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ORIGINAL RESEARCH

Clonal Hematopoiesis Is Associated With 
Long-Term Adverse Outcomes Following 
Cardiac Surgery
Sandro Ninni , MD, PhD; Rocio Vicario, PhD; Augustin Coisne, MD, PhD; Eloise Woitrain , PhD; 
Amine Tazibet, MD; Caitlin M. Stewart , PhD; Luis A. Diaz Jr, PhD; James Robert White , PhD; 
Mohammed Koussa, MD; Henri Dubrulle, MD; Francis Juthier , MD, PhD; Marie Jungling, MD;  
André Vincentelli, MD, PhD; Jean-Louis Edme , PhD; Stanley Nattel , MD; Menno de Winther , PhD; 
Frederic Geissmann , MD, PhD; David Dombrowicz , PhD; Bart Staels , PhD*; David Montaigne , MD, PhD*

BACKGROUND: Cardiac surgery triggers sterile innate immune responses leading to postoperative complications. Clonal he-
matopoiesis (CH) is associated with short-term inflammation-mediated outcomes after cardiac surgery. The impact of CH on 
long-term postoperative outcomes remains unknown.

METHODS AND RESULTS: In this cohort study, patients undergoing elective cardiac surgery were included from January 2017 to 
September 2019. Patients were screened for CH using a predefined gene panel of 19 genes. Recorded clinical events were 
all-cause death, major adverse cardiac and cerebral events including cardiovascular death, myocardial infarction or non-
scheduled coronary revascularization, stroke, and hospitalization for acute heart failure. The primary study outcome was time 
to a composite criterion including all-cause mortality and major adverse cardiac and cerebral events. Among 314 genotyped 
patients (median age: 67 years; interquartile range 59–74 years), 139 (44%) presented with CH, based on a variant allelic fre-
quency ≥1%. Carriers of CH had a higher proportion of patients with a history of atrial fibrillation (26% for CH versus 17% for 
non-CH carriers, P=0.022). The most frequently mutated genes were DNMT3A, TET2, and ASXL1. After a median follow-up 
of 1203 [813–1435] days, the primary outcome occurred in 50 patients. After multivariable adjustment, CH was independently 
associated with a higher risk for the primary outcome (hazard ratio, 1.88 [95% CI, 1.05–3.41], P=0.035). Most adverse events 
occurred in patients carrying TET2 variants.

CONCLUSIONS: In patients undergoing cardiac surgery, CH is frequent and associated with a 2-fold increased long-term risk 
for major adverse clinical outcomes. CH is a novel risk factor for long-term postcardiac surgery complications and might be 
useful to personalize management decisions.

REGISTRATION: URL: https://​www.​clini​caltr​ials.​gov; Unique identifier: NCT03376165.

Key Words: cardiac surgery ■ clonal hematopoiesis ■ heart failure ■ inflammation ■ survival

Despite major improvements in nonsurgical tech-
niques (eg, percutaneous aortic valve replace-
ment or edge-to-edge mitral repair), cardiac 

surgery is still among the most frequent major surgi-
cal procedures worldwide. However, the proportion of 
patients at high risk for postoperative complications 

Correspondence to: Sandro Ninni, MD, PhD and David Montaigne, MD, PhD, Department of Clinical Physiology and Echocardiography, University Hospital 
CHU Lille, Bd Jules Leclercq, 59037 Lille, France. Email: sandro.ninni@chu-lille.fr and david.montaigne@chu-lille.fr

*B. Staels and D. Montaigne are co-senior authors.

This article was sent to John S. Ikonomidis, MD, PhD, Guest Editor, for review by expert referees, editorial decision, and final disposition.

Supplemental Material is available at https://​www.​ahajo​urnals.​org/​doi/​suppl/​​10.​1161/​JAHA.​123.​034255

For Sources of Funding and Disclosures, see page 10.

© 2024 The Author(s). Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative 
Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use 
is non-commercial and no modifications or adaptations are made. 

JAHA is available at: www.ahajournals.org/journal/jaha

D
ow

nloaded from
 http://ahajournals.org by on D

ecem
ber 5, 2024

https://orcid.org/0000-0001-6179-6098
mailto:sandro.ninni@chu-lille.fr
mailto:david.montaigne@chu-lille.fr
https://orcid.org/0000-0002-9913-9023
https://orcid.org/0000-0002-5070-4810
https://orcid.org/0000-0002-7079-8914
https://orcid.org/0000-0002-7535-9179
https://orcid.org/0009-0001-5586-539X
https://orcid.org/0000-0001-6580-581X
https://orcid.org/0000-0002-5565-3311
https://orcid.org/0000-0002-4038-6636
https://orcid.org/0000-0001-5029-2468
https://orcid.org/0000-0002-0485-8923
https://orcid.org/0000-0002-3784-1503
https://orcid.org/0000-0002-2346-863X
https://www.clinicaltrials.gov
mailto:sandro.ninni@chu-lille.fr
mailto:david.montaigne@chu-lille.fr
https://www.ahajournals.org/doi/suppl/10.1161/JAHA.123.034255
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.ahajournals.org/journal/jaha
http://crossmark.crossref.org/dialog/?doi=10.1161%2FJAHA.123.034255&domain=pdf&date_stamp=2024-08-29


J Am Heart Assoc. 2024;13:e034255. DOI: 10.1161/JAHA.123.034255� 2

Ninni et al� Prognostic Impact of CH After Cardiac Surgery

remains significant and raises issues in terms of periop-
erative management.1 Identifying markers of long-term 
postoperative outcomes following cardiac surgery is 
a major topic of interest to provide tailored personal-
ized medicine that improves therapeutic choices and 
perioperative management.

Cardiac surgery triggers a sterile systemic in-
flammatory response to which release of damage-
associated molecular patterns is a major contributor.2 
Immune responses induced by damage-associated 
molecular patterns enhance myocardial recruitment of 
leukocytes that promote wound healing. On the other 
hand, postoperative inflammation is associated with 
postoperative complications like postoperative atrial 
fibrillation (AF) and acute kidney injury.3–5 As such, the 
identification of factors involved in the postoperative in-
flammatory response and predictive of postoperative 
outcomes is of great importance.

During aging somatic mutations occur in hema-
topoietic stem cells and provide a selective growth 
advantage when occurring in driver genes such as 

DNMT3A, TET2, ASXL1, TP53, and JAK2.6 This results 
in a fraction of circulating leukocytes carrying these 
mutations, a state referred to as clonal hematopoiesis 
(CH). CH was first associated with an increased risk for 
hematological malignancies.7 However, several studies 
associated CH with adverse cardiovascular outcomes 
such as coronary artery disease, heart failure (HF), or 
atrial fibrillation.8–13 The mechanistic link between CH 
and adverse cardiovascular outcomes is not fully un-
derstood but involves a shift of leukocytes toward a 
proinflammatory phenotype leading to chronic inflam-
mation.14–17 We recently demonstrated that CH is as-
sociated with increased risk for postoperative AF after 
cardiac surgery.5 Moreover, we found a transcriptomic 
signature indicative of an activated preoperative phe-
notype in circulating classical monocytes from patients 
with CH and an accumulation of proinflammatory 
monocyte-derived macrophages in the myocardium. 
Because CH was found to affect early postoperative 
outcomes, we hypothesize that CH might be associ-
ated with adverse long-term postoperative clinical out-
comes following cardiac surgery. Therefore, we here 
assessed long-term risk for all-cause death and major 
adverse cardiac and cerebral events (MACCE) after 
cardiac surgery according to CH status.

METHODS
Patient Cohort
The data that support the findings of this study are 
available from the corresponding author upon reason-
able request. The clinical cohort is part of the POMI-AF 
(Post-Operative Myocardial Incident and Atrial 
Fibrillation) study (NCT#03376165), approved by the 
institutional ethics committee (Comité de Protection 
des Personnes Ile de France V). Written informed con-
sent was obtained from all patients before inclusion. 
Patients (aged ≥18 years) referred to the cardiovascu-
lar surgery department at the Lille University Hospital 
(Lille, France) for cardiac surgery were included. The 
medical history of each patient was collected, tran-
sthoracic echocardiography and an ECG recorded to 
detect preexisting AF at baseline. Valvular surgery was 
defined as any surgery including aortic valve replace-
ment, mitral valve replacement, or any valve repair. 
Exclusion criteria were pregnancy, emergency surgery, 
and patients unable to give their consent.

Postoperative Outcomes
Patients underwent clinical follow-up after surgery. 
Data were obtained from medical records and inter-
views with the cardiologist or general practitioner of the 
patients. Recorded clinical events were all-cause death, 
MACCE including cardiovascular death, myocardial in-
farction or nonscheduled coronary revascularization, 

CLINICAL PERSPECTIVE

What Is New?
•	 Clonal hematopoiesis is frequent in a population 

of patients undergoing cardiac surgery, with an 
overall prevalence of 44% based on variant al-
lelic frequency ≥1%.

•	 Clonal hematopoiesis is associated with a 2-fold 
increased risk for major adverse clinical out-
comes following cardiac surgery.

•	 Clone size is a determinant of outcome, with 
patients with the largest clone size presenting 
with a 2.4-fold increased risk for adverse clini-
cal outcomes. Most events occurred in patients 
carrying TET2 mutation.

What Are the Clinical Implications?
•	 Clonal hematopoiesis is a novel risk factor for 

long-term postcardiac surgery complications 
and might be useful to personalize manage-
ment decisions.

•	 Targeting clonal hematopoiesis may be ben-
eficial to prevent adverse outcomes following 
surgery.

Nonstandard Abbreviations and Acronyms

CH	 clonal hematopoiesis
MACCE	 major adverse cardiac and cerebral 

events
VAF	 variant allelic frequency
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stroke, and hospitalization for acute HF. Each end point 
was centrally reviewed by 2 independent cardiologists 
who were blinded to patient CH status. In case of dis-
crepancy, the end point was decided after discussion 
with a third cardiologist.

Cardiovascular death was defined according to the 
International Classification of Diseases, Tenth Revision 
(ICD-10 codes I00–I78). Hospitalization for HF was de-
fined as hospitalization for symptoms of dyspnea or 
edema associated with bilateral rales, elevated venous 
pressure, interstitial or alveolar edema on chest X-ray, 
with the addition of intravenous diuretics or inotropic 
medications. Stroke was defined as a focal neurologic 
deficit, from a nontraumatic cause, associated with ev-
idence of a cerebral lesion on brain imaging (computed 
tomography or magnetic resonance imaging).

The primary end point of the study was a compos-
ite criterion including all-cause mortality and MACCE. 
MACCE alone and variant allelic frequency (VAF) quar-
tiles were examined in secondary analyses.

DNA Extraction, Library Preparation, and 
Sequencing
DNA from buffy coat samples was extracted with 
QIAamp DNA Micro Kit (Qiagen) following the manu-
facturer’s instructions and submitted to the Integrated 
Genomics Operation at the Memorial Sloan-Kettering 
Cancer Center for quality and quantity analysis, li-
brary preparation, and sequencing. DNA quality was 
measured with Tapestation 2200 and all samples 
had a DNA Integrity Number > 6. DNA quantity was 
measured with PicoGreen. For each sample, ~200 ng 
of genomic DNA were used for library construction 
using the KAPA Hyper Prep Kit (Kapa Biosystems 
KK8504) with 8 cycles of polymerase chain reaction. 
After sample barcoding, 2.5 ng to1 μg of each library 
were pooled and captured by hybridization with baits 
specific to 19 genes previously involved in hemato-
logical malignancies18 (Table S1). Capture pools were 
sequenced on the HiSeq 4000 sequencer, using the 
HiSeq 3000/4000 SBS Kit (Illumina) for PE100 reads. 
Samples were sequenced to a mean depth of cover-
age of 1175×. For detailed information on the sample 
quality control checks used to avoid potential sample 
or barcode mixups and contamination from external 
DNA, see.18

Mutation Data Analysis
For the analysis, FASTQ files were trimmed using 
trimmomatic(v0.36) and aligned using Bowtie2(v2.3.5) 
to GRCh37. Unique molecular identifiers were col-
lected to generate consensus collapsed FASTQs using 
fgbio(v0.8.0). These sequences were realigned using 
Bowtie2 and variant calling was performed using ver-
dict (v1.5.8). Common variants and single-nucleotide 

variants were annotated using SnpEff (v4.3), dbSNP 
common (v9606_b151), gnomAD (r2.1.1), and Clinvar 
(v20190408) and final variant calls reported. Each vari-
ant call was assigned a confidence score using a lo-
gistic regression model which estimates likelihood of 
reproducibility adjusting for variant depth, mutant al-
lele fraction, mutation type, and the background error 
rate in the sample. A minimum confidence score of >25 
was required for reporting.

Classification of Variants
Classification of somatic variants according to their 
pathogenicity was performed as follows: variants were 
classified as “deleterious” when the single-nucleotide 
variant is (1) predicted to affect protein function as 
determined by polymorphism phenotyping v2 (pos-
sibly and probably damaging) and sorting intolerant 
from tolerant (deleterious), or (2) reported as patho-
genic/likely pathogenic by ClinVar,19 or (3) oncogenic/
predicted oncogenic/likely oncogenic by OncoKb.20 
Variants were classified as “pathogenic” if reported 
as (1) pathogenic/likely pathogenic by ClinVar or (2) 
oncogenic/predicted oncogenic/likely oncogenic by 
OncoKb. These 2 databases report pathogenicity in 
cancer and other diseases, based on supporting evi-
dence from curated literature. For patients presenting 
multiple mutations, the highest VAF was considered for 
association between clone size and clinical outcomes. 
Germline variants were defined as variants presenting 
VAF ≥35% and defined as common variants in dbSNP 
(v9606_b151) or presenting at least 500 observations 
in gnomAD (r2.1.1).

Sample Size Calculation
We aimed at testing the potential association between 
the primary end point and 4 predefined predictors: 
CH, left ventricular (LV) dysfunction, age, and diabe-
tes, meaning that at least 40 events were needed ac-
cording to Concato and Peduzzi rules.21 Based on our 
previous publications,22,23 we expected an incidence of 
MACCE of 10% to 15% after a 4-year follow-up. As the 
primary end point was expected to be more frequent 
than MACCE, we thus needed to include at least 300 
patients.

Statistical Analysis
Continuous variables were tested for normality with the 
Shapiro test. Continuous variables with Gaussian dis-
tribution are given as mean±SD. Continuous variables 
with non-Gaussian distribution are given as median 
(interquartile range). Categorical variables are given 
as percentages of individuals. Bivariate comparisons 
were performed using the t test for normally distrib-
uted continuous variables or the Mann–Whitney U test 
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for not normally distributed variables. Bivariate com-
parisons of categorical variables were done with the 
χ2 test.

To assess the impact of CH on long-term postop-
erative outcomes, a log-rank test was performed as 
a first step and unadjusted hazard ratios (HRs; 95% 
CIs) were computed. Univariate Cox analysis was per-
formed to identify variables of interest for multivariable 
adjustment. A multivariable Cox model was then per-
formed and included CH status, age, LV dysfunction 
(defined as LV ejection fraction [EF] ≤40%), hyperten-
sion, history of AF, and preoperative estimated glomer-
ular filtration rate as competing variables and adjusted 
HRs (95% [CIs]) were computed. A value of P<0.05 
was judged to be statistically significant. All analyses 
were done using MedCalc v16.4 (Olstead, Belgium). 
The assumptions of Cox proportional model were 
verified from phreg procedure in SAS STAT software 
(SAS version 9.4; SAS Institute, Inc., Cary, NC) includ-
ing Schoenfeld residuals, Martingale residuals, and the 
symmetric transformation of the Martingale residuals.

RESULTS
A flow chart is provided in Figure  S1. A total of 342 
patients with available buffy coat samples were in-
cluded between January 2017 and September 2019. 
DNA sequencing, CH screening, and clinical follow-up 
were performed in 314 patients (Figure 1A; Figure S1). 
Median age was 67 (59–74), the median body mass 
index was 27 kg/m2 (24–31). The most frequent surger-
ies were isolated coronary artery bypass graft (46%) 
and lone valvular surgeries (33%). Ten percent of pa-
tients underwent coronary artery bypass graftcom-
bined with valvular surgery. Twenty-one percent (n=63) 
had a history of AF (Table 1).

Characterization of CH in the Cohort
Out of 314 patients, 139 (44%) presented with CH, 
based on a VAF ≥1%. Out of 314, 95 (30%) presented 
with a VAF ≥2% and 49/314 (16%) presented with a VAF 
≥5%. In line with previous publications,7 carriers of CH 
were older (carriers: 70 [61–76] versus noncarriers: 66 
[57–72], P=0.0013) (Table 1), with a prevalence of CH in 
patients >80 years old reaching 60% (Figure 1C). The 
VAF ranged from 1.02% to 31.6%; the mutations were 
mostly found in DNMT3A and TET2 (Figure 1E and 1F) 
and represented single-nucleotide variants. Among 
carriers of CH, 29% presented with multiple mutations 
(Figure 1G). The prevalence of multiple mutations did 
not increase with age (Figure 1D). We noticed a sig-
nificant variability in the distribution of VAF among in-
dividuals, regardless of the mutated gene, as reported 
in earlier studies,7 (Figure 1H). A higher proportion of 
patients with a history of AF was observed in carriers of 

CH (carriers: 26% versus noncarriers: 17%, P=0.022). 
There was no significant difference regarding surgery 
subtypes according to CH status. The complete list of 
variants found in the cohort is provided in Table S2.

Long-Term Outcomes Following Cardiac 
Surgery According to CH Status
After a median follow-up of 1203 (813–1435) days, the 
primary end point (all-cause mortality and MACCE) 
occurred in 50 patients, with 34 MACCEs and 16 
noncardiovascular deaths. MACCEs comprised 16 
cardiovascular deaths, 8 myocardial infarctions or un-
scheduled coronary revascularizations, 6 strokes, and 
16 hospitalizations for HF. The overall rate of intrahos-
pital death following cardiac surgery was 2.9% (1.7% 
for non-CH and 4.3% for carriers of CH, P value=0.17). 
The primary end point and MACCEs occurred in 17.6% 
and 12.4% of patients respectively. Furthermore, carri-
ers of CH presented a 2-fold higher risk for the primary 
end point (unadjusted HR, 2.17 [95% CI, 1.24–3.82], 
P=0.0079) (Figure  2A; Table  2; Table  S3) and also 
for MACCE (unadjusted HR, 2.15 [95% CI, 1.09–4.3], 
P=0.03) (Figure  2B; Table  2). At 90 days after sur-
gery, the primary outcome occurred in 3.4% (95% CI, 
2.02%–4.78%) of non-CH carriers and 7.2% (95% CI, 
5.01%–9.39%) of carriers of CH (log rank, P=0.07). 
At 6 months, the primary outcome occurred in 4.6% 
(3.02%–6.18%) of non-CH carriers and 8.6% (95% 
CI, 6.21%–11%) of carriers of CH (log rank, P=0.075). 
Univariate analysis revealed that age, hypertension, 
history of AF, LV dysfunction (defined as LVEF ≤40%) 
and preoperative estimated glomerular filtration rate 
were associated with the primary outcome (Table S3). 
CH remained associated with the primary end point 
and MACCE across the 2 applied multivariate models. 
For model 2, including age, hypertension, preoperative 
estimated glomerular filtration rate, LVEF, and history of 
AF as covariates, CH was associated with a higher risk 
for the primary end point (HR, 1.88 [95% CI, 1.05–3.41], 
P=0.035) and MACCE (HR, 2.14 [95% CI, 1.05–4.39], 
P=0.038) (Table 2; Tables S4 and S5). Schoenfeld re-
siduals are provided in Tables S6 through S9. Among 
the primary end point events, hospitalization for HF 
was the most frequent event occurring in carriers of 
CH, whereas noncardiovascular death was the most 
frequent event occurring in non-CH carriers (Figure 2D 
and 2E).

Further Characterization of CH According 
to Postoperative Outcomes
To better characterize the association between CH 
and postoperative outcomes, we next assessed the 
association between clone size (VAF%) and long-
term postoperative outcomes. Carriers of CH with the 
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lowest clone sizes (VAF <1st quartile, ie, VAF <1.7%) 
did not present a higher risk for the primary outcome 
nor MACCE. However, the risk for the primary end 
point consistently increased for the highest clone sizes 

(for VAF ≥4th quartile, ie, VAF ≥6.6%, HR, 2.55 [95% CI, 
1.56–5.64], P=0.02) (Table 3). Furthermore, the risk for 
the primary end point remained significantly higher in 
patients presenting the highest clone sizes, even after 

Figure 1.  CH prevalence and characteristics in the cohort.
A, Preoperative buffy coat DNA samples were sequenced for 19 genes commonly implicated in 
hematological malignancies in 314 patients undergoing cardiac surgery. B, Prevalence of CH according 
to VAF threshold. C, Prevalence of CH based on VAF≥1% according to age category. D, Prevalence of 
single or multiple variants according to age category. E, Distribution of VAF in the cohort. F, Most mutated 
genes and mutations subtypes. G, Prevalence of multiple mutations in the entire cohort. H, Distribution of 
VAF according to mutated gene. CH indicates clonal hematopoiesis; DEL, deletion; INS, insertion; ONP, 
oligonucleotide polymorphism; SNP, single nucleotide polymorphism; and VAF, variant allelic frequency.
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adjustment for covariates (age, hypertension, preop-
erative estimated glomerular filtration rate, history of 
AF and LV dysfunction) (for VAF ≥4th quartile HR, 2.36 
[95% CI, 1.05–5.32], P=0.037). Midrange clone sizes 
were also associated with a higher risk for MACCE (for 
second–third VAF quartiles, adjusted HR for model 2, 
2.71 [95% CI, 1.25–5.89], P=0.012).

Interestingly, most adverse events occurred in 
patients carrying TET2 variants (Figure  2F and 2H). 
Furthermore, the proportion of patients developing 
adverse outcomes was highest in TET2 carriers com-
pared with DNMT3A and ASXL1 (Figure 2G and 2I).

DISCUSSION
To the best of our knowledge, ours is the first report 
of an association between CH and long-term postop-
erative outcomes following cardiac surgery. Our study 
demonstrates that (1) CH is frequent in a population 
of patients undergoing cardiac surgery, with an over-
all prevalence of 44% based on VAF ≥1%, increasing 
to 60% in elderly patients; (2) CH is associated with 
a 2-fold increased risk for major adverse clinical out-
comes including all-cause mortality and MACCEs; 
and (3) clone size is a determinant of outcome, with 
patients presenting with the largest clone size pre-
senting a 2.4-fold increased risk for primary outcome. 

Furthermore, most events occurred in patients car-
rying TET2 mutation(s). These data suggest that CH 
assessment might improve the prediction of postop-
erative outcomes following surgery.

The prevalence reported in each CH study criti-
cally depends on screening methods applied and the 
studied population. The sensitivity of detecting driver 
mutations is highly dependent on sequencing depth. 
Both whole genome24 and whole exome sequenc-
ing8 are effective for identifying larger clones, whereas 
deeper coverage and error-corrected targeted se-
quencing techniques enable the detection of very 
small clones. When screening 74 predefined genes, 
Jaiswal et al. reported a prevalence of CH mutations 
of 17% and 10% in a cohort of elderly patients (me-
dian age of 70 years) with and without coronary artery 
disease, respectively.9 Using a gene panel including 
54 genes, Pascual-Figal et  al. reported a prevalence 
of CH of 39% in a cohort of 62 patients presenting HF 
with reduced EF.25 In contrast, recent data from the UK 
Biobank highlighted a lower CH prevalence of 5.45% in 
a lower cardiovascular risk population upon screening 
43 genes.10 Thus, a high prevalence of CH is expected 
in populations at high cardiovascular risk, especially 
when using large gene panels. The high burden of car-
diovascular comorbidities in our population is in line 
with the relatively high CH prevalence. A VAF threshold 
of 1% was applied to define CH status. A recent study 

Table 1.  Baseline Characteristics According to CH Status

Total (n=314) No CH (n=175) CH (n=139) P value

Age, y 67 (59–74) 65 (57–72) 70 (61–76) 0.0013*

Women, n (%) 98 (31) 55 (31) 43 (31) 0.92

Body mass index, kg/m2 27 (24–31) 27 (24–31) 27 (24–30) 0.91

History of diabetes, n (%) 102 (32) 49 (28) 53 (38) 0.057

Hypertension, n (%) 194 (62) 107 (61) 87 (63) 0.79

Current smoker, n (%) 84 (27) 48 (27) 36 (26) 0.76

History of atrial fibrillation, n (%) 63 (21) 27 (17) 36 (26) 0.022*

LVEF, % 60 (54–65) 60 (54–65) 60 (55–66) 0.65

LV dysfunction (LVEF≤40%), n (%) 22 (7) 15 (9) 7 (5) 0.22

Left atrial area, cm2 24 (20–27) 24 (20–27) 23 (20–28) 0.88

Preoperative creatinine, mg/L 9 (7–11) 9 (8–11) 9 (8–11) 0.30

Preoperative eGFR, mL/min per 1.73 m2 85.5 (70–97) 86 (70–100) 81 (69–93) 0.017*

Type of surgery

Isolated valvular surgery, n (%) 103 (33) 63 (36) 40 (29) 0.09

Isolated CABG, n (%) 144 (46) 83 (47) 61 (44)

Combined valvular surgery and CABG, n (%) 33 (10) 10 (6) 23 (17)

Other surgery, n (%) 34 (11) 19 (11) 15 (11)

Overall valvular surgery. n (%) 136 (43) 73 (42) 63 (45) 0.52

Overall CABG, n (%) 178 (57) 94 (54) 84 (60) 0.23

Variables are given as median [first quartile–third quartile], mean±SD or number (percentage). eGFR is based on Chronic Kidney Disease Epidemiology 
Collaboration equation (2021). CABG indicates coronary artery bypass graft; CH, clonal hematopoiesis; eGFR, estimated glomerular filtration rate; and LVEF, 
left ventricular ejection fraction.

*p value < 0.05.
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Figure 2.  Long-term prognostic impact of CH after cardiac surgery.
A, Kaplan–Meier curves according to CH status (based on VAF ≥1%) for the primary end point. B, Kaplan–Meier curves according 
to CH status (based on VAF ≥1%) for MACCE. C, Forrest plot providing unadjusted and age-adjusted hazard ratio for each clinical 
outcome. D, Proportion of primary end point events subtypes in non-CH carriers. E, Proportion of primary end point events subtypes 
in carriers of CH. F, Number of primary outcome events occurring for each mutated gene. G, Proportion of patients presenting primary 
end point events among patients carrying at least 1 mutation in the top 3 mutated genes (DNMT3A, TET2, and ASXL1). H, Number of 
MACCE events occurring for each mutated gene. I, Proportion of patients presenting MACCE events among patients carrying at least 
1 mutation in the top 3 mutated genes (DNMT3A, TET2, and ASXL1). CH indicates clonal hematopoiesis; HF, heart failure; MACCE, 
major adverse cardiac and cerebral events; MI, myocardial infarction; and VAF, variant allelic frequency.
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highlighted the potential relevance of lower threshold 
that may be linked to adverse clinical outcomes26 and 
raised questions about the clinically pertinent thresh-
old for assessing CH. Thus, this threshold was used 
to characterize the full spectrum of detectable CH and 
its clinical relevance for risk stratification. We identi-
fied a notable correlation between CH and adverse 
cardiovascular outcomes for clone sizes ranging from 
midrange to large, with VAF >1.7%. This finding further 
supports the notion of the negligible impact of small 
clone sizes, consistent with earlier research. The most 
frequently mutated genes in our study are in agreement 
with previous studies highlighting TET2 and DNMT3A 
as the most commonly mutated genes. Accumulating 
evidence suggests that, in addition to being highly 
prevalent, TET2 and DNMT3A mutations are highly rel-
evant for prediction of cardiovascular outcomes. Mas-
Peiro et al. screened for TET2 and DNMT3A variants 

in a cohort of 279 patients undergoing transfemoral 
aortic valve replacement. In this high-risk population, 
TET2 and DNMT3A CH variants were found in 33.3% 
of patients and were associated with increased risk for 
all-cause mortality.27

In our study, CH was associated with a 2-fold higher 
risk for the primary major adverse-event end point, in-
cluding all-cause mortality and major cardiovascular 
outcomes. The prognostic impact of CH has been pre-
viously assessed in various clinical settings. A recent 
phenome-wide association study, including >200 000 
individuals from the UK Biobank, revealed a strong as-
sociation between CH and HF, AF, and a composite of 
all cardiovascular disease for large clones in multivari-
able regression models.10 In a study of patients with 
HF and reduced EF, CH increased the risk of several 
HF-related outcomes including HF-related hospitaliza-
tion and mortality.25 In a recent study assessing the 

Table 2.  Adjusted Cox Model for CH vs Major Adverse Cardiovascular Outcomes

Primary end point MACCE*

HR (95% CI) P value HR (95% CI) P value

No CH, reference … … … …

CH (variant allelic frequency ≥1%)

Unadjusted 2.17 (1.24–3.82) 0.0079 2.15 (1.09–4.3) 0.030

Adjusted (model 1) 1.99 (1.12–3.55) 0.019 2.07 (1.03–4.29) 0.042

Adjusted (model 2) 1.88 (1.05–3.41) 0.035 2.14 (1.05–4.39) 0.038

Primary end point includes all-cause mortality and MACCEs. Model 1: CH and age were included. Model 2: CH, age, hypertension, history of atrial fibrillation, 
left ventricular dysfunction (defined as left ventricular ejection fraction ≤40%) and preoperative estimated glomerular filtration rate were included. CH indicates 
clonal hematopoiesis; HR, hazard ratio; and MACCE, major adverse cardiac and cerebral events.

*MACCE included stroke, unexpected coronary revascularization, hospitalization for heart failure, and cardiovascular death.

Table 3.  Cox Model for the Effect of Clone Size (VAF%) vs Major Adverse Cardiovascular Outcomes

Primary end point MACCE*

HR (95% CI) P value HR (95% CI) P value

No CH, reference … … … …

CH, VAF<Q1

Unadjusted 1.43 (0.53–3.82) 0.48 1.25 (0.36–4.39) 0.73

Adjusted (model 1) 1.33 (0.49–3.57) 0.58 1.21 (0.34–4.27) 0.77

Adjusted (model 2) 1.2 (0.44–3.26) 0.72 1.25 (0.35–4.48) 0.73

CH, Q1≤VAF<Q4

Unadjusted 2.34 (1.22–4.49) 0.011† 2.81 (1.32–5.98) 0.007†

Adjusted (model 1) 2.15 (1.11–4.16) 0.02† 2.71 (1.26–5.82) 0.011†

Adjusted (model 2) 2 (1.02–3.92) 0.043† 2.71 (1.25–5.89) 0.012†

CH, VAF≥Q4

Unadjusted 2.55 (1.56–5.64) 0.02† 1.66 (0.54–5.09) 0.37

Adjusted (model 1) 2.34 (1.05–5.21) 0.038† 1.60 (0.52–4.95) 0.41

Adjusted (model 2) 2.36 (1.05–5.32) 0.037† 1.74 (0.55–5.47) 0.34

Primary end point includes all-cause mortality and MACCEs. Q1: first VAF quartile among CH carriers (VAF <1.7%). Q4: fourth VAF quartile among carriers 
of CH (VAF ≥6.6%). Model 1: CH and age were included. Model 2: CH, age, hypertension, history of atrial fibrillation, left ventricular dysfunction (defined as left 
ventricular ejection fraction ≤40%), and preoperative estimated glomerular filtration rate were included. CH indicates clonal hematopoiesis; HR, hazard ratio; 
MACCE, major adverse cardiac and cerebral events; and VAF, variant allelic frequency.

*MACCE included stroke. unexpected coronary revascularization. hospitalization for heart failure, and cardiovascular death.
†p value < 0.05.
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prognostic impact of CH in patients presenting cardio-
genic shock, carriers of CH had worse short-term out-
comes, measured either as mortality or as a combined 
clinical end point of mortality or severe 30-day renal 
failure.28

The primary end point and MACCEs occurred in 
17.6% and 12.4% of patients respectively after a me-
dian follow-up of 1203 (813–1435) estimated glomer-
ular filfration rate days. The intrahospital mortality 
was 2.9%. These incidences are in line with previous 
studies. For instance, in a Danish nationwide cohort, 
the 30-day mortality following coronary artery bypass 
graft was 3.2%.29 A post hoc analysis of the SYNTAX 
(Synergy Between PCI [Percutaneous Coronary 
Intervention] With Taxus and Cardiac Surgery) and 
the EXCEL (Evaluation of XIENCE Versus Coronary 
Artery Bypass Surgery for Effectiveness of Left Main 
Revascularization) trials revealed that a composite 
of all-cause death, myocardial infarction, stroke, or 
ischemia-driven revascularization occurred in 14.0% 
and 20.9% of patients undergoing coronary artery 
bypass graft at 3 years, respectively.30 Higher rates of 
adverse events are also reported following aortic valve 
replacement surgery. In a multicenter study including 
consecutive patients with severe aortic stenosis and 
complex coronary artery disease undergoing aortic 
valve replacement, the rate of MACCE was 38.2% at 
5 years for patients with surgical valve replacement.31

The prognostic impact of CH after cardiac surgery 
has not been assessed previously. The mechanisms 
leading to adverse cardiovascular outcomes in carriers 
of CH are not well understood, but the relatively high 
proportion of events related to HF suggests a potential 
role of CH in ventricular remodeling. Such a mechanis-
tic link was previously shown in animal studies. Indeed, 
mice with Tet2-deficiency in hematopoietic cells dis-
played greater maladaptive cardiac remodeling and 
dysfunction in models of pressure overload hypertro-
phy and permanent coronary artery ligation, due to the 
activation of the inflammasome complex.32 In line, a 
recent study demonstrated in a mice model of HF with 
preserved EF that adoptive transfer of Tet2-deficient 
bone marrow exacerbated hallmarks of ventricular re-
modeling.33 Moreover, our group recently highlighted a 
preoperative immune shift in the human myocardium 
from carriers of CH, illustrated by the accumulation of 
proinflammatory monocyte-derived macrophages.5 As 
cardiac surgery triggers inflammatory responses and 
the recruitment of leukocytes that are involved in scar 
formation and the remodeling process, CH might be a 
major actor in adverse postoperative remodeling and 
HF-related outcomes.

Of note, most events occurred in patients carrying 
TET2 mutations, with a relatively high proportion of HF-
related events. In contrast, DNMT3A mutations were 
associated with lower event rates. In a previous study 

based on 5 cardiovascular cohorts that analyzed CH 
in relation to incident HF in >50 000 patients, a sig-
nificant association was found between TET2, ASXL1, 
and JAK2 mutations and risk for HF, whereas no signif-
icant association was found for DNMT3A mutations.11 
In line, a recent study suggests that non-DNMT3A 
CH is associated with incident coronary artery dis-
ease.34 The heterogeneity of association between 
clinical outcomes and mutation subtypes highlights 
the complexity of CH pathophysiology. A better un-
derstanding of the mutation-specific effects is a major 
area of interest in the field of CH that might be relevant 
to improving personalized therapeutic strategies. A re-
cent post hoc analysis of the CANTOS (Canakinumab 
Antiinflammatory Thrombosis Outcome Study) trial in-
vestigated the response to canakinumab in patients 
carrying CH variants35 and reported that patients har-
boring TET2 variants had numerically fewer major ad-
verse cardiovascular events while taking canakinumab 
compared with patients without CH.

Limitations
Our study has several limitations. First, because the 
sample size calculation was performed to assess the 
primary composite outcome and MACCEs as a sec-
ondary end point, additional analyses are hypothesis 
generating. Variables suitable for multivariable adjust-
ment were selected based on univariate analysis results. 
However, given that previous research has identified 
additional variables associated with CH, further inves-
tigation with larger sample sizes would be necessary 
to explore the potential impact of these covariates. The 
individual components of the primary outcome were 
not examined separately due to the constraint imposed 
by the limited number of events, which restricts statisti-
cal adjustments. The current study was not designed 
to assess the effect of specific mutations on adverse 
clinical outcomes, which requires further investigation. 
Most genes screened in the gene panel were genes 
involved in myeloid malignancies, which constitute the 
most common set of genes identified with CH to date. 
Therefore, the association found between CH and ad-
verse outcomes is currently restricted to myeloid CH, 
the most frequent CH subtype. The exclusion of ger-
mline variants was based on a combined approach 
that used a 35% VAF threshold and variant frequency 
assessment. This approach did not include additional 
sequencing from tissue biopsies, which might lead to 
the exclusion of potentially pathogenic variants.

CONCLUSIONS
In patients undergoing cardiac surgery, CH is com-
mon and associated with a 2-fold increased long-term 
risk for major adverse clinical outcomes, including 
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all-cause mortality and MACCEs. Low clone size was 
not associated with adverse outcomes. CH screening 
might be a useful tool in patients undergoing cardiac 
surgery to assess the risk for long-term postoperative 
outcomes.
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