences observed following its conditional deletion in embryonic,
neonatal, and adult cardiomyocytes. The concrete adverse effects resulting from cardiomy-
ocyte specific WT1 loss of function have been masked by the lethality induced through
embryonic [27] and adult [67] systemic Wt1 deletions as well as epicardial ablation [28].



Cells 2024, 13, 2078 6 of 18Cells 2024, 13, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. Direct effects of cardiomyocyte specific Wt1 deletion in adult mice under homeostatic con-
ditions. The transgenic mouse model αMHCmerCremer/+;Wt1Flox/Flox was used to perform the conditional 
Wt1 deletion in adult cardiomyocytes. Compared with the controls, hearts with cardiomyocytic Wt1 
deletion were highly fibrotic. Cardiomyocytes with loss of WT1 function were hypertrophic and 
showed an abnormal metabolic profile, with a reduction in the proteins involved in fatty acid me-
tabolism as well as in the electron transport chain and oxidative phosphorylation pathways. ETC: 
electron transport chain. Schematic representation from the Wt1 ablation assessed in [53]. Created 
with BioRender.com. 

Although WT1 is expressed in only a fraction of cardiomyocytes, and its expression 
levels decrease after birth and remain low in adult mice, its presence is critical for the 
proper development of the heart and its maintenance in cardiac homeostasis. This notion 
is based on the consequences observed following its conditional deletion in embryonic, 
neonatal, and adult cardiomyocytes. The concrete adverse effects resulting from cardio-
myocyte specific WT1 loss of function have been masked by the lethality induced through 
embryonic [27] and adult [67] systemic Wt1 deletions as well as epicardial ablation [28]. 

3. Re-Expression of WT1 After Cardiac Injury 
Myocardial infarction (MI) is the major cause of heart failure (HF), and aside from 

advances in medical treatment, it is still associated with high mortality [68]. Blockage of a 
coronary artery, mainly due to the rupture of atherosclerotic plaques, causes a lack of ox-
ygen supply to the myocardium, consequently inducing the death of billions of cardio-
myocytes [69]. These lost myocardial cells in the adult heart are replaced by a non-con-
tractile fibrotic scar, and then by ventricular remodeling. This process includes hypertro-
phy of the surviving cardiomyocytes of the myocardial wall in order to maintain heart 
function [70] (reviewed in [71,72]). 

In light of the pivotal function of WT1 in cardiac development, one of our early stud-
ies examined its possible role in cardiac hypertrophy. Analysis of WT1 in left hypertro-
phied ventricles of spontaneously hypertensive rats (SHRs), animals with transgenic over-
expression of the renin-angiotensinogen system as well as in the ventricles of control rats 
revealed no differences in expression levels. Interestingly, after the induction of MI 
through ligation of the left anterior descending (LAD) coronary artery, the cardiac WT1 
expression levels became rapidly upregulated and remained elevated up to 9 weeks after 
infarction. Thus, WT1 re-expression does not appear to be related to cardiac hypertrophy 
but to cardiac ischemia. Through mRNA in situ hybridization and immunohistochemis-
try, WT1 expression in the epicardium of controls (sham-operated rats) was confirmed. 
Notably, in addition to its epicardial expression, WT1 signals were significantly elevated 

Figure 3. Direct effects of cardiomyocyte specific Wt1 deletion in adult mice under homeostatic
conditions. The transgenic mouse model αMHCmerCremer/+;Wt1Flox/Flox was used to perform the
conditional Wt1 deletion in adult cardiomyocytes. Compared with the controls, hearts with car-
diomyocytic Wt1 deletion were highly fibrotic. Cardiomyocytes with loss of WT1 function were
hypertrophic and showed an abnormal metabolic profile, with a reduction in the proteins involved
in fatty acid metabolism as well as in the electron transport chain and oxidative phosphorylation
pathways. ETC: electron transport chain. Schematic representation from the Wt1 ablation assessed
in [53]. Created with BioRender.com.

3. Re-Expression of WT1 After Cardiac Injury

Myocardial infarction (MI) is the major cause of heart failure (HF), and aside from
advances in medical treatment, it is still associated with high mortality [68]. Blockage
of a coronary artery, mainly due to the rupture of atherosclerotic plaques, causes a lack
of oxygen supply to the myocardium, consequently inducing the death of billions of
cardiomyocytes [69]. These lost myocardial cells in the adult heart are replaced by a
non-contractile fibrotic scar, and then by ventricular remodeling. This process includes
hypertrophy of the surviving cardiomyocytes of the myocardial wall in order to maintain
heart function [70] (reviewed in [71,72]).

In light of the pivotal function of WT1 in cardiac development, one of our early studies
examined its possible role in cardiac hypertrophy. Analysis of WT1 in left hypertrophied
ventricles of spontaneously hypertensive rats (SHRs), animals with transgenic overexpres-
sion of the renin-angiotensinogen system as well as in the ventricles of control rats revealed
no differences in expression levels. Interestingly, after the induction of MI through ligation
of the left anterior descending (LAD) coronary artery, the cardiac WT1 expression levels
became rapidly upregulated and remained elevated up to 9 weeks after infarction. Thus,
WT1 re-expression does not appear to be related to cardiac hypertrophy but to cardiac is-
chemia. Through mRNA in situ hybridization and immunohistochemistry, WT1 expression
in the epicardium of controls (sham-operated rats) was confirmed. Notably, in addition to
its epicardial expression, WT1 signals were significantly elevated in the coronary vessels in
proximity to the infarcted region of animals with ligation of the coronary artery. This vascu-
lar WT1 de novo expression correlated with the observed increase in the WT1mRNA levels
and remained stable up to 9 weeks. Double-immunofluorescent labeling revealed WT1
expression in proliferating endothelial and vascular smooth cells from the inner portion of
the myocardial vessels, as represented in Figure 1. Highly interestingly, WT1 expression
in coronary vessels after MI could be mimicked by the exposure of animals to hypoxic
conditions. This indicates that WT1 is involved in the formation of novel coronary vessels
upon myocardial infarction through stimulation by hypoxia, the reduced tissue oxygen
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supply [73]. WT1 upregulation after MI was confirmed by others in both epicardial and
endothelial cells more than a decade later [47].

In the context of myocardial damage, the epicardial cells in the border of the ischemic
area lose their integrity 24 h after MI, however, integrity is reestablished three days later [74].
The epicardium, which is quiescent in the adult heart, is reactivated after myocardial injury.
It has the capacity to regenerate through the transient re-expression of the embryonic
epicardial genes Tbx18, Raldh1, Raldh2, and Wt1, along with proliferation and EPDC
formation. As a result, this causes thickening of the space between the myocardium
and epicardium [37]. Epicardial WT1 reactivation took place between 1 and 5 days after
infarction and its expression diminished 4 weeks later, a time frame similar to Tbx18,
Raldh1, and Raldh2 re-expression. Three days after MI, WT1 mRNA was found in the
epicardium near the ischemic area; 1 week later, it was detected in the covering of the left
ventricle and the apex [74]. Moreover, this WT1 upregulation could be found in up to 75%
of the epicardial cells and the EPDCs in the surroundings of the myocardium, while this
proportion in the non-injured adult heart was close to 25%, as illustrated in Figure 1 [37].

Our group demonstrated an increase in Wt1-positive cardiomyocytes in hearts from
mice with LAD ligation 48 h after MI (acute phase). These cardiomyocytes were mainly
located in the border zone of the infarcted area, and they remained WT1-positive along
the reparation phase, 3 weeks later (Figure 1) [31]. This points to a potential role of WT1
specifically in cardiomyocytes in cardiac regeneration, in addition to its activation in
endothelial and epicardial cells, as described earlier [73].

While the identification of WT1 reactivation in the different cardiac cell types is
becoming clearer, the origin of its expression is still controversial. On the one hand, there are
several studies supporting that WT1-positive cardiomyocytes differentiate from epicardial
progenitors during development [34]. After injury, the WT1-positive activated epicardial
cells are a heterogeneous population expressing cardiac progenitor and mesenchymal
stem markers [75]. Thymosin β4 priming before infarction resulted in the generation of
some epicardial-derived cardiomyocytes after infarction [52,76], while others showed that
thymosin β4 priming did not result in the re-programming of epicardial-derived cells into
cardiomyocytes [77]. In a different reporter system, a significant increase in Wt1 expression
and proliferation in the epicardium shortly after myocardial infarction was observed
and the formation of a Wt1-lineage-positive subepicardial mesenchyme cell population
described. These cells contributed to fibroblasts, myofibroblasts, and coronary endothelium
in the infarct zone, some of them also later differentiated into cardiomyocytes [74]. On
the other hand, some investigations showed that, following MI, these cardiomyocytes
were not epicardial-derived, but de novo cardiomyocytes originating from stem cells [78].
Interestingly, Tyser et al. characterized, by single cell transcriptomic analyses, a common
progenitor cell pool of the myocardium and epicardium. These cells expressed WT1,
demonstrating a source for either cardiomyocytes or epicardial cells [42]. Thus, WT1 might
be re-activated in both cell types in the adult heart in response to injury.

As suggested in the previous section, it should be considered that the cardiomyocyte-
WT1 upregulation in the ischemic heart would also trigger the induction of downstream
genes related to calcium regulation. For instance, STIM1, which has been identified to
be re-expressed in cardiomyocytes during heart failure [79], or CaMKIIδ, whose activity
is increased in the failing heart and is associated with the promotion of inflammatory
pathways (Figure 4) [80]. The augmented activity of genes that participate in calcium
homeostasis could help to reduce the elevated intracellular levels of this ion described
in cardiomyocytes after MI [81] (reviewed in [82]), but a deeper evaluation is needed to
identify the detailed mechanism.
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Figure 4. Differential expression pattern of HIF-1, WT1, STIM1, and CaMKIIδ in the heart through
development, homeostasis, and injury. The hypoxic environment established in the embryonic heart
(left), drives high levels of HIF-1, which triggers WT1 expression. At early developmental stages,
calcium regulation in the heart is mainly orchestrated by the SOCE pathway, which explains the high
levels of STIM1 and low CaMKIIδ expression. In homeostasis (central), CaMKIIδ expression starts to
increase as its role is more essential, and the STIM1 levels drop in cardiomyocytes after birth. The
augmented oxygen availability causes the downregulation of HIF-1, and WT1 expression becomes
restricted to a low number of cardiac cells. After ischemia (right), not only does HIF-1 expression
increase, but the CaMKIIδ levels are also higher compared to homeostasis. Genes highly expressed
during embryonic development, such as STIM1 and WT1, are reactivated in the injured heart. MI:
myocardial infarction. Created with BioRender.com.

We were the first to demonstrate that WT1 re-expression after ischemic heart damage
is due to hypoxia [83]. We further showed that hypoxic WT1 induction is mediated through
the direct transcriptional activation of Wt1 by the hypoxia-inducible factor-1 (HIF-1) [83].
Additionally, the role of HIF-1 [84], as a key element of the epicardial reactivation after
injury, is also supported by the regulation of the epicardial invasion it carries out through
development [85]. WT1 seems to be additionally activated by hypoxia-inducible factor-
2 in some cell lines [86]. Whether this regulation is relevant in the heart remains to be
determined. Another possible explanation for WT1 re-expression in the damaged heart
could involve soluble factors that are secreted by the myocardium and need to be identified.
In the heart, low levels of vitamin D have been associated with the severity of myocardial
infarction as well as higher mortality from cardiovascular diseases [87] (reviewed in [88]).
The administration of vitamin D in mice and healthy volunteers was shown to stimulate
vascular regeneration through HIF-1α induction [89], which in turn would activate Wt1 [83].
This supports the idea that vitamin D could be a promising treatment to improve cardiac
health, but clinical trials suggest that vitamin D supplementation does not reduce the risk
of cardiovascular events nor the associated mortality [90]. Notably, we demonstrated that
the vitamin D receptor (VDR) is a downstream target of WT1. In the presence of the active
vitamin D metabolite, WT1 promotes apoptosis in embryonic kidney cells and decreases
their proliferation rate through the regulation of VDR [91].

A less frequent cause of HF is due to the administration of several pharmacological
medications, for instance, doxorubicin (DOX), an anthracycline that induces either acute
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or chronic cardiotoxicity [92] (reviewed in [93]). DOX is an effective chemotherapeutic
agent widely used for the treatment of different types of cancer, but dose limiting due to its
irreversible side effects [94] (reviewed in [93]). It is still unknown whether DOX treatment
alters WT1 expression in the heart, however, the effects of its administration in adult mice
carrying the cardiomyocyte-Wt1 deletion have recently been assessed using the transgenic
mouse model αMHCmerCremer/+;Wt1Flox/Flox. Picrosirius red staining of tissue sections
from control and cardiomyocyte-Wt1 deficient mice showed that both acute and chronic
treatment with DOX provoked interstitial fibrosis in the hearts of each group of mice, but the
levels of fibrosis were much higher in mice with conditional Wt1 deletion. This difference
was more pronounced in cardiac tissues from animals with chronic DOX administration,
suggesting that the lack of WT1 in adult cardiomyocytes worsened the recovery. It has
been described that DOX generates mitochondrial damage, and flow cytometry analysis
revealed that an acute dose of DOX caused a significant diminution in the mitochondrial
load of cardiomyocytes with conditional Wt1 deletion. Electrocardiographic parameters
after chronic DOX treatment demonstrated that mice carrying the Wt1 deletion exhibited
elongated JT, QT, and Tpeak–Tend intervals, and a reduction in the PR interval after
3 months. The proteomic analysis of adult hearts revealed that chronic DOX administration
also induced changes in the fatty acid oxidation, in addition to a downregulation in the
oxidative phosphorylation and ETC pathways. This result supports the hypothesis that
WT1 intervenes in cardiomyocyte metabolism and highlights the need to define its direct
role [53].

Mitochondria are the central organelles damaged by both DOX-induced cardiotoxicity
and MI (reviewed in [95]). Cardiomyocytes have a high mitochondrial content due to the
elevated energy demand of the heart (reviewed in [96]). Consequently, cardiomyocytes
result in being the main cell type affected in heart injuries, leading to apoptosis [97]. Fibrosis
is another consequence observed in cardiac pathologies [98] (reviewed in [71]), and the
additional lack of WT1 in cardiomyocytes from mice treated with acute or chronic DOX
administration generates higher levels of interstitial fibrosis, thus the mice take longer to
recover [53].

The augmentation of interstitial fibrosis caused by the conditional Wt1 deletion in
adult cardiomyocytes is opposite to the response reported in epicardial cells. Upregulation
of WT1 through NF-κβ activation in epicardial cells increases cardiac fibrosis in dystrophic
hearts [99]. As WT1 participates in the differentiation of EPDCs into fibroblasts [37], it
would be interesting to determine whether this process becomes activated secondary to the
loss of WT1 in cardiomyocytes. Additional research is needed to identify the mechanisms
that trigger the augmentation of interstitial fibrosis in the absence of the cardiomyocyte-
specific WT1 expression, and whether its re-expression in this cell type contributes to a
reduction in fibrosis in the ischemic heart.

4. The Role of Wt1 in Cardiomyocytes in Heart Regeneration

Progress in cardiovascular medicine has led to the increase in survival rates after
MI, however, the subsequent cardiac repair is still insufficient [100]. After MI, the adult
mammalian heart activates the scarring process driven by fibroblasts and myofibroblasts in
order to replace the damaged myocardium [101] (reviewed in [71]). The fibrotic response is
based on the excessive deposition of extracellular matrix (ECM) components. The response
consists of two different phases, named replacement and reactive fibrosis. At first, it
maintains the integrity of the ventricular myocardium, but then expands from the area
of the infarct, therefore affecting the contractility of the heart, and finally, the cardiac
output [102] (reviewed in [103]). A pathological remodeling following ischemia can lead to
chronic heart disease (CHD), which is associated with hospitalization of the patient and a
higher mortality risk [104] (reviewed in [105]).

The fibrotic response triggered in the mammalian heart is due to the reduced capacity
of adult cardiomyocytes to proliferate and replace the dead cells [78]. In contrast, the
neonatal heart in mammals has a higher regenerative potential, allowing for complete
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recovery after amputation of the ventricular apex as well as after myocardial ischemia
through the proliferation of pre-existing cardiomyocytes [106]. Since this capacity is lost
after 7 days of age (P7) in mice, the aim is to understand the mechanisms that orchestrate the
correct cardiac repair in neonates, in order to reactivate them and enhance cardiomyocyte
renewal in the injured human heart, extending the regenerative window throughout life.

Murine cardiomyocytes lose the ability to regenerate by P7 due to a series of changes
that include cell cycle arrest, the shift from hyperplasia to hypertrophy, and the metabolic
switch from glycolysis into fatty acid oxidation [106] (reviewed in [107,108]). Transcriptomic
analysis of neonatal cardiomyocytes revealed that, between P1 and P14, their maturation
involves the hypermethylation of genes associated mainly with DNA replication and cell
cycle, explaining the reduction in the proliferation in adult cardiomyocytes [109]. Moreover,
it is now known that adult cardiomyocytes from injured hearts lack a transcriptional
reversion into a neonatal-like state, while other cardiac cell types, such as CD90+ fibroblasts,
exhibit a greater transcriptional plasticity that is associated with an increase in proliferation
after MI. In addition, mature cardiomyocytes acquire an epigenetic block that impedes
the reentry in the cell cycle needed for cardiac regeneration in adulthood. Leukocytes are
another cell type that also undergo a transcriptomic switch, which could be related to the
increment of fibrosis in the adult heart following ischemia [110].

Along with cardiomyocyte maturation, many studies have shown that epigenetic
modifications are involved in the development of several cardiac diseases in humans
including dilated cardiomyopathy, fibrosis, and coronary heart disease [111]. Because of
the reversible nature that these transcriptomic modifications exhibit, the preliminary results
of studies using animal models for different cardiac pathologies were promising, thanks to
the application of epigenetic drugs, also known as “epidrugs” [112] (reviewed in [113]).

A potential application of epidrugs in cardiac repair could be focused on the activation
of one particular gene of interest, such as Wt1, although the specificity for the locus
activation will be limited, and some off-target effects might be expected. Nevertheless,
this approach currently seems to be the most promising for transcription factor targeting
in humans.

The methylation of Wt1 promoter and enhancer regions was identified many years
ago [114]. While different levels of methylation have been correlated to distinct WT1 expres-
sion in several types of cancer, its hypomethylation is associated with more cytoplasmic
expression in muscle cells [115]. As previously mentioned, the epicardial reactivation after
MI in adult hearts involves the re-expression of embryonic genes, such as WT1, suggesting
that this cardiac cell type could exhibit a transcriptional reversion into a less differentiated
state. In line with this, chromatin remodeling of Wt1 has been detected in the epicardial
activation of the embryonic and adult injured heart, which might be associated with the
identification of DNA methylation as one of the main epigenetic modifications that reg-
ulates EMT in CHD [116]. For these reasons, an evaluation of the methylation profile of
the reactivated epicardial cells would help to confirm whether WT1 re-expression in the
injured adult heart is due to a decrease in its methylation level. If confirmed, in addition to
the potential identification of an epigenetic biomarker, a promising therapeutic approach
could be based on the reduction in the methylation levels of WT1 in adult cardiomyocytes
in order to drive its overexpression and shift the cellular profile into a neonatal-like state,
which has shown a better response to MI (Figure 5).

In line with this, it has been described that acute exposition to DOX triggers long-term
epigenetic modifications in cardiomyocytes. Such modifications are the downregulation of
genes that mediate DNA methylation and the upregulation of genes that drive demethy-
lation, overall leading to augmented senescence in cardiomyocytes [117]. The observed
increase in genes that participate in active DNA demethylation could be a cardioprotec-
tive mechanism, promoting the expression of repressed genes in adult cardiomyocytes.
An epigenetic evaluation of cardiomyocytes after chronic DOX administration should be
performed in order to confirm whether the same methylation/demethylation profile is
maintained or lost through long-term cardiotoxicity.
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Figure 5. Changes in the methylation levels of WT1 promoter. In the developing heart (left),
WT1 is highly expressed in embryonic cardiomyocytes, and the WT1 promoter is active. Under
homeostatic conditions (central), the levels of WT1 are reduced in adult cardiomyocytes, likely due
to hypermethylation of its promoter. An interesting approach to enhance the WT1 expression in
cardiomyocytes following myocardial infarction (right) could be based on the use of “epidrugs”,
chemical compounds that can specifically target transcriptional modifications. Therefore, inhibition
of DNA methylation in the WT1 promoter would reverse its repression in the adult injured heart. MI:
myocardial infarction. Created with BioRender.com.

Li et al. demonstrated that the administration of brain natriuretic peptide (BNP) accel-
erated the re-expression of WT1 after MI. BNP induced the proliferation of WT1-positive
EPDC located in the hypoxic area of the heart, but only in the epicardial and endocardial
layers, not in the myocardium [118]. This highlights the proliferative role that WT1 exhibits
after infarction, but also the need to identify molecules that induce a more global expression
in the heart. Through cardiomyocyte maturation, there is also a variation in the oxygen
availability, switching from a hypoxic to an oxygen-rich environment, along with a down-
regulation of HIF-1α expression in cardiomyocytes from mid-gestation (Figure 4) [119].
However, this physiological regulation seems to worsen the response to myocardial dam-
age in the adult heart, as moderate hypoxia is known to promote cardiac regeneration in
zebrafish as well as in adult mice [120]. While an increase in environmental oxygen causes
the arrest of the cell cycle in cardiomyocytes, hypoxia can extend their proliferative time
window after birth [119]. In humans, severe exposure to low levels of oxygen is related
to pathology. However, the controlled exposure to intermittent hypoxic preconditioning
(IHP) shows cardioprotective properties and is considered as one of the most promising
non-pharmacologic therapies to treat heart failure and coronary heart disease, among
other diseases [121] (reviewed in [122]); [123]. Setting a temporally hypoxic environment
would avoid the undesired side effects derived from other regenerative approaches that are
focused on the long-lasting reversion of cardiomyocytes into a less differentiated state [124].
Some of the negative consequences might be metabolic alterations and tumorigenic levels
of cell proliferation.

Therefore, intermittent hypoxic preconditioning seems to be a more appropriate strat-
egy to fight the cardiotoxicity derived from DOX administration. The approach is, however,
not suitable for patients that have suffered a myocardial infarction. In Wistar rats, IHP
improves cardiac output diminished by DOX administration through the increased expres-
sion of SERCA2a and suppressed activation of CaMKII [125]. As hypoxia-induced HIF-1
upregulation activates WT1, this might be one reason for the observed cardioprotective
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effects of IHP including the ameliorated calcium homeostasis. Further investigation is
required to ascertain whether the overexpression of WT1 is a sufficient factor in orches-
trating the cardiac regenerative response in the adult heart following ischemic injury or
cardiotoxic events. Although this approach appears feasible in transgenic animal models,
the implementation of gene therapy in humans is constrained by significant ethical con-
siderations. Furthermore, the delivery strategy specifically to the heart after myocardial
infarction and the potential for off-target effects of the constructs present significant chal-
lenges for potential clinical applications. Additionally, as WT1 is an important regulator of
tumor growth [15], safety concerns associated with a generalized overexpression must be
considered. Consequently, the identification of short-lived epigenetic drugs modulating
WT1 expression may offer a more promising avenue, although limited specificity could be
anticipated, as previously discussed.

5. Conclusions

WT1 is commonly known as an epicardial marker based on its high levels of expression
during heart development, where it drives epithelial to mesenchymal transition, but as
described here, it is also expressed in other cardiac cell types such as cardiomyocytes. The
fact that it is not only found in the embryonic heart, but continues to be expressed, although
to a lesser extent, in the adult heart, and that its expression strongly increases after ischemic
damage suggests that WT1 is essential for cardiac development and might favor adult
cardiac repair. The strong cardiomyocytic WT1 re-expression after myocardial infarction
supports the idea that it could have a cardioprotective role. This is further supported by
the finding that hearts from adult mice with conditional Wt1 deletion suffered metabolic
alterations, along with interstitial fibrosis and hypertrophy, and also displayed a worse
outcome in the case of cardiotoxic doxorubicin treatment. Further research is needed
to clarify the mechanisms leading to Wt1 re-expression in adult cardiomyocytes such
as hypoxia and possibly changes in its methylation profile. In addition, it needs to be
clarified whether WT1 re-expression is related to an induction of proliferation in order
to compensate for the cardiomyocyte loss after myocardial infarction. As WT1 seems
to be implicated in cardiac calcium regulation, it might prevent cardiomyocytic Ca2+

intracellular accumulation, suggesting that WT1 might be involved in the reduction in the
elevated levels of calcium after myocardial infarction. In summary, based on the essential
expression of WT1 in the embryonic heart and its reactivation after damage, it should
be considered as one of the genetic targets that could induce regenerative responses in
cardiomyocytes after ischemia. However, further clarification of the processes that regulate
WT1 in cardiomyocytes and the consequences of its activation for cardiac repair are required
before a potential therapeutic approach can be considered.
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Abbreviations

αMHC α-Myosin heavy chain
BNP Brain natriuretic peptide
Ca2+ Calcium
CaMKIIδ Calcium/calmodulin-dependent protein kinase II δ
CHD Chronic heart disease
DOX Doxorubicin
E Embryonic day
ECC Excitation-contraction coupling
ECM Extracellular matrix
EMT Epithelial-to-mesenchymal transition
EPDCs Epicardial-derived cells
ETC Electron transport chain
EYFP Enhanced yellow fluorescent protein
GFP Green fluorescent protein
HF Heart failure
HIF1 Hypoxia inducible factor-1
IHP Intermittent hypoxic preconditioning
Kcnk2 Trek-1
KTS Lysine, threonine, serine
LAD Ligation of the left anterior descending coronary artery
Mer Mutant estrogen receptor
MI Myocardial infarction
NC-RNA Non-coding RNA
P Postnatal day
PTMs Post-translational modifications
Raldh Retinaldehyde-dehydrogenase
SERCA Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase
ShRNA Short hairpin RNA
SHRs Spontaneously hypertensive rats
Snai1 Snail
SOCE Store-operated Ca2+ entry
STIM1 Stromal interaction molecule 1
Tbx18 T-box transcription factor 18
VDR Vitamin D receptors
WT Wilms’ tumor
WT1 Wilms’ tumor suppressor 1
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