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 71 

The current state of AI in nuclear neuroimaging  72 

As for the whole nuclear medicine community, there is great interest in the molecular brain 73 

imaging field to advance the use of AI in research and translation but foremost in daily clinical 74 

routine settings. 75 

As seen with previous methodological imaging advancements, the brain is perfect as the 76 

organ of interest to start with testing such new developments. This is not only because multi-77 

modality image co-registration is much easier for the head compared to other body parts, but 78 

also because large brain image databases are often easily accessible in case of brain imaging. 79 

However, standardization of clinical brain image recording and imaging protocols as well as 80 

efficient dissemination of data will be essential before data from different centers can be used 81 

as input by AI [1]. In this context, it is worth to emphasize that often images are not sufficient 82 

for feeding AI algorithms. There is need to have them annotated, and ideally, additional data 83 

should be associated to the images (patient follow-up, omics, etc.). 84 

For these reasons, large validation studies trough Consortium datasets have emerged in 85 

molecular neuroimaging including Alzheimer’s Disease Neuroimaging Initiative (ADNI), 86 

Parkinson’s Progression Markers Initiative (PPMI), and Open Access Series of Imaging Studies 87 

(OASIS). However, more data are still needed for the complete translation to clinical routine 88 

use. 89 

Open standard datasets will be essential for the development of AI, even though it may 90 

involve significant costs. One possible cost-efficient solution is to make use of realistic Monte 91 

Carlo simulations techniques for generating in silico neuroimaging datasets, thus allowing for 92 

data augmentation from patient data [2, 3]. Another solution to address this challenge is 93 

federated learning, which allows AI to be trained on decentralized datasets from multiple 94 

hospitals, while ensuring data privacy and security. Federated learning has been already 95 

applied to training of AI models in different brain PET challenges, such as reconstruction, 96 

segmentation, and denoising using brain PET datasets from multiple institutions [4]. An even 97 

https://link.springer.com/article/10.1007/s00259-023-06553-1#ref-CR1
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more recent improvement is swarm learning, which combines federated learning with 98 

blockchain technologies to further ensure the robustness of the learning process [5]. 99 

As with medical imaging in general, in the case of molecular brain imaging, the process from 100 

data acquisition to diagnosis involves numerous steps (e.g., image acquisition and 101 

reconstruction, image segmentation, extraction of imaging biomarkers, image interpretation, 102 

patient stratification). 103 

The next years will show whether AI is, in the case of molecular brain imaging, suitable to 104 

support or even, at least in some applications, replace nuclear medicine physicians. As 105 

examples, rather straightforward binary decisions like positivity vs. negativity in case of 106 

amyloid PET imaging, or rather complex and experience-dependent differential diagnoses like 107 

those obtained by FDG PET imaging in dementia disorders or atypical Parkinsonian syndromes 108 

might be better obtainable in the future by AI. 109 

 110 

Image acquisition  111 

In the data acquisition stage, deep learning models have been utilized to estimate time-of-112 

flight (ToF) and improve the quantitative accuracy and diagnostic confidence of PET images 113 

reconstructed without ToF, specifically for brain PET [6]. In tomographic reconstruction, AI 114 

has been employed to enhance the quality of PET and SPECT images by reducing noise and 115 

enhancing image contrast during reconstruction [7]. Deep learning techniques have also 116 

demonstrated effectiveness in providing accurate and generalizable PET attenuation and 117 

scatter correction methods and, interestingly, attenuation correction methods without CT [8]. 118 

Finally, generative adversarial networks have been employed for motion correction in brain 119 

PET, effectively addressing the challenge of head motion artifacts. AIso, they can be used to 120 

dramatically shorten scan times/activity amounts needed [9]. 121 

Segmentation and registration 122 

In post-processing, AI-based segmentation can overcome the time-consuming and observer-123 

dependent process of manual annotation of brain structures in PET images [10]. AI can also 124 

assist in the registration of neuroimaging data, via the alignment of images from different 125 

imaging modalities or timepoints and learning the mapping between images and different 126 

modalities. Furthermore, AI can facilitate the extraction of meaningful quantitative 127 

parameters from the images, such as improved amyloid PET quantification without non-128 

https://link.springer.com/article/10.1007/s00259-023-06553-1#ref-CR5
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specific contributions and amyloid PET quantification without using MRI or CT images [11]. 129 

Moreover, AI might provide non-invasive estimations of the arterial input function for brain 130 

PET studies, facilitating adoption of absolute quantification in clinical settings [12]. 131 

Interpretability analysis 132 

Interpretability is an essential aspect of AI applications in neuroimaging to promote the 133 

development and translation of AI technologies in clinical settings. Clinicians may offer their 134 

clinical expertise (supervision) to identify potential biases, errors, or limitations in the model, 135 

which can be addressed to improve its performance and generalizability [13]. For instance, a 136 

simple supervision can be the role of clinical and imaging experts to check the accuracy of AI 137 

models in the segmentation process. Some other tasks of AI cannot be easily supervised and 138 

require external validation. So-called explainable AI techniques are rapidly emerging to 139 

improve interpretability, including feature visualization, saliency maps, and decision trees. 140 

These can reveal the key features and patterns that contribute to the model’s predictions or 141 

decisions. Another approach is to incorporate robustness measures, such as adversarial 142 

training, regularization, and uncertainty quantification, into the AI model to increase its 143 

resilience to various types of noise, artifacts, or uncertainties [14]. 144 

 145 

Specific clinical applications 146 

 147 

Epilepsy is one of the most common neurological disorders characterized by abnormal 148 

excessive firing and synchronization of neurons leading to seizures. The accurate 149 

identification of the epileptogenic foci is essential to avoid misdiagnosis and select the correct 150 

treatment, especially when resective surgery is necessary in drug-resistant epilepsy [15]. 151 

While nuclear medicine neuroimaging is a key diagnostic tool, allowing to evaluate metabolic, 152 

neurotransmission, or perfusion abnormalities occurring in people with epilepsy, there is an 153 

increasing need to define accurate computer-aided tools to support clinicians as 154 

interpretation of the scans is highly complex. In this context, AI-based tools pave the way for 155 

solving such tasks, fostered by the exceptional advancement in the models we have witnessed 156 

in the last years. Machine learning (ML) and deep learning (DL) are currently explored for 157 

diverse tasks as cortical lesion localization (mainly for focal cortical dysplasia — FCD), epileptic 158 

focus detection/lateralization and brain region segmentation (e.g., hippocampus), or for the 159 

https://link.springer.com/article/10.1007/s00259-023-06553-1#ref-CR11
https://link.springer.com/article/10.1007/s00259-023-06553-1#ref-CR12
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diagnosis and prognosis of different epilepsy types. Still, AI has been mostly applied to MRI or 160 

EEG recordings (especially for seizure identification and forecasting), while their exploitation 161 

in the nuclear medicine-epilepsy field is still in its infancy, with a few studies largely limited to 162 

[18F]FDG-PET briefly reviewed in the following. 163 

Despite the methodological advancements, AI applications in molecular imaging of epilepsy 164 

are still limited and confined to specific epilepsy types, possibly because of the difficulties in 165 

finding large (and annotated) datasets to train and generalize the complex AI-based models, 166 

the high heterogeneity of patients with epilepsy, and the need to perform patient-specific 167 

fingerprinting for clinical application. Multi-center initiatives, coupled with advanced DL 168 

models (e.g., multi-task CNNs, autoencoders) and data augmentation methods (e.g., 169 

generative adversarial networks or large simulated databases (3)), might help to overcome 170 

part of such limitations, providing more generalizable models and a precise fine-grained 171 

characterization of inter-individual patient variability to progress towards personalized 172 

medicine. 173 

Some recent studies have also underlined the importance of combining multi-modal imaging 174 

data, such as metabolic PET with structural or functional MRI, often leveraging the value of 175 

simultaneous PET/MRI acquisitions [16]. These multi-modal data coupled with AI models can 176 

increase the accuracy in predicting the surgical outcomes and detecting focal epilepsy lesions 177 

such as FCD [17]. All these approaches therefore deserve further investigations for fully 178 

exploiting their potential and exploring their generalizability in the epilepsy workflow. 179 

In neurodegenerative and movement disorders, the differential diagnosis can be complex and 180 

is highly dependent on the expertise of the reader. Therefore, AI may help not only in the 181 

(early) differential diagnosis, especially for less experienced readers, but also in the 182 

differential diagnosis of subtypes of dementia or complex cases with non-fully delineated 183 

pattern of presentation. Multimodal imaging with structural and functional information 184 

combined with fluid-based biomarkers is becoming the standard in the diagnostic landscape. 185 

In this multimodal setting, AI can be particularly helpful for feature selection. Moreover, AI 186 

might also give additional clues about the prognosis. However, the biggest challenge in the 187 

field of AI in neurodegenerative disease is the very limited number of available standards of 188 

truth assessments, i.e., autopsies in previously imaged patients. Future studies need to 189 

overcome the lack of validation studies across different centers and the lack of harmonization 190 

of generally accepted AI algorithms to aid in diagnosis across the neurodegenerative disease 191 

https://link.springer.com/article/10.1007/s00259-023-06553-1#ref-CR16
https://link.springer.com/article/10.1007/s00259-023-06553-1#ref-CR17
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spectrum. Moreover, all AI models are data-driven, so pre-processing of imaging data plays a 192 

crucial role. Therefore, pre-processing software also needs to be harmonized and validated. 193 

Accommodation of substantial numbers with standard of truth assessments for validation of 194 

AI application in PET imaging of neurodegenerative disorders remains a challenge and may be 195 

solved by large cohorts such as BioFINDER or ADNI [18]. Conversely, PET itself may also be 196 

used as a standard of truth assessment for AI-driven analysis of fluid biomarkers or omics data 197 

with the goal to find cheap and versatile tools for characterization of neurodegenerative 198 

disorders. 199 

AI in neuro-oncology is intensively evaluated allowing simplifying steps in the radiomics 200 

pipeline such as tumor segmentation, increasing data comparability between observers and 201 

more importantly extracting new features from the images of brain tumor patients [19]. AI is 202 

currently primarily represented by radiomics analyses, which must be performed according 203 

to the steps described in the Image Biomarker Standardization Initiative (IBSI) guidelines to 204 

ensure standardization of processes [20], providing promising results with good diagnostic 205 

performances in various clinical indications. Some further improvements are nevertheless 206 

required for the generalization of the observed diagnostic performances, by identifying 207 

specific radiomic signatures that are easily transposable across centers. Notably, these efforts 208 

concern the feature repeatability and harmonization through well-defined multicentric 209 

studies. This is particularly meaningful for the field of neuro-oncology since CNS tumors are 210 

rare diseases with a limited number of patients, requiring data collection from different 211 

centers. Studies of PET multi-tracer radiomics analyses and/or combination with 212 

multiparametric MRI and clinical parameters are also encouraged. Another important point 213 

is that diagnostic performance of radiomics models should systematically be compared to 214 

conventional parameters to really appreciate the added value of AI-related methods in each 215 

clinical indication before implementation in clinical routine. Finally, an important effort is 216 

required to make radiomics data accessible at the individual level, providing an additional 217 

clinical tool to assist nuclear medicine physicians in their decisions. 218 

Psychiatric disorders are an exciting new field of application where the association of imaging 219 

and clinical data might foster the diagnosis and evaluation of these disorders. In fact, so far, 220 

their assessment relies almost exclusively on clinical interviews using the Diagnostic and 221 

Statistical Manual of Mental Disorders (DSM) nosography. Yet, the DSM reliability is regularly 222 

questioned by its iterative modifications, lack of reproducibility of current diagnoses, and 223 

https://link.springer.com/article/10.1007/s00259-023-06553-1#ref-CR18
https://link.springer.com/article/10.1007/s00259-023-06553-1#ref-CR19
https://link.springer.com/article/10.1007/s00259-023-06553-1#ref-CR20
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therapeutic resistance of many patients [21]. In this context, more transdiagnostic 224 

approaches are emerging, and PET and SPECT imaging could be particularly relevant to 225 

explore such disorders mainly characterized by dysfunction, in the absence of morphological 226 

lesions, with the possible implementation of various targets such as the perfusion, 227 

metabolism, neurotransmission and neuroinflammation, and especially the individual 228 

application of artificial intelligence tools for precision medicine [22]. In this line, machine 229 

learning classification from controls has suggested accurate performance to identify patients 230 

with attention-deficit and hyperactivity disorder using multimodal serotoninergic brain PET 231 

imaging [23], patients with cocaine dependence using brain perfusion SPECT imaging [24], 232 

patients with internet game disorder using metabolic brain PET imaging [25], and patients 233 

with major depression using serotoninergic PET imaging or brain metabolic PET imaging, also 234 

demonstrating the value of this last exploration to predict the response of deep brain 235 

stimulation in this context [26]. Machine-learned analysis of [18F]FDOPA PET scans of patients 236 

with schizophrenia also showed good performance for identifying treatment responders and 237 

non-responders, with large potential healthcare cost savings [27]. This translation from 238 

research to clinical applications will need more numerous multicentric studies and to be 239 

supported by a paradigm change in psychiatry towards modern approaches of precision 240 

medicine. 241 

 242 

 243 

 244 

 245 
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