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Function of Centriolar Satellites and
Regulation by Post-Translational
Modifications
Clotilde C. N. Renaud and Nicolas Bidère*

CNRS, CRCINA, INSERM, Université de Nantes, Nantes, France

Centriolar satellites are small membrane-less granules that gravitate around the
centrosome. Recent advances in defining the satellite proteome and interactome have
unveiled hundreds of new satellite components thus illustrating the complex nature of
these particles. Although initially linked to the homeostasis of centrosome and the
formation of primary cilia, these composite and highly dynamic structures appear to
participate in additional cellular processes, such as proteostasis, autophagy, and cellular
stress. In this review, we first outline the main features and many roles of centriolar
satellites. We then discuss how post-translational modifications, such as phosphorylation
and ubiquitination, shape their composition and functions. This is of particular interest as
interfering with these processes may provide ways to manipulate these structures.
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INTRODUCTION

The centrosome is an organelle that consists of two structural sub-components: A pair of orthogonal
centrioles, surrounded by a cloud of pericentriolar material. This serves as the primary microtubule
organizing center (MTOC) in a large variety of animal cells and acts as a multifunctional platform for
numerous signaling processes such as cell cycle progression, mitosis, and ciliogenesis. With the
democratization of electron microscopy in the second half of the 20th century, several groups
observed electron-dense particles of 70–100 nm in diameter surrounding the centrosome, which they
coined centriolar satellites (Bessis and Breton-Gorius, 1958; Bernhard and de Harven, 1960; de-Thé,
1964). However, these small non-membranous structures remained enigmatic until the mid-1990s
with the discovery of the Pericentriolar Material 1 protein (PCM1) in human cells using human
autoimmune serum (Balczon et al., 1994). By cloning the Pcm1 ortholog from Xenopus and
demonstrating its presence within these electron-dense granules by immunogold electron
microscopy, Kubo and others subsequently established PCM1 as a bona fide centriolar satellite
marker in cells (Kubo et al., 1999). It was further discovered that most centriolar satellite components
display diffuse motility along microtubules in a dynein-dependent manner, are required for the
assembly of centrosomal proteins, and undergo cell cycle-dependent assembly and disassembly
(Kubo et al., 1999; Dammermann and Merdes, 2002; Conkar et al., 2019). Centriolar satellites were
also shown to play a role in the cargo trafficking to the centrosome and the primary cilium, thereby
orchestrating ciliogenesis (Figure 1) (Tollenaere et al., 2015a).

The founding centriolar satellite member PCM1 is a large (>230 kDa) scaffold protein, crucial for
the maintenance and function of this multiprotein network (Wang et al., 2016). Accordingly,
mutation or depletion of PCM1 disassembles the centriolar satellites and leaves cells devoid of
satellites. PCM1 is composed of 8 coil-coiled domains that allow its self-aggregation and the binding
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of other satellite components, including CEP131, CEP290, OFD1,
or MIB1 (Wang et al., 2016). The initial view was that, for a
protein to be a part of centriolar satellites, three criteria must be
met: 1) it localizes in the vicinity of the centrosome, 2) it
physically interacts with PCM1, and 3) it is redistributed to
the cytoplasm upon microtubule network disruption (Kubo
et al., 1999; Dammermann and Merdes, 2002; Kubo and
Tsukita, 2003). This classification led to the identification of
>65 centriolar satellite resident proteins. However, the
situation is likely to be far more complicated. Strikingly,
components of satellites are not necessarily encircling the
centrosome and can be also found around the nucleus, at
basal bodies, or dispersed in the cytoplasm, depending on the
cell type and differentiation state (Kubo and Tsukita, 2003;
Vladar and Stearns, 2007; Srsen et al., 2009; Odabasi et al.,
2020). Two recent studies investigating the proteome and
interactome of centriolar satellites underscored the composite
and highly complex nature of these structures (Gheiratmand
et al., 2019; Quarantotti et al., 2019). This work led to the
identification of 223 PCM1-associated proteins and the
characterization of 660 proteins that interact with 22 satellite
proteins, with a 40% overlap (Gheiratmand et al., 2019;
Quarantotti et al., 2019). Hence, different subgroups of
centriolar satellite proteins may exert distinct functions within

cells (Odabasi et al., 2020). Despite a strong effort put into
elucidating the composition and interactions between satellite-
associated proteins [for recent exhaustive reviews, please see
(Tollenaere et al., 2015a; Hori and Toda, 2017; Odabasi et al.,
2020; Prosser and Pelletier, 2020)], the molecular basis for
centriolar satellites assembly and localization remains
enigmatic. Here, we describe the main roles ascribed to
centriolar satellites and discuss how post-translational
modifications regulate their organization and functions.

FUNCTIONS OF CENTRIOLAR SATELLITES

Participation in the Homeostasis of
Centrosome
Centriolar satellites gravitate around the centrosome and are
intimately linked to this organelle. Comprehensive analyses of
the centriolar satellite proteome revealed that a significant subset
of proteins is shared between centrosome and centriolar satellites.
For instance, almost half of the known centrosome proteome was
detected in centriolar satellites in chicken cells (Quarantotti et al.,
2019). In human cells, an overlap of approximately 40% was
found between the interactome of the centriolar satellites and that
of the centrosome (Gheiratmand et al., 2019). Centriolar satellites

FIGURE 1 | Centriolar Satellites participate in a variety of cellular Functions. Centriolar satellites shuttle back and forth on microtubules to control the abundance of
centrosomal proteins. This could explain the role of satellites in centrosome duplication and separation, spindle pole assembly, and chromosome segregation. These site
storage properties have also been linked to neurogenesis. To preserve centrosome organization and stability, centriolar satellites can be degraded in GABARAP-
dependent autophagosomes and via the ubiquitin-proteasome system (UPS). Conversely, the satellite component PCM1 regulates GABARAP level and
GABARAP-dependent autophagic flux. Centriolar satellites also participate in primary cilium formation and function. Finally, satellites shape cellular proteostasis and
thereby may participate in functions beyond centrosomal and ciliary functions.
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have been suggested to function as temporary storage sites to
finely tune the abundance of centrosomal proteins (Figure 1). In
line with this, centriolar satellites allow the transport of selected
proteins, including Nek2A and CaMKIIβ, to the centrosome
whilst limiting others (Hames et al., 2005; Puram et al., 2011).
This PCM1-dependent modulation of CaMKIIβ abundance at
the centrosome was proposed to control its function in dendrite
patterning and neuronal connectivity in mammalian brains
(Puram et al., 2011). In the brain, PCM1 also interacts with
the centrosome-associated protein Hook3 (Ge et al., 2010). Such
binding allows proper protein assembly at the centrosome and
thereby prevents overproduction of neurons and premature
depletion of the neural progenitor pool in the developing
cortex (Ge et al., 2010). Further supporting the idea that
centriolar satellites “feed” the centrosome, several centriolar
satellite components were linked with proper centrosome
duplication, separation, spindle pole assembly, and
chromosome segregation (Figure 1) (Oshimori et al., 2009;
Kim and Rhee, 2011). This interplay between satellites and
centrosome relies on the capacity of centriolar satellites to
crawl along microtubules anchored to the centrosome. The
physical coupling between centriolar satellites and
microtubule-associated motor proteins such as dynein are
mediated by several satellite components, including BBS4
(Kim et al., 2004), Par6α (Kodani et al., 2010), or CEP290
(Kim et al., 2008). In keeping with this, several studies support
a role for centriolar satellites in microtubule organization, further
drawing a parallel with the MTOC function of the centrosome.
First, the abundance of centrin, pericentrin, and ninein, known
regulators of microtubule anchorage to centrosomes, is reduced
in the absence of PCM1, thereby disturbing the microtubule
network (Dammermann and Merdes, 2002). Similarly, the
silencing of satellite residents BBS4 or CEP290 also impairs
microtubules organization (Dammermann and Merdes, 2002;
Kim et al., 2004; Kim et al., 2008). Conversely, the
microtubule network is essential to maintain centriolar
satellites integrity, and microtubules depolymerization drives
the dispersion of centriolar satellites from the pericentriolar
region to the entire cytoplasm (Dammermann and Merdes,
2002).

Orchestration of Ciliogenesis
The primary cilium is a small microtubule-based structure that
protrudes from the cell body and acts as a “sensing antenna” to
detect and integrate various extracellular signals, such as proteins,
low molecular weight chemicals, light, and mechanical stimuli
(Malicki and Johnson, 2017). The primary cilium is composed of
a microtubule-based scaffold core structure called axoneme,
surrounded by a ciliary membrane that is continuous with the
plasma membrane. The axoneme originates from the basal body,
which is a differentiated centrosome. The formation of primary
cilium occurs during the early G1 or G0 phases, whereas its
disassembling precedes cell division. Defects in primary cilia
formation can lead to a wide range of inherited developmental
and degenerative diseases, called ciliopathies. Because of the
pleiotropic roles of primary cilia, ciliopathies are associated
with a broad spectrum of symptoms, from polydactyly, retinal

degeneration, and obesity to cystic kidney disease, and
neurodevelopmental defects (Waters and Beales, 2011; Malicki
and Johnson, 2017). There is now a growing body of literature
that supports a role for centriolar satellites in ciliogenesis. First,
human retina pigment epithelial (RPE-1) cells knockout for
PCM1 by CRISPR/Cas9 or silenced for various centriolar
satellite proteins display impaired ciliogenesis (Kim et al.,
2008; Lee and Stearns, 2013; Klinger et al., 2014; Staples et al.,
2014; Wang et al., 2016; Conkar et al., 2017; Odabasi et al., 2019).
The deletion of PCM1 in the kidney epithelial cell line IMCD3
also drastically reduces primary cilia assembly and function
(Odabasi et al., 2019). Moreover, mutations in genes encoding
for centriolar satellite components were reported to cause failure
or dysfunction of primary cilia in ciliopathies (Valente et al., 2006;
Hori and Toda, 2017; Prosser and Pelletier, 2020). Of note, acute
or chronic deletion of centriolar satellites may give different
phenotypes likely due to a compensation phenomenon. This is
the case of CEP131, whose targeting by siRNA leads to defect in
ciliogenesis, whereas gene deletion has no effect (Hall et al., 2013).

How centriolar satellites participate in ciliogenesis is complex,
as they likely contribute to both primary cilium formation and
function (Figure 1). For instance, centriolar satellites were linked
to the recruitment of the BBSome, a ciliary trafficking multi-
protein complex, to the primary cilium. Five members of the
BBSome (BBS2, BBS4, BBS7, BBS8, and BBS9) are part of the
satellite proteome (Quarantotti et al., 2019). BBS4 was further
shown to interact with PCM1, CEP131, and CEP290, and its
recruitment to the basal body is tightly controlled by CEP131
(Chamling et al., 2014). In addition, the centriolar satellite
component SSX2IP is a factor for microtubule anchoring to
both centrosome and basal body (Hori et al., 2014).
Accordingly, SSX2IP is required for efficient recruitment of
the BBSome to the cilium, and its silencing causes shortening
of cilium length (Klinger et al., 2014). Centriolar satellites also
sequester negative regulators of ciliogenesis away from the basal
body during cilia formation, such as the E3 Ubiquitin ligase
Mindbomb 1 (MIB1) (Wang et al., 2016). Moreover, centriolar
satellites regulate the recruitment of the intraflagellar transport
(IFT) machinery, which is essential for the movement of
complexes along the axoneme and for the sorting of signaling
receptors to the ciliary membrane (Malicki and Johnson, 2017).
For example, OFD1 is necessary for distal appendage formation,
IFT88 recruitment, and primary cilia formation, and its removal
from centriolar satellites by autophagy promotes ciliogenesis
(Tang et al., 2013). In keeping with this, OFD1 mutations in
humans cause a dysfunction in the formation of primary cilia and
disorders such as oral-facial-digital syndrome, Joubert syndrome,
and nephronophthisis-related ciliopathies. Finally, centriolar
satellites have also been linked to the Hedgehog pathway, a
signal transduction pathway that requires functional primary
cilia (Prosser and Pelletier, 2020). In cells lacking satellites but
still forming cilia, the accumulation of Hedgehog receptor
Smoothened is reduced in cilia and this prevents the activation
of target gene expression (Goetz et al., 2009; Wheway et al., 2018;
Odabasi et al., 2019; Akhshi and Trimble, 2021). Altogether, these
examples illustrate the crucial role played by centriolar satellites
during ciliogenesis.
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Regulation of Cellular Proteostasis
With our improved understanding of the role of centriolar
satellites in ciliogenesis, new paradigms linking these still
enigmatic structures to functions beyond the formation of
primary cilia have emerged. Several reports now connect
satellites to the maintenance of proteostasis (Figure 1). For
instance, the loss of PCM1 causes a decrease in the abundance
of several centriolar satellite components (Villumsen et al., 2013;
Wang et al., 2016). By contrast, MIB1 protein levels are increased
in satellite-depleted cells (Villumsen et al., 2013; Wang et al.,
2016; Douanne et al., 2019). Recently, Odabasi et al carried out a
quantitative transcriptomic and proteomic profiling in satellite-
depleted epithelial IMCD3 cells (Odabasi et al., 2019). Although
no overt change was observed in the global transcriptome, the
proteome was significantly altered, as nearly 300 proteins were
downregulated while 300 were upregulated. In addition to
categories related to “centrosome”, “cell proliferation” and
“microtubules”, cellular processes related to the actin
cytoskeleton, cell migration and adhesion, endocytosis,
neuronal processes, and metabolic processes were perturbed,
suggesting functions beyond the centrosome/cilium complex
(Odabasi et al., 2019). Further echoing a role for centriolar
satellites in the control of proteostasis, the loss of BBS4 or
OFD1 alters the abundance of transducers of the Wnt,
Hedgehog, or Notch signaling pathways (Gerdes et al., 2007;
Liu et al., 2014). From a molecular standpoint, BBS4 and OFD1
physically interact with centrosomal subunits of the proteasome
and control its composition and activity (Liu et al., 2014). This
function ascribed to centriolar satellites is however not restricted
to the centrosomal and ciliary contexts, as BBS1, BBS4, or OFD1
also govern the proteasomal degradation of the NF-κB inhibitor
IκBα, and thereby the activity of the transcription factor (Liu
et al., 2014). Collectively, these examples highlight the
involvement of centriolar satellites in the control of
proteostasis and the need to further explore their contribution
in functions beyond the centrosome and ciliogenesis.

POST-TRANSLATIONAL MODIFICATIONS
TIGHTLY REGULATE CENTRIOLAR
SATELLITES
The dynamic and disparate nature of centriolar satellites implies
de facto the existence of tight regulation processes. Over the last
decade, a subtle choreography of phosphorylation,
ubiquitination, and selective degradation has been shown to
shape these structures.

Regulation by Phosphorylation
Centriolar satellites are versatile structures that disappear during
mitosis and reappear when cells proceed to interphase (Kubo
et al., 1999; Dammermann and Merdes, 2002; Kubo and Tsukita,
2003). Yet, these drastic changes occur without affecting the
overall abundance of PCM1 and other centriolar satellite
elements, thus suggesting that they are regulated through post-
translational modifications. The phosphorylation of PCM1
by an array of kinases was proposed to contribute to the

cell-cycle-dependent remodeling of centriolar satellites. First,
PCM1 phosphorylation on its Serine residue 372 by PLK4
during the G1 phase is essential for its dimerization and
scaffolding activity, allowing for centriolar satellites integrity,
centriole duplication, and ciliogenesis (Hori et al., 2016). In
addition to PCM1, PLK4 phosphorylates CEP131 on S78,
thereby maintaining centriolar satellites stability (Denu et al.,
2019). PCM1 also undergoes phosphorylation during the G2
phase and mitosis. Notably, Cyclin-dependent kinase 1 (CDK1)
phosphorylation of PCM1 on the Threonine in position 703,
prior to entry in mitosis, allows the recruitment of PLK1, which
then phosphorylates PCM1 on the S110 residue (Wang et al.,
2013). Accordingly, PLK1 is involved in primary cilia
resorption, further illustrating the relationship between
ciliogenesis, centriolar satellites dynamic, and cell cycle
regulation (Wang et al., 2013). Moreover, the kinase activity
of the dual-specificity tyrosine-phosphorylation-regulated
kinase 3 (DYRK3) has recently been demonstrated to drive
the dispersal of several membrane-less structures including
centriolar satellites during mitosis (Figure 2A) (Rai et al., 2018).

In 2013, Villumsen et al elegantly showed that
phosphorylation of some centriolar satellite proteins also
occurs in cells exposed to external cues such as UV radiation,
heat shock, and transcription blocks (Villumsen et al., 2013).
These cellular stresses drive a drastic relocation of a number of
satellite components to the cytosol, in a p38α-dependent manner.
It was subsequently demonstrated that p38-activated
downstream kinase MK2 phosphorylates two residues on
CEP131 (S47 and S78), thus generating direct binding sites for
14-3-3 proteins, which isolates CEP131 into the cytosol and
prevent the formation of new centriolar satellites (Figure 2A)
(Tollenaere et al., 2015b).

Regulation by the Ubiquitin-Proteasome
System
Ubiquitination refers to the post-translational modification, by
which ubiquitin is added to an acceptor Lysine residue on a target
substrate. Ubiquitination can consist of the binding of one
ubiquitin moiety (mono-ubiquitination) or of poly-ubiquitin
chains, as ubiquitin itself is a substrate of ubiquitination at 8
different positions (Clague et al., 2019). Depending on the cellular
context, this vast combination of chains, often referred to as the
ubiquitin code, changes the fate of a substrate, ie abundance,
activation, or location (Clague et al., 2019). Given its crucial role
in nearly all cellular processes in Eukaryotes, it is not a surprise
that ubiquitination also tightly controls centriolar satellites. A
first link came with the discovery that blocking the Ubiquitin-
Proteasome System (UPS) results in the accumulation of various
centrosome proteins at the pericentriolar material and to an
enrichment of PCM1 containing centriolar satellites, consistent
with a constant turnover of pericentriolar material proteins
(Didier et al., 2008). A cornerstone is MIB1. This E3 ligase is
partly found at the centrosome and the centriolar satellites and
was reported to mark a specific subset of centriolar satellite
proteins with mono-ubiquitin or poly-ubiquitin chains
(Figure 2B) (Prosser and Pelletier, 2020). Known satellite
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substrates of MIB1 include PCM1, CEP131, CEP290, CCDC14,
KIAA0753, or OFD1. MIB1-mediated poly-ubiquitination of
PCM1 and CEP131 was shown to cause their proteasomal
degradation, thereby reducing ciliogenesis (Wang et al., 2016).
Accordingly, PCM1 and CEP131 were stabilized and ciliogenesis
increased without MIB1. Interestingly, PCM1 appears to
sequester MIB1 at the centriolar satellites to maintain it
inactive (Wang et al., 2016). In keeping with this, MIB1 also

regulates the ciliogenesis regulator TALPID3 (also known as
KIAA0586) (Wang et al., 2016), and participates via PCM1 in
the regulation of GABARAP (GABA Type A Receptor-
Associated Protein) turnover (Joachim et al., 2017). Finally,
MIB1 was also shown to maintain centriolar satellites integrity
through the mono-ubiquitination of PCM1, CEP131, and
CEP290 (Villumsen et al., 2013). Nevertheless, additional E3
ligases, besides MIB1, are likely involved in the homeostasis of

FIGURE 2 | Post-translational control of Centriolar Satellites. (A), Centriolar satellites are drastically reorganized during mitosis. Kinases including PLK1, CKD1,
DYRK3, and PLK4 phosphorylate the scaffold PCM1 and control its properties and location. In response to cellular stresses such as UV radiation, heat shock, or
transcription block, MK2 phosphorylates CEP131 to allow binding of 14-3-3 proteins and satellites dispersal. (B), The E3 ligase MIB1 plays counterposing role in the
homeostasis of centriolar satellites. By stapling mono-ubiquitin onto several components, MIB1 maintains satellites integrity. MIB1 also adds poly-ubiquitin chains
to PCM1 and CEP131 and marks them for proteasomal degradation. This is counteracted by the deubiquitinases CYLD and USP9X. (C), PCM1 binds to the autophagy
regulator GABARAP and allows the selective turnover of satellites components in a process called doryphagy.
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centriolar satellites. Indeed, several conserved E3 ligases were
identified in the satellite proteome (Quarantotti et al., 2019).
Moreover, the E3 ligasesWWP2 and TRIM9 interact with PCM1,
but their functions remain unknown (Nielsen et al., 2018). Lastly,
UBR5 ubiquitinates the centriolar satellite component CSPP1
(centrosome and spindle pole associate protein 1), which
regulates centriolar satellite localization and organization
(Shearer et al., 2018).

Ubiquitination is a reversible process, and a family of proteases
called deubiquitinating enzymes (DUBs) is in charge of selectively
cleaving ubiquitin chains (Clague et al., 2019). Recently, two
DUBs were proposed to counteract the UPS at the centriolar
satellites (Figure 2B). First, the DUB Cylindromatosis (CYLD)
removes ubiquitin chains bound to MIB1 to limit its abundance
and activity, thus preventing UPS-mediated degradation of
centriolar satellite components (Douanne et al., 2019).
Ubiquitin Specific Peptidase 9 X-Linked (USP9X) also
physically binds to CEP131 and PCM1, and prevents their
proteasomal degradation, hence maintaining centriolar satellite
integrity (Li et al., 2017a; Han et al., 2019). Interestingly, USP9X
directly trims ubiquitin chains attached to PCM1 and CEP131 to
limit their elimination. Yet, removing MIB1 counteracts the effect
of USP9X silencing. The central role of USP9X is further
illustrated by the identification of mutations underlying
ciliopathies in human patients (Reijnders et al., 2016).

Regulation by Autophagy
In 2013, two pioneer studies revealed an unexpected role for
autophagy, a fundamental eukaryotic process that orchestrates
the safe disposal of damaged proteins and organelles to
lysosomes, in either restricting or promoting the formation of
the primary cilium, notably by targeting centriolar satellite
components (Pampliega et al., 2013; Tang et al., 2013). More
recently, it was discovered that a subset of centriolar satellites also
contains the autophagy regulator GABARAP, a mammalian
ortholog of the yeast Atg8 required for the maturation of
autophagosome during autophagy (Joachim et al., 2017). A
seminal work by Joachim et al showed that a pool of PCM1
directly binds GABARAP and protects it from MIB1-directed
proteasomal degradation (Figure 2C) (Joachim et al., 2017).
Holdgaard et al subsequently revealed that centriolar satellite
proteins accumulate in autophagy-deficient cells, forming large
and abnormal satellites, thus reinforcing the idea that centriolar
satellites are substrates for autophagy (Holdgaard et al., 2019).
Interestingly, PCM1 interaction with GABARAP appears
essential for PCM1 degradation and loss of centriolar satellites
stability. This selective turnover of centriolar satellite components
by autophagy, a process named doryphagy, may preserve
centrosome organization and stability (Holdgaard et al., 2019).

CONCLUDING REMARKS

Over the last decade, a large body of work has expanded our
knowledge of the complex and highly dynamic nature of
centriolar satellites. Although it has become clear that these
structures play a crucial role in maintaining centrosome

homeostasis, in orchestrating ciliogenesis, and cellular
proteostasis, the molecular basis behind these functions
continues to be elucidated. In addition, whether centriolar
satellites are a pool of homogenous or heterogeneous
structures remains unclear. In that view, the recent
characterization of the global composition of centriolar
satellites unveiled hundreds of partners and offers as many
putative new layers of regulation to investigate (Gheiratmand
et al., 2019; Quarantotti et al., 2019). In keeping with this, 19
kinases, 20 E3 ligases, and 4 DUBs were found in the interactome
of centriolar satellites (Gheiratmand et al., 2019). However,
centriolar satellites may also regulate the function of these
enzymes. Accordingly, centriolar satellites were recently shown
to limit the localization, abundance, and activity of the kinase
Aurora kinase A (AURKA) (Arslanhan et al., 2021). As a
consequence, the activation of AURKA driven by satellite
depletion causes defects in ciliogenesis. Finally, whether
satellites exert functions beyond ciliogenesis and centrosomal
homeostasis is still an open question. Hints may come from the
discovery that satellites are rapidly redistributed into the cytosol
in response to a range of cellular stresses (Villumsen et al., 2013;
Tollenaere et al., 2015b). It would be interesting to investigate
whether satellites serve as cellular stress sensors and whether the
composition and the interactome of satellites are changed in
response to external cues. On a different note, centrosomes were
recently shown to function as a platform for the assembly and
activity of the NLRP3 inflammasome, a critical component of the
innate immune system (Li et al., 2017b; Magupalli et al., 2020).
Whether centriolar satellites participate in such signaling
pathways is unknown. Future work is therefore required to
define the landscape of the functions governed by centriolar
satellites.
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