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Abstract
One challenge faced by scientists from the alternative RNA splicing field is to decode the cooperative or antagonistic effects of splic-
ing factors (SFs) to understand and eventually predict splicing outcomes on a genome-wide scale. In this manuscript, we introduce 
SplicingLore, an open-access database and web resource that help to fill this gap in a straightforward manner. The database contains 
a collection of RNA-sequencing-derived lists of alternative exons regulated by a total of 75 different SFs. All datasets were processed 
in a standardized manner, ensuring valid comparisons and correlation analyses. The user can easily retrieve a factor-specific set of 
differentially included exons from the database or provide a list of exons and search which SF(s) control(s) their inclusion. Our simple 
workflow is fast and easy to run, and it ensures a reliable calculation of correlation scores between the tested datasets. As a proof of 
concept, we predicted and experimentally validated a novel functional cooperation between the RNA helicases DDX17 and DDX5 and 
the heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein. SplicingLore is available at https://splicinglore.ens-lyon.fr/.

Database URL: https://splicinglore.ens-lyon.fr/
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Introduction
Eukaryotic genes are transcribed into pre-mRNAs that are 
most of the time composed of a succession of exons separated 
by introns, the latter being removed by the spliceosome to 
form mature RNA molecules or mRNAs. The spliceosome is 
a large ribonucleoprotein complex, which recognizes the 5′

and 3′ splice sites delimitating exons from introns and cat-
alyzes the splicing reaction, a process that is modulated by 
numerous auxiliary factors, including RNA binding proteins 
(RBPs) (1, 2). The split nature of genes and the contribution of 
many different parameters enable alternative splicing, which 
is defined as the differential selection of exonic or intronic 
sequences to produce different mRNA isoforms from the same 
gene. Alternative splicing is a prevalent phenomenon that 
greatly expands proteome diversity and also contributes to 
the quantitative regulation of gene expression (3, 4). Various 
splicing-dedicated databases, such as VastDB (5), ASpedia (6) 
or FasterDB (7), serve as repositories of alternative splicing 
profiles and inclusion levels across cell types or organisms. 
ASpedia also provides useful functional information about 

the alternative exons, as Exon Ontology (8) that helps to 
predict the biological consequences of genome-wide splicing 
variations.

Mechanistically, the binding of RBPs, like serine/arginine-
rich (SR) proteins and hnRNP proteins, to short degenerated 
RNA motifs located within exons or in their flanking introns, 
is determinant for the control of alternative exon inclusion 
(9–12). The activity of a given RBP can also be favoured or 
antagonized by other factors, hereafter defined generally as 
splicing factors (SFs), and their joint action or competition 
can promote or inhibit the assembly of the spliceosome onto 
nearby splice sites (13, 14). The specificity and intrinsic prop-
erties of each SF, even those of general constituents of the 
spliceosome, combined to the unique sequence and structural 
organization of each exon, explain why the knockdown of a 
specific factor in cells only results in the differential splicing 
of a limited number or transcripts, highlighting the relative 
plasticity of the spliceosome. The identification and quantifi-
cation of splicing changes controlled by a given factor can 
be monitored by RNA sequencing (RNA-seq) technologies 
(15). However, it is more difficult to understand or to predict 
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the cooperative or antagonistic effects of SFs on alternative 
splicing, especially on a genome-wide scale.

To address this question, we present SplicingLore, a 
database and web resource that contain the lists of alterna-
tive exons that are differentially included upon knockdown 
of 75 different SFs in various human cell lines. This collection 
is integrated into a website from which the user can easily 
download a given dataset of SF-regulated exons or submit a 
single exon or a list of exons to predict their potential regula-
tion by the SFs of the database. As a proof of concept of the 
utility of our resource, we predicted and experimentally val-
idated a new functional cooperation between RNA helicases 
DDX17 and DDX5 and the HNRNPC protein. SplicingLore 
is freely available at https://splicinglore.ens-lyon.fr/.

Results
Data collection and analysis
To feed the SplingLore database, we searched the GEO 
omnibus (16) and ENCODE (17) databases for datasets gen-
erated from Illumina RNA-seq experiments that all consisted 
in knocking down a given SF in a human cell line, mostly by 
means of a treament with small interfering RNA (siRNA) or 
short hairpin RNA (shRNA) (Figure 1A). We filtered out the 
datasets for which the sequencing quality or depth was too 
low to reach our objective, which was to obtain robust and 
reliable lists of alternative exons regulated by the tested SF 
(see Methods for details). We eventually obtained a curated 
list of 160 datasets, corresponding to 75 SFs tested in 21 dif-
ferent cell lines (Figure 1A, Supplementary Table S1). Three 
cell lines (HepG2, K562 and 293T) represented more than 
75% of the datasets (Figure 1B), and some SFs were tested in 
up to five cell lines.

The selected datasets were all processed in the same way 
using FaRLine, a splicing-dedicated pipeline developed earlier 
in our lab (18). We thus obtained uniformly formatted lists of 
alternative splicing events for each dataset. Although FaRLine 
detects and quantifies variations in alternative 5′ and 3′ splice 
sites, as well as multiply spliced exons, we decided to focus 
only on single-cassette exons, which represent the vast major-
ity of regulated splicing events and are easier to handle when 
comparing multiple datasets. Note that the annotation of all 
exons is based on the FasterDB database (https://fasterdb.ens-
lyon.fr/faster/home.pl) (7).

Integrating data from various cell lines could introduce a 
bias as splicing regulation is inherently variable across cell 
lines. Indeed, some exons may exhibit a discordant regulation 
by the same SF in two different cell lines, most likely because 
cofactors may contribute to their cell-specific regulation. To 
address this question, we looked whether differential exon 
inclusion (DeltaPSI; PSI: percent spliced-in) changed across 
cell lines, for each SF analysed in at least three datasets. These 
analyses globally showed that each SF displayed a similar 
regulation of its target exons across different cell lines (Supple-
mentary Figure S1). We then performed a broader clustering 
analysis for all exons regulated by all SFs for which at least 
three cell lines were available. This analysis showed that exons 
were clustered according to the SF rather than the cell line 
(Supplementary Figure S2), ruling out a possible cell line-
based bias. Note that the analysis presented in Supplementary 
Figure 1 also allowed us to verify that the way the cells were 

treated to achieve SF knockdown (mostly siRNA or shRNA) 
did not significantly affect the result.

To underline further the relevance of our alternative splic-
ing analyses, we also tested whether SF binding was enriched 
in the regions surrounding their corresponding alternative 
exons identified by FaRLine. First, we recovered available 
cross-linking and immunoprecipitation (CLIP)-seq data for 29 
SFs and calculated the enrichment of peaks at and around 
the exons that are up- and down-regulated by the corre-
sponding factors, as determined by FaRLine, compared to 
control exons. As shown in Figure 2A, exons regulated by 
each tested SF displayed an enriched binding of the corre-
sponding SF at an/or around the exon, with sometimes a 
differential enrichment pattern between positively and neg-
atively regulated exons. For example, HNRNPC binding is 
strongly enriched at exons upregulated upon HNRNPC KD, 
consistent with its general binding-associated repressive role 
on splicing (12, 19). In contrast, SR proteins such as SRSF3, 
SRSF1, SRSF7 or TRA2A bind more strongly to the exons 
that they promote the inclusion of (Figure 2A) (20). Sec-
ond, we recovered the consensus binding sites for 21 SFs 
and similarly looked for their enrichment at/around their 
down- and up-regulated exons (Figure 2B). Again, the dif-
ferential enrichment of binding sites matched the known 
function of the corresponding SF. For example, we observed 
a positive enrichment of SR protein binding sites on exons 
that are positively regulated by these proteins and vice
versa.

Web interface and graphic visualization
SplicingLore can be queried in two different ways (Figures 1A 
and 3A). The first method allows the user to analyse a list 
of exons associated with parameters of splicing regulation. 
The default format requested for this analysis includes the 
gene symbol and exon number, chromosomal coordinates, 
as well as values of differential exon inclusion (ΔPSI) and 
P-value (Method 1, Figure 3A, left window). Gene symbols 
and exon numbers correspond to gene annotations of the Fas-
terDB database (7), but the critical details to provide here are 
the chromosomal coordinates. Incorrect gene symbol and/or 
exon number will not impede the search but instead will issue 
a warning message and a proposition for correcting the input, 
based on coordinates (see later). To facilitate the navigation 
and the conversion of exon coordinates in both directions 
between the hg19 and hg38 version of the human genome, 
the SplicingLore interface includes a tab that allows the user 
to directly launch a conversion from the UCSC reference chain 
files with the R package liftOver (https://bioconductor.org/
packages/liftOver) (Figure 3A).

The query list of exons can be automatically retrieved from 
one of the projects referenced in the database, upon selec-
tion of the dataset of interest from the drop-down menu 
(Figure 3A, top right window). Alternatively, the user can 
upload a list of exons of interest to query SplicingLore for their 
potential regulation by the SFs of the database. As each exon 
is associated to a ΔPSI value, this first method will allow to 
look for positive and negative correlations between the input 
regulation and the regulation by SFs from the database.

The second query method is less restrictive as it does not 
require any parameter of exon inclusion (ΔPSI and P-value), 
if these values are not available (Method 2, Figure 3A). In this 
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Figure 1. General features of SplicingLore. (A) Outline of the SplicingLore workflow. RNA-seq datasets from GEO and ENCODE databases were 
uniformly processed with FaRLine to generate lists of alternative exons regulated by 75 SFs in 21 human cell lines. These datasets can be used to 
compute correlation scores of exon regulation with a list of exons of interest, which is either retrieved from the database or provided by the user (Query 
Method 1). The user can alternatively query SplicingLore with a list of exons associated only with their chromosomal coordinates (Method 2). In the 
latter case, the list of exons can include or not a ΔPSI and P -value. (B) Diagram showing the repartition of the SplicingLore datasets between cell lines.

Alt text for Figure 1: Description of the SplicingLore workflow and different methods of analysis, featuring the repartition of the datasets between different cell 
lines.

mode, the user can upload a list of exons that are only iden-
tified by their chromosomal coordinates (Figure 3A, bottom 
right window).

Once the query is launched, the first displayed page (‘List of 
exons’ tab) informs the user about exons that were not prop-
erly recognized, either because they were not detected in any 
of the 160 datasets or because they were incorrectly format-
ted. In the latter case, corrected features are given to allow the 
user to restart the analysis (Supplementary Figure S3).

From the ‘Scores’ tab, the user obtains a downloadable 
table (Figure 3B), which recapitulates the correlation scores 
between the query list and each of the SplicingLore datasets, 
as well as different comparison parameters that are explained 
later. Since this table is sorted based on our custom Score, the 
user can immediately visualize on top of the list which SF is 
more susceptible to be involved in the regulation of the tested 
exons. Scores indicating a significant positive or negative cor-
relation are shown in different colours to facilitate their rapid 
visualization on the website (downloaded files are colour-
less). The ‘percent.common.query’ and ‘percent.common.SF’ 

columns indicate the fraction of common exons between the 
compared datasets, calculated from the query list or from the 
tested dataset, respectively (see Supplementary Figure S4 for 
a representation of these fractions).

The ‘Graphics’ tab presents the same information in the 
form of a correlation graph, which is available in a fixed 
or interactive mode (Figure 3C). The values used to generate 
these graphs can also be downloaded as a table. Finally, a more 
comprehensive table is available in the ‘Details Up/Down’ 
tab (Figure 3D). Alongside the information described ear-
lier, it also provides the number (#) and fraction (%) of 
exons that are shared by both compared datasets, taking into 
account the direction of their regulation (up-regulation or 
down-regulation of their inclusion upon SF knockdown).

Example of application
In order to check out the validity of our tool, we retrieved from 
SplicingLore the list of exons whose inclusion was altered 
upon the knockdown of DEAD-box RNA helicases DDX5 
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Figure 2. Comparison with SF binding sites. (A) Enrichment of SF binding sites (based on CLIP-seq data) at exons that are up- or down-regulated by the 
corresponding factor and in their flanking regions. Each square on both sides of the exon represents a 100 nucleotide window upstream and upstream 
of the exon. (B) Enrichment of SF-specific binding sequences at exons (±200 nucleotides) that are up- or down-regulated by the corresponding factor. 
Not applicable (n.a.): less than 100 exons were identified by FaRLine as more included or excluded upon knockdown of the corresponding SF.

Alt text for Figure 2: Heatmaps showing the relative enrichment of SF binding sites or binding motifs around exons that are up- or down-regulated by the same 
factor.

and DDX17 in the 293T cell line (GSE123752, Supplemen-
tary Table S3). We then used this list as a query to search for 
possible correlative (or anti-correlative) effects between these 
splicing regulators and other SFs.

The first lines of the resulting table show that beside the 
query list itself (score of 1), the best correlation scores cor-
respond to the other two DDX5/DDX17 datasets included 
in SplicingLore, in SH-SY5Y and MCF7 cell lines, with 
respective scores of 0.59 and 0.53 (Figure 3B, Supplementary 
Table S4). Interestingly, we also observed a good correlation 
(with a score of 0.41–0.43) between the tested DDX5/DDX17 
dataset and five different HNRNPH1 datasets (Figure 3B, 
Supplementary Table S4). This is in agreement with the fact 

that HNRNPH1 was previously described as a co-regulator of 
DDX5/DDX17-mediated splicing in myoblasts and epithelial 
cells (21).

Results from Supplementary Table S4 also revealed 
HNRNPC as one of the top predicted factors, with pos-
itive correlation scores in four datasets (score = 0.44 in 
293T, K562 and MG63 cell lines and 0.38 in HepG2 
cells) (Figure 3B, Supplementary Table S4). When consid-
ering separately the subclasses of up- and down-regulated 
exons, we noticed that the positive correlation between 
DDX5/DDX17 and HNRNPC exons was especially visible 
for down-regulated exons (Supplementary Table S5, Sup-
plementary Figure S5). Indeed, up to 15.6% of exons

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baad091/7486604 by Bibliotheque D

iderot de Lyon user on 29 January 2024



Database, Vol. 00, Article ID baad091 5

Figure 3. Visualization of the SplicingLore web interface. (A) View of the home page, with the instructions to prepare the input list of exons and the 
query window. This includes the drop-down menu that allows to retrieve a given list of SF-regulated exons from the database. (B) View of the top of the 
main output file, showing for each dataset the different correlation parameters with the query list (here the exons regulated by DDX5/DDX17 in 293T 
cells). The Score and associated P -value for positive or negative correlation are provided for each dataset of the database, along with the total number of 
exons in the corresponding dataset and the fraction of common exons between the compared datasets, relative to the query list or to the tested 
dataset. (C) The correlation graph of the ∆PSI values for common exons from the query list and one of the stored datasets. Coloured dots represent 
exons that are significantly regulated by both SF. The file containing the corresponding ∆PSI values for these exons can be downloaded here. (D) View of 
the top of the detailed output file, which provides the number (#) and fraction (%) of shared exons between the query and the dataset, separated in 
up-regulated and down-regulated subclasses of exons.

Alt text for Figure 3: Screenshots of the SplicingLore web interface and output files.

down-regulated upon HNRNPC knockdown were regulated 
in the same manner (11.5% in average for the four cor-
related datasets), while only about 1% were regulated in 
the opposite manner (Supplementary Tables S5 and S6). For 
up-regulated exons, results were more variable between the 
different datasets, although a trend for a positive correlation 
was also observed, especially in 293T and K562 cells. These 
two datasets displayed more than 11% of positive correla-
tion with the query, these values being the highest among all 

datasets (apart from DDX5/DDX17 datasets, Supplementary 
Table S5).

To explore further the possibility of a functional link 
between DDX5/DDX17 and HNRNPC, we first queried 
SplicingLore in a reverse manner, uploading on the web-
site a list of 3030 exons corresponding to the union of all 
exons regulated upon HNRNPC knockdown in four datasets 
of our database (293T, K562, HepG2 and MG63). This 
analysis identified the three DDX5/DDX17 datasets among 
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Figure 4. Validation of a functional relationship between DDX5/DDX17 and HNRNPC. (A) Western blot showing the expression of DDX5, DDX17 and 
HNRNPC following the treatment with siRNA targeted against luciferase (negative control), DDX5/DDX17 and HNRNPC. Quantification of this 
experiment is shown in Supplementary Figure S7A. (B) RT-PCR analysis showing the inclusion of a selection of alternative exons after the depletion of 
DDX5/DDX17 and/or HNRNPC in 293T cells. The corresponding gene and exon number (according to FasterDB annotation) are indicated. Exons 
down-regulated and up-regulated upon SF knockdown are shown in the left and right column, respectively. (C) Quantification of the RT-PCR experiment. 
The indicated ΔPSI values correspond to the difference between the PSI value of each depleted sample and the control sample. The statistical 
comparison between each condition (including the unshown control condition) was calculated using a one-way analysis of variance (ANOVA) 
(Holm–Sidak’s multiple comparison tests: *P < 0.05, **P < 0.01, ***P < 0.001). (D) Co-immunoprecipitation assays between endogenous HNRNPC and 
DDX17 in 293T cells, in the absence of presence of RNase A.

Alt text for Figure 4: Experiments validating the cooperative effect of DDX5/DDX17 helicases and HNRNPC on alternative exon inclusion and the interaction 
between DDX17 and HNRNPC in HEK293 cells.
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those showing a significant positive correlation (scores from 
0.46 to 0.50) with the query list (Supplementary Table S7, 
Supplementary Figure S6).

Finally, to experimentally validate our predictions, we 
silenced the expression of DDX5/DDX17 and HNRNPC in 
293T cells, independently or together (Figure 4A and Supple-
mentary Figure S7A), and we monitored the effect of these 
treatments on a selection of alternative exons whose inclusion 
was found to be impacted by the knockdown of these fac-
tors (10 more skipped exons and 7 more included exons). 
In conditions of single depletion, the inclusion of all exons 
was modified according to the predictions, and interestingly, 
the combined depletion of DDX5/DDX17 and HNRNPC sig-
nificantly enhanced the effect of single siRNA treatment on 
splicing (Figures 4B and C). We observed the same coopera-
tive effect of DDX5/DDX17 and HNRNPC on exon inclu-
sion in the neuroblastoma SH-SY5Y cell line (Supplemen-
tary Figures S7B–D). This cooperation prompted us to test 
whether these factors interact with each other. Indeed, endoge-
nous HNRNPC and DDX17 co-immunoprecipitated in an 
RNA-independent manner in 293T cells, suggesting a possi-
ble direct interaction (Figure 4D). No clear sign of interaction 
was observed between DDX5 and HNRNPC (Supplementary 
Figure S7E).

Altogether, these results disclosed a novel functional part-
nership between HNRNPC and the helicase DDX17 and 
illustrated the usefulness of SplicingLore to improve our 
knowledge on splicing regulation.

Discussion
One challenge faced by scientists from the alternative splicing 
field is to decode the cooperative or antagonistic effects of SFs 
to understand and eventually predict splicing outcomes on a 
genome-wide scale (22). Exploiting a large collection of RNA-
seq-derived lists of exons regulated by 75 SFs, SplicingLore 
helps to fill this knowledge gap in a straightforward man-
ner. RNA-seq datasets from ENCODE have previously been 
analysed in a transverse manner, for example along with RBP-
RNA interactions datasets, which helped to understand the 
functional roles of these proteins in alternative splicing (11, 
12). SplicingLore includes not only 100 ENCODE datasets 
but also 60 datasets from other sources. Our resource also 
enables cross-comparisons between datasets and allows to 
directly search for SFs that control the inclusion of a list of 
exons provided by the user. Therefore, SplicingLore comple-
ments other splicing databases, such as VastDB (5) or ASpedia 
(6), that are repositories of alternative splicing profiles and 
inclusion levels across cell types or organisms, which also 
provide useful information about the functional impact of 
splicing variations. SplicingLore only requires to format cor-
rectly the list of exons of interest, and it is therefore fast and 
easy to run. All datasets were selected based on the qual-
ity and coverage depth of the sequencing experiment, and 
they were processed in a standardized manner. This unique 
experimental workflow ensures a reliable calculation of cor-
relation scores between the tested dataset and good validation 
efficiency when testing the inclusion of the predicted exons 
experimentally.

Of note, what we describe here is the most straightfor-
ward way to use SplicingLore, but our data can be exploited 
in a different and deeper way, depending on the user’s inter-
est. For example, we previously used some of the SF-specific 

alternative exon lists stored in SplicingLore to explore the 
intrinsic nature of these exons and the links that exist between 
their biased nucleotidic composition and splicing regulatory 
sequences (23, 24).

As a proof of concept, we searched for SFs that could stimu-
late or antagonize the inclusion of alternative exons regulated 
by RNA helicases DDX17 and DDX5. These closely related 
paralog proteins belong to the large family of evolutionar-
ily conserved DEAD-box ATP-dependent RNA helicases (25). 
Previous reports, from our lab and others, have shown that 
DDX5 and DDX17 control the inclusion of a large number 
of exons by modulating the folding of their target transcripts, 
thanks to their helicase activity, and by modulating the bind-
ing of splicing regulators to RNA (21, 26–31). This is the 
case of HNRNPH for example, whose binding to RNA is 
facilitated by DDX5/DDX17 (21), and which was predicted 
by SplicingLore among the top predicted SFs for positive 
correlation with the helicases.

SplicingLore predicted a good correlation in the reg-
ulation of several hundreds of exons by DDX5/DDX17 
and HNRNPC, including exons that are either activated 
or repressed by those factors. We experimentally validated 
the additive effect of these factors on a subset of both 
classes of exons, in two different cell lines, and found that 
HNRNPC and DDX17 associate with each other in cells 
in an RNA-independent manner. The molecular nature of 
this functional relationship is not clear, and understanding 
how HNRNPC stimulates exon inclusion while it is often 
described as a splicing repressor (12) will require further
investigation.

Conclusion
SplicingLore represents a straightforward and reliable tool 
to investigate alternative splicing regulation by a large panel 
of SFs. SplicingLore also complements other web resources 
developed by our group, FasterDB (7) and Exon Ontology 
(8), which together form a suite of tools to facilitate the 
understanding of alternative splicing, from its regulation to its 
biological consequences. SplicingLore will be useful not only 
to splicing specialists but also to scientists less familiar with 
the complex mechanisms that underlie splicing regulation.

Materials and Methods
Database and web interface
SplicingLore database was implemented on Linux Ubuntu 
22.04, using a MySQL database (www.mysql.com) and orga-
nized in nine tables. The web interface was developed using 
the programming languages PHP, CSS and JavaScript. Tools 
performing statistical tests were driven in R (v4.2.0) using 
R packages Tidyverse (doi.org/10.21105/joss.01686) or in 
Python (v3.10) using Plotly (32) for graphics.

Data collection
SplicingLore is a database of 160 public datasets retrieved 
from GEO omnibus (16) and ENCODE consortium (17), 
linked to a user-friendly web interface (Supplementary Table 
S1). All datasets were derived from Illumina RNA-seq exper-
iments performed in 21 different human cell lines (293T, 
786-O, A498, A673, Endoc-BH1, GM19238, HeLa, HepG2, 
SH-SY5Y, HMLE, Huh-7, K562, MCF7, MDA-MB-231, 
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MG63, RD, RH30, RH41, RKO, LNCaP, and LM2) in which 
the expression of 75 SFs was inhibited by siRNA or shRNA 
treatment. The quality control of the sequencing data was 
evaluated using FastQC (v0.11.9). Reads were trimmed using 
Prinseq-lite (v0.20.4) (33) (–trim-right 20) and filtered by 
average quality score (–trim-qual 20) and cutadapt (v1.18) 
(34). Sequencing projects for which the filtered read count was 
lower than 20 millions pairs of reads were eliminated.

Differential exon inclusion analysis
For each dataset, we performed a qualitative and quantitative 
analysis of splicing variations using the FaRLine tool (7) (hg19 
genome), comparing the condition in which the expression of 
the SF was inhibited to the control condition. The following 
parameters were used to define exons that were differen-
tially included: |ΔPSI| ≥ 10%, adjusted P-value ≤ 0.05. The 
ΔPSI corresponds to the change in exon inclusion between 
two conditions. We then retrieved and fed the SplicingLore 
database with the lists of differentially included cassette exons 
corresponding to each dataset.

Clustering analyses
Heatmaps of Supplementary Figures S1 and S2 were 
created with R (v4.2.0) using R packages Tidyverse 
(doi.org/10.21105/joss.01686) and pheatmap (https://github.
com/raivokolde/pheatmap).

Randomization test and scoring
- Input list of exons with ΔPSI and P-values

We defined a Pearson correlation between the ΔPSI of two 
sets of exons. The computed empirical P-value is the proba-
bility of observing a Pearson correlation as high or higher as 
the observed correlation when considering a set of randomly 
associated exons. This probability was computed from the 
empirical cumulative distribution function generated by com-
puting the Pearson correlation for 104 random sets of exon 
(which leads to a maximal P-value resolution of 10−4).

The ‘percent.sig.input’ is the fraction of significantly regu-
lated exons from the input list of exons that are also found 
in the list of exons regulated by the indicated SF. The ‘per-
cent.sig.SF’ is the fraction of significantly regulated exons 
from the list of exons regulated by the indicated SF that are 
also found in the input list of exons.

A confidence score (Score) was set up to facilitate the iden-
tification of candidate SF. It is linked to a permutation statistic 
test, which also gives a P-value, the ‘percent.sig.input’ and 
the ‘percent.sig.SF’. The Score ranges between 0 and 1, which 
indicates the degree of correlation or anti-correlation between 
the effect of a given SF and the input list of exons provided by 
the user. 

Score=mean(1 − pvalue,
percent.sig.input

100
,
percent.sig.sf

100
) .

- Basic input list of exons (chromosome coordinates only)
For an input set of exons E, randomization tests were per-
formed to test if the number of exons N regulated by a given 
SF S is enriched or impoverished. For this, 104 sets of control 
exons with the same size as E were sampled. Then the num-
ber of exons regulated by S was computed for each control 

set. Finally, an empirical P-value was computed for S as: 

Pemp =
min(k, l) + 1
10,000 + 1

,

where k is the number of controls sets with a number of exons 
regulated by S higher or equal to N, and l is the number of 
controls sets with a number of exon regulated by S lower or 
equal to N. This P-value was computed for each SF and was 
then corrected using the Benjamini–Hochberg procedure.

Analysis of CLIP-seq data
Processed bed peak files from various CLIP-seq experiment 
projects, targeting 29 different SFs in different cell lines, were 
recovered from various sources, mainly POSTAR2 (35) and 
ENCODE (36), see Supplementary Table S8. Peaks obtained 
from experiments targeting the same SF were merged together 
using BEDtools (37). We then defined the sets of exons 
in the Splicing Lore database that were significantly more 
included or skipped by the 29 SFs that were knocked down 
in at least one sample. Exons that were significantly regu-
lated in opposite ways by the same SF in different samples 
were removed. Factors with less than 100 significantly more 
included and skipped exons were discarded. The ratio Ri was 
then calculated for a SF i: 

Ri = log2(
Preg + 0.01

Pctrl + 0.01
)

where Preg is the proportion of exons more included or 
skipped upon knockdown of a given SF that overlap a peak of 
that SF and Pctrl is the proportion of control exons that overlap 
the same peaks. Control exons correspond to all other exons 
detected by FaRLine in at least one project, excluding those 
significantly skipped or included upon knockdown of factor 
i. Finally, logistic regression was performed to test whether 
the proportions Preg and Pctrl were significantly different. 
All calculated P-values were corrected using the Benjamini–
Hochberg procedure (38). Non-significant Ri are shown in 
grey. The same method was applied to six 100-nucleotide 
regions surrounding regulated exons.

Analysis of RNA binding motifs
The binding motifs preferentially recognized by 21 human 
SF were recovered from mCrossBase (https://zhanglab.c2b2.
columbia.edu/mCrossBase/) (39) and cisBP-RNA Database 
(http://cisbp-rna.ccbr.utoronto.ca/) (40). Supplementary Table 
S9 describes the binding motifs used for further analysis and 
converted to MEME format. The set of sequences correspond-
ing to significantly more included or skipped exons upon 
knockdown of each of these 21 SF was recovered. In addi-
tion, for each of these sets, a control set of exon sequences was 
defined, corresponding to all other exons detected by FaRLine 
in at least one project, excluding those that were significantly 
regulated upon knockdown of the SF. These sequences were 
then extended by 200 nucleotides in both directions. A motif 
enrichment analysis was performed with the simple enrich-
ment analysis (SEA) program (41) using the binding motif, 
the extended sequences regulated by a given SF and control 
sequences. As a negative enrichment is not calculated by the 
SEA tool, motif impoverishment analysis was performed using 
the same principle but with the regulated sequences as control 
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and control sequences as primary sequences. The V value was 
then calculated for each set of exons up- or down-regulated 
upon knockdown of an SF, using the following formula: 

V = min(1 − Pe,1 − Pi) × sWith{ s = −1 if Pi < Pe
s = 1 if Pi > Pe

,

where Pe is the SEA P-value for positive enrichment of a bind-
ing motif in regulated sequences by a given SF and Pi is the 
same type of P-value but for negative enrichment. Finally, a 
heatmap was generated showing these V-values for exons that 
were up- or down-regulated in each SF knockdown. V-values 
above and below 0.95 are shown in red and blue, respectively. 
Non-significant V-values (between −0.95 and 0.95) are shown 
in grey, and V-values for SF with less than 100 exons regulated 
upon knockdown are shown in white.

Cell culture and transfections
Human embryonic kidney 293T and SH-SY5Y cells were 
grown as recommended by the manufacturer and transfected 
as described previously (26, 42). For knockdown experi-
ments, we used a total of 40 nM siRNA as follows: 40 nM 
siCtrl for control experiments, 20 nM of siDDX5/DDX17
or siHNRNPC + 20 nM siCtrl for single factor depletion 
or 20 nM siDDX5/DDX17 + 20 nM siHNRNPC for double 
knockdown. Cells were harvested 48 h later. Sequences of 
siRNAs are given in Supplementary Table S2.

Co-immunoprecipitation and Western blotting
Total protein extraction was carried out as previously 
described (21). Primary antibodies used for Western blot-
ting: DDX5 (ab10261, Abcam), DDX17 (ab24601, Abcam), 
HNRNPC (D6S3N, Cell Signaling) and GAPDH (sc-1616, 
SantaCruz).

For co-immunoprecipitation, cells were harvested and gen-
tly lysed for 5 min on ice in a buffer containing 10 mM Tris-
HCl pH 8.0, 140 mM NaCl, 1.5 mM MgCL2, 10 mM EDTA 
and 0.5% NP40, completed with protease and phosphatase 
inhibitors (Roche #11697498001 and #5892970001), to iso-
late the nuclei from the cytoplasm. After centrifugation, the 
nuclei were lysed in the IP buffer (20 mM Tris-HCl pH 7.5, 
150 mM NaCl, 2 mM EDTA, 1% NP40 and 10% glycerol and 
protease/phosphatase inhibitors) for 30 min at 4∘C under con-
stant mixing. The nuclear lysate was centrifuged for 15 min to 
remove debris, and soluble proteins were quantified by BCA 
(Thermo Fisher Scientific). The lysate was pre-cleared with 
30 μL of Dynabeads Protein G (Thermo Fisher Scientific) for 
30 min under rotatory mixing and then split in 1.5 mg aliquots 
of proteins for each assay. Each fraction received 5 μg of anti-
body, and the incubation was left overnight at 4∘C under 
rotation. The following antibodies were used for IP: rabbit 
anti-DDX17 (19910-1-AP, ProteinTech) and anti-HNRNPC 
(PA522280, Thermo Fisher Scientific) or a control rabbit 
IgG (Thermo Fisher Scientific), goat anti-DDX5 (ab10261, 
Abcam) or control goat IgG (Santa Cruz). The next day, the 
different lysate/antibody mixtures were incubated with 50 μl 
Dynabeads Protein G (Thermo Fisher Scientific) blocked with 
BSA, for 4 h at 4∘C under rotation. Beads were then washed 
five times with IP buffer. Elution was performed by boiling 
for 5 min in SDS-PAGE loading buffer prior to analysis by 
Western blotting.

RNA extraction and PCR analyses
Total RNA was isolated using TriPure Isolation Reagent 
(Roche). For reverse transcription, 2 μg of purified RNAs were 
treated with Dnase I (Thermo Fisher Scientific) and retrotran-
scribed using Maxima reverse transcriptase (Thermo Fisher 
Scientific), as recommended by the manufacturer. Potential 
genomic DNA contamination was systematically verified by 
performing negative RT controls in absence of enzyme and 
by including controls with water instead of cDNA in PCR 
assays. All PCR analyses were performed on 0.5 ng cDNA 
using 0.5 U GoTaq® DNA polymerase (Promega). Quantifi-
cation of PCR products was performed using the Image Lab 
software (BioRad) after agarose gel electrophoresis. The PSI 
value of each alternative exon was calculated in each condi-
tion using the following formula: inclusion product/(inclusion 
product + skipping product) × 100. The ΔPSI corresponds to 
the difference between the PSI for each silencing condition 
and the PSI of the siCtrl condition. Sequences of all primers 
are given in Supplementary Table S2.

Supplementary Material
Supplementary material is available at Database online.

Data availability
All raw data supporting the findings of this study (Supple-
mentary Table 1) were retrieved from GEO omnibus16 and 
ENCODE consortium17. All processed data can be freely 
retrieved from the SplingLore database.
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