
HAL Id: inserm-04729854
https://inserm.hal.science/inserm-04729854v1

Submitted on 10 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Trem2-expressing multinucleated giant macrophages are
a biomarker of good prognosis in head and neck

squamous cell carcinoma
Grégoire Gessain, Ahmed-Amine Anzali, Marvin Lerousseau, Kevin Mulder,

Mathilde Bied, Anne Auperin, Daniel Stockholm, Nicolas Signolle, Farah
Sassi, Maria Eugenia Marques da Costa, et al.

To cite this version:
Grégoire Gessain, Ahmed-Amine Anzali, Marvin Lerousseau, Kevin Mulder, Mathilde Bied, et al..
Trem2-expressing multinucleated giant macrophages are a biomarker of good prognosis in head and
neck squamous cell carcinoma. Cancer Discovery, 2024, 14 (12), pp.2352-2366. �10.1158/2159-
8290.CD-24-0018�. �inserm-04729854�

https://inserm.hal.science/inserm-04729854v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


AACRJournals.org2352 | CANCER DISCOVERY DECEMBER 2024

Research Brief

TREM2-Expressing Multinucleated Giant 
Macrophages Are a Biomarker of Good 
Prognosis in Head and Neck Squamous Cell 
Carcinoma 
Grégoire Gessain1,2, Ahmed-Amine Anzali1, Marvin Lerousseau3,4,5, Kevin Mulder1, Mathilde Bied1,  
Anne Auperin6, Daniel Stockholm7,8, Nicolas Signolle9, Farah Sassi1, Maria Eugenia Marques Da Costa1,10, 
Antonin Marchais1,10, Alexandre Sayadi2, Daniela Weidner11,12,13, Stefan Uderhardt11,12,13,  
Quentin Blampey14,15, Sumanth Reddy Nakkireddy16, Sophie Broutin17, Charles-Antoine Dutertre1,  
Pierre Busson18, Thomas Walter3,4,5, Alix Marhic19, Antoine Moya-Plana19, Johanne Guerlain19,  
Ingrid Breuskin19, Odile Casiraghi20, Philippe Gorphe19, Marion Classe20,21, Jean-Yves Scoazec9,20,  
Camille Blériot1,18,22, and Florent Ginhoux1,15,23,24,25

*

Patients with head and neck squamous cell carcinomas (HNSCC) often have 
poor outcomes due to suboptimal risk management and treatment strategies; 

yet integrating novel prognostic biomarkers into clinical practice is challenging. Here, we report 
the presence of multinucleated giant cells (MGC)—a type of macrophages—in tumors from patients 
with HNSCC, which are associated with a favorable prognosis in treatment-naive and preoperative 
chemotherapy–treated patients. Importantly, MGC density increased in tumors following preopera-
tive therapy, suggesting a role of these cells in the antitumoral response. To enable clinical translation 
of MGC density as a prognostic marker, we developed a deep-learning model to automate its quantifi-
cation on routinely stained pathological whole slide images. Finally, we used spatial transcriptomic 
and proteomic approaches to describe the MGC-related tumor microenvironment and observed an 
increase in central memory CD4 T cells. We defined an MGC-specific signature resembling to TREM2- 
expressing mononuclear tumor-associated macrophages, which colocalized in keratin tumor niches.

Significance: Novel individual biomarkers are needed to guide therapeutic decisions for patients with 
head and neck cancer. We report for the first time, granulomas of TREM2-expressing multinucleated 
giant macrophages in keratin-rich tumor niches, as a biomarker of favorable prognosis and developed a 
deep-learning model to automate its quantification on routinely stained pathological slides.
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Introduction
Squamous cell carcinoma (SCC) is one of the most fre-

quent carcinomas and arises in several organs including lung, 
head and neck, esophagus, skin, and uterine cervix. Among 
these, head and neck SCC (HNSCC) is particularly common, 
with 890,000 new cases and 450,000 deaths globally in 2020. 
Its incidence is rising, expected to escalate by 20% by 2030, 
representing 1.08 millions of new cases per year (1). Current 
treatments include surgery, chemotherapy, and radiotherapy; 
alongside, immunotherapy is now approved for recurrent, 
metastatic, and unresectable carcinomas (2). However, more 
than 50% of patients experience recurrent or metastatic dis-
ease within 3 years of diagnosis (2) often facing numerous 
complications or disabilities even after recovery (3). Gold 
standard patient stratification is the tumor–node–metastasis 
staging where patients with equivalent staging receive similar 
treatment although they often hold heterogeneous outcomes. 
Such suboptimal stratification led to inadequate therapy 
with undertreatment compromising patient recovery or over-
treatment increasing adverse events and unnecessary costs. 
Therefore, there is an unmet clinical need for novel individual 
prognostic biomarkers to guide therapeutic decisions.

A deeper understanding of cancer biology is essential for 
improving treatment. Recent studies have underscored the 
long under-appreciated role of the tumor microenvironment 
(TME) in shaping all stages of the disease (4). Within the 
TME, tumor-associated macrophages (TAM) are particularly  
abundant and influential (5). Recent single-cell RNA sequenc-
ing (scRNAseq) studies have described several conserved 
TAM transcriptional programs across tumors (6). Of partic-
ular interest, macrophages expressing the Triggering Recep-
tor Expressed on Myeloid Cells-2 (TREM2) have been shown 
to exert immunosuppressive and protumoral functions in 
various cancers (7, 8).

Alongside conventional TAMs, a proportion of HNSCC 
also contains macrophages that exhibit a large cytoplasm and 
multiple nuclei, termed multinucleated giant cells (MGC;  
ref. 9). In SCC, macrophages and monocytes fuse to form 
MGC, performing a “foreign body reaction” against extracel-
lular keratin produced by carcinomatous cells (9). While their 
presence is well documented in keratinizing SCC (10), their 
biology is not well understood in tumors and studies suggest 
varying impact of MGC on patient survival in esophageal 
and oral SCC (11–13). Conventional methods such as flow 

cytometry and scRNAseq struggle to analyze these cells due 
to their extraordinary size, leaving their clinical impact in 
SCC largely unexplored.

Herein, we used samples from several large cohorts of pa-
tients with HNSCC to ask about the association between 
MGC and survival following resection of their tumors. We 
investigated the interaction between chemotherapy, MGC, 
and patient outcomes and devised a methodology for clini-
cal use adaptable to various SCC. Additionally, we employed 
spatial transcriptomic and proteomic approaches on tumor 
microscopic slides to dive further into the MGC-related TME 
and reveal the unique scRNA signature of MGC within ker-
atin-rich tumor niches and their possible relationship to 
TREM2-expressing TAM.

Results
MGC Are a Biomarker of Good Prognosis in Patients 
with HNSCC

We first characterized the presence and abundance of MGC 
in tumors from patients with HNSCC who underwent pri-
mary surgery (Fig. 1A). We used cohorts from The Cancer 
Genome Atlas (TCGA) and Gustave Roussy (GR; refs. 14, 15),  
consisting of 394 patients with oral cavity (Fig. 1B). We ob-
served that 292 patients bore keratinizing tumors, while the 
remaining 102 did not (Fig. 1C and D). Within keratinizing 
tumors, we observed MGC that were aggregated in large gran-
ulomatous clusters in close contact with extracellular keratin 
(Fig. 1E). Interestingly, none of the non-keratinizing tumors 
contained MGC, while 33% of highly keratinizing tumors con-
tained high MGC densities (Fig. 1F). Although MGC abun-
dance was significantly associated with the keratinization level 
of the tumors, the presence of keratin did not guarantee the 
presence of MGC as 37% of patients with highly keratinizing 
SCC were devoid of MGC infiltration (Supplementary Fig. S1A 
and S1B).

We then asked whether the density of MGC in these tumors 
was related to patient outcomes. Using microscopic slides of 
HNSCC cohorts from TCGA (n = 110 patients) and from 
GR (n = 284 patients), we stratified patients into three groups 
(MGCHigh, MGCInt, and MGCLow) according to the MGC den-
sity in their tumor (Supplementary Fig. S1C and S1D; Sup-
plementary Table S1). In both cohorts, we saw that higher 
densities of MGC were associated with longer overall survival 
(OS; Fig. 1G and H) and progression-free interval (PFI; Sup-
plementary Fig. S1E and S1F). In the combined TCGA and GR 
cohorts (n = 394 patients), we observed a positive association 
between MGC density and OS and PFI with a linear relation-
ship between log-hazard of death and MGC density and the 
square root of MGC density and between log-hazard of event 
and the square root of MGC density (Supplementary Fig. S1G 
and S1H; Supplementary Tables S2–S4). A significant associ-
ation was also observed when MGC density was categorized  
in the three groups (MGCHigh, MGCInt, and MGCLow; Fig. 1I 
and J). Demographic and disease characteristics of the pa-
tients were well balanced between the three groups (Supple-
mentary Table S2). In multivariate analyses adjusted for sex, 
age, p-stage, location, tobacco, and alcohol consumption, the 
density of MGC in the tumor (whether in three categories  
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or with the square root of density as a continuous variable) 
was significantly associated with OS and PFI (Supplementary 
Tables S3 and S4). Importantly, high keratinization in the 
context of low/intermediate MGC densities was not associ-
ated with a better OS and PFI (Supplementary Fig. S1I–S1K; 
Supplementary Table S5), showing that it is not high kerati-
nization per se that correlates with outcome.

In addition, we asked whether tumor-infiltrating lympho-
cytes (TILs) density, tumor grade, and CD68-positive mononu-
clear macrophages were related to the prognosis value of MGC. 
MGCHigh patients had higher levels of TILs as compared to  
MGCInt and MGCLow patients (Supplementary Fig. S2A–S2C) 
and in univariate analysis, TILs were significantly associated  
with OS (P value = 0.0002) and PFI (P value = 0.0008; Supple-
mentary Tables S6 and S7). In addition, higher tumor grade 
was associated with higher risk of death and events (Supple-
mentary Fig. S2D and S2E; Supplementary Tables S6 and S7).  
Importantly, in multivariate analysis adjusted for TILs and  
tumor grade, MGC remained significantly associated with  
survival and PFI (Supplementary Tables S3 and S4). Finally, 
CD68 mononuclear macrophages did not show significant  
association with risk of death and events (Supplementary Fig. 
S2F and S2G; Supplementary Tables S6 and S7).

Taken together, these data show that patients with HNSCC 
bearing keratinizing tumors are more likely to have positive 
outcomes in the presence of high MGC densities.

Induction-Chemotherapy Induces MGC Formation
Next, we extended our investigation to include a cohort of 

patients with HNSCC (n = 52 patients) treated by three cycles 
of induction-chemotherapy (ICT) followed by surgery and 
adjuvant therapy (Fig. 1K and L). Patients were classified into 
three groups: no residual tumor and residual tumors having 
either high (MGCHigh) or low/intermediate (MGCLow/Int) MGC 
densities (Fig. 1L and M; Supplementary Fig. S3A and S3B). 
Interestingly, high MGC densities in surgical resections were 
more common after ICT compared to treatment-naive patients 
(Fig. 1N), suggesting that ICT might induce the formation of 
MGC. As observed in treatment-naive patients, higher MGC 
densities associated with longer OS, comparable to patients 
with no residual tumor (Fig. 1O). Pathological response was 
similarly correlated with MGC density: good/partial respond-
ers had higher MGC densities than poor responders (Fig. 1P).

In summary, MGC density is associated with good outcome 
in patients with HNSCC either in the presence or absence of 
ICT prior to surgical resection.

Automatic Detection of MGC and Tumor Cells on 
H&E/HES WSI by Deep Learning

Effective stratification of patients with cancer is a main-
stay of good clinical management, yet few novel biomarkers 
prove amenable to quick and easy measurement in hospital 
routine: for example, here, it would take a trained pathologist 
up to 30 minutes per slide to assess MGC density. Therefore,  
we aimed to establish a high-throughput automatic method 
to detect and enumerate MGC and compute the biomarker 
on whole-slide images (WSI) of patients with SCC. We trained 
two models on routinely hematoxylin and eosin (H&E)/ 
hematoxylin, eosin, saffron (HES) stained WSI: one that de-
tects tumor cells and one that detects MGC (Fig. 2A and B). 
More than 5,000 manually annotated MGC and more than 
800,000 manually annotated carcinomatous cells from the 
TCGA and GR cohorts were used to train the MGC and tu-
mor cells detection model. The automated biomarker was 
computed as the total number of detected MGC divided by 
the total number of detected tumor cells, across all available 
slides for each patient.

After training, we validated the performance of both detec-
tion models on 110 slides from TCGA cohort and 839 slides 
from GR cohort. Slides from the GR cohort used for training 
were excluded from the validation cohort. We found that the 
models performed comparably to pathologists, both for MGC 
in TCGA (average precision (AP) = 0.8188) and GR (AP = 0.7524)  
as well as for tumor cells in TCGA (AP = 0.688) and GR  
(AP = 0.679) cohorts. Additionally, the MGC detection model 
performed comparably to pathologists at the slide-level in 
TCGA (r2 = 0.8792; P < 0.0001) and GR cohorts (r2 = 0.7811;  
P < 0.0001; Fig. 2C–F). We then assessed the performance of 
the artificial intelligence (AI) versus the manual biomarker. 
On the 949 slides (representing 341 patients) that passed 
quality control (Supplementary Fig. S4A), the automatic 
MGC biomarker correlated with the manual MGC den-
sity in TCGA (r2 = 0.7833; P < 0.0001) and GR (r2 = 0.4036;  
P < 0.0001; Supplementary Fig. S4B and S4C) cohorts. When 
comparing the ranking of the predicted patient AI scores 
with the manually computed groups, the AI obtained a 

Figure 1.  MGC density is a biomarker of prognosis in patients with HNSCC. A, Therapeutic sequence of the treatment-naive cohorts of patients 
with HNSCC from TCGA and GR. B, Flow chart of TCGA and GR cohorts of treatment-naive patients with HNSCC. Among the 946 patients (527 from 
TCGA and 419 from GR), 394 were included (110 from TCGA and 284 from GR). C, Non-keratinizing HNSCC (left) and keratinizing HNSCC (right), 
stained by H&E. WSI from TCGA (scale bar, 250 μm). D, Histograms showing the number of KLow and KHigh patients from TCGA and GR. E, Keratinizing 
SCC of the oral cavity of a patient from GR, with MGC-rich granulomas surrounding keratin debris. Left, low magnification of the carcinoma (scale 
bar, 2 mm). Middle, high magnification of a granuloma containing MGC and keratin (scale bar, 50 μm). Right, MGC are highlighted in yellow and keratin 
in red. F, Histograms showing the proportion of MGChigh patients (TCGA and GR cohorts) among the keratinization groups (no, low, moderate, and high). 
G, OS curve of 110 TCGA patients stratified according to MGC density in their tumors. The vertical tick mark on the curves means that a patient was 
censored at this time. H, OS curve of 284 GR patients stratified according to MGC density in their tumors. I, OS curve of all patients (TCGA and GR) 
stratified according to MGC density in their tumors. J, PFI curve of all patients (TCGA and GR) stratified according to MGC density in their tumors. 
K, Therapeutic sequence of the induction chemotherapy (ICT)-treated cohort of patients with HNSCC from GR. L, Flow chart of the ICT-treated cohort 
of patients with HNSCC from GR. M, Keratinizing oral SCC from a patient treated at GR whose tumor responded well to ICT, showing areas of keratin 
surrounded by numerous MGC. Left, low magnification of the carcinoma (scale bar, 2 mm). Middle, high magnification of a granuloma containing MGC 
and keratin (scale bar, 50 μm). Right, MGC are highlighted in yellow and keratin in red. N, Histograms showing the percentage of patients with no 
residual tumor, and the percentage of patients with residual tumor being MGCHigh or MGCLow/Int, in treatment-naive (TCGA and GR) and ICT patients (GR). 
O, OS curve of 52 patients treated by ICT at GR, stratified by their tumor content and MGC density on surgical resection. The vertical tick mark on 
the curves means that a patient was censored at this time. P, Histograms showing the proportion of MGCHigh and MGCLow/Int patients according to the 
pathological response status of their tumors (poor vs. good/partial).
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Figure 2.  Automatic detection of MGC and tumor cells on H&E/HES whole slide images by deep learning. A, Overview of the methodology. Manual 
annotations of MGC and tumor cells were used to train two cell detection models to identify and count MGC and carcinomatous cells in SCC. An 
automatic score was computed as the ratio of MGC to tumor cells. The score was applied first to TCGA and GR oral cavity cohorts and second to TCGA 
Uterine cervix and Larynx cohorts. B, Keratinizing oral SCC with granulomas, from the TCGA cohort. Left, low magnification of the carcinoma (scale bar, 
2 mm). Middle, high magnification of the carcinoma where automatically detected carcinomatous cells are highlighted in red (scale bar, 50 μm). Right, 
high magnification of the carcinoma where automatically detected MGC are highlighted in yellow (scale bar, 50 μm). C, Correlation between the number 
of MGC per patient quantified manually by a pathologist and automatically detected by the model. Patients were from the oral cavity TCGA cohort (n = 110 
patients). D, Bland-Altman plots for TCGA oral cavity data shown in C. E, Correlation between the number of MGC per patient quantified manually by 
a pathologist and automatically detected by the model. Patients are from the oral cavity GR cohort (n = 231 patients). F, Bland–Altman plots for the 
GR oral cavity data shown in E. G, OS curve of oral cavity TCGA and GR patients (n = 341 patients) stratified according to MGC density computed by 
the cell detection model. The vertical tick mark on the curves means that a patient was censored at this time. H, PFI curve of oral cavity TCGA and GR 
patients (n = 341 patients) stratified according to MGC density computed by the cell detection model. I, OS curve of Uterine cervix SCC TCGA patients 
(n = 189 patients) stratified according to MGC density computed by the cell detection model. J, OS curve of Larynx TCGA patients (n = 100 patients) 
stratified according to MGC density computed by the cell detection model.
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rank-biserial correlation of 0.929 in TCGA and 0.867 in GR. 
The area under the ROC curve (AUC) between the pre-
dicted patient AI scores and the manually computed MGCLow  
versus MGCInt/High was 0.990 in TCGA and 0.965 in GR,  
and 0.963 in TCGA and 0.909 in GR for MGCHigh versus 
MGCLow/Int. Accordingly, patients were efficiently stratified 
into MGCHigh, MGCInt and MGCLow groups and the auto-
matic MGC biomarker was associated with longer OS and PFI  
(Fig. 2G and H).

We then asked whether our automatic detection model 
could be used in Uterine cervix (CESC) and Larynx SCC. 
Initially, MGC predictions gave false positive MGC detec-
tions in both cervical and laryngeal SCC TCGA cohorts; 
due to tissue-specific features of the larynx and cervix that 
were absent in the oral cavity and so not included in the 
training data. We overcame this issue by calibrating the 
MGC detection model to increase its sensitivity. Doing 
so, we excluded the risk of false negatives, while leading 
to abundant (true and false) positives that were then man-
ually corrected by a pathologist: although slower than 
full automation, this method was approximately 10 times 
faster compared to a pathologist-only approach (Supple-
mentary Fig. S4D and S4E) and reached similar levels of  
accuracy (Supplementary Fig. S4F–S4I). Using this approach, 
we categorized patients into high and low MGC/tumor  
ratios and found that increased proportions of MGC again 
correlated with longer OS in both CESC and Larynx SCC  
(Fig. 2I and J) and with longer PFI in CESC (Supplemen-
tary Fig. S4J and S4K).

Altogether, our automatic cell detection approach was 
rapid and efficient, allowing easy assessment of the MGC-to-
tumor cell ratio that acted as a clear biomarker of prognosis 
in patients with oral cavity, Uterine cervix, and Larynx SCC.

Spatial Transcriptomics Identifies MGC as a 
Specific Population of Macrophages

Having identified the relationship between MGC density 
and prognosis, we next wanted to investigate their biolog-
ical function within the TME. We exploited Visium spatial 
transcriptomic technology (10x Genomics) to analyze the 
single giant cell transcriptomes of MGC, on formalin-fixed, 
paraffin-embedded (FFPE) HNSCC tumor sections (Fig. 3A 
and B). Such technology assesses transcriptomes on spots, 
directly on histological slides. Importantly, because the  
diameter of a Visium spot is 55 μm, this technology has a 
pseudo-single cell resolution. Here, we took advantage of 
this limit, as one spot corresponds roughly to the size of an 
individual MGC, allowing the definition of their specific 
transcriptomic signature.

We analyzed slides from nine patients: six MGCHigh tu-
mors and three MGCLow (Fig. 3C–H). Unsupervised cluster-
ing revealed seven distinct clusters of cells that matched 
manual morphology-based annotations (Supplementary 
Table S8). When projected onto a Uniform Manifold Approxi-
mation and Projection for Dimension (UMAP) space, MGC 
formed a clear distinct cluster (Fig. 3I). Of note, MGC were 
the only cell type with significantly different abundance 
between MGCHigh and MGCLow tumor samples (Fig. 3J).  
To narrow MGC signature, spots only covering MGC were 

manually selected (Supplementary Fig. S5A) and were shown 
to overlap with the unsupervised analysis (Supplementary  
Fig. S5B). Differentially expressed genes (DEG) between anno-
tated MGC spots and all non-MGC spots included CHIT1, 
FBP1, MMP9, SPP1, APOE, CHI3L1, CTSS, CTSB, CTSD, 
CTSZ, TYROBP, CD68, DC-STAMP, MARCO, and TREM2 con-
firming their macrophage nature (Fig. 3K; Supplementary 
Table S9). Gene Ontology (GO) analysis of this supervised 
signature showed upregulation of pathways involved in 
bone resorption, tissue remodeling and extracellular matrix 
disassembly, as well as macrophage activation, phagocytosis, 
antigen presentation, and ROS production (Supplementary 
Fig. S5C).

To validate this signature, we investigated the transcrip-
tomic differences between MGCHigh and MGCLow tumors 
from TCGA patients with oral cavity SCC. We retrieved the 
bulk RNA sequencing data (bulk RNA-seq) for 108 patients 
(out of the initial 110 patients, two did not have RNA-seq 
data) for which we had quantified MGC density on WSI. DEG 
analysis showed a clear difference between the bulk signa-
tures of MGCHigh and MGCLow tumors (Fig. 3L). GO analy-
sis of TCGA RNA bulk signature also highlighted pathways 
common to the Visium-defined MGC signature, such as bone 
resorption, tissue remodeling, and macrophage differen-
tiation (Supplementary Fig. S5D). GSEA analyses showed a  
significant enrichment of the spatial transcriptomic MGC 
signature in MGCHigh TCGA patients (Fig. 3M; Supple-
mentary Fig. S5E). Among genes that were more highly 
expressed in MGCHigh tumors were macrophage-related genes 
(SPP1, MARCO, DC-STAMP, OSCAR) and MGC-specific genes 
(CHIT1, FBP1), which confirmed our spatial transcriptomic 
data (Supplementary Fig. S5F). Because the prognostic im-
pact of CHIT1 (16) and TREM2 (8) was recently reported, we 
investigated their potential influence and showed that CHIT1 
and TREM2 were associated with a longer OS in TCGA oral 
cavity SCC cohort (Supplementary Fig. S5G). Of note, RNA 
expression of CK5, CHIT1, and CD68 were validated at the 
protein level by immunohistochemistry (Supplementary Fig. 
S6A–S6C).

Taken together, these results revealed the core macrophage 
signature of MGC and suggested a potential antitumoral 
function through the expression of genes and proteins associ-
ated with phagocytosis, antigen presentation, keratin resorp-
tion, and tissue remodeling.

MGC-Related Tumor Microenvironment Is Enriched 
in CD4 TCM T cells and TREM2-Expressing 
Mononuclear Macrophages

We then investigated the composition of the TME asso-
ciated with MGC presence using the CosMx 64-plex human 
immuno-oncology protein panel (Nanostring) on four  
MGCHigh and four MGCLow patients. We identified nine general 
cell clusters (Supplementary Fig. S7A–S7D). MGC exhibited  
a specific macrophage signature (Supplementary Fig. S7D). 
MGCLow patients showed similar clusters, except for MGC 
(Supplementary Fig. S7E–S7G). Within the immune popula-
tion, we found 14 cell subsets in MGCHigh patients (Fig. 4A–D) 
and 12 in MGCLow patients (Supplementary Fig. S7H and S7I). 
Notably, TCM CD4 T cells increased in MGCHigh patients,  
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clustering together in close contact with B cells (Fig. 4D–G).  
No significant differences were seen in other cell subsets.  
However, we observed in MGCHigh patients, a noticeable but 
nonsignificant trend toward increased infiltration of B cells 
and plasma cells that were clustering together (Fig. 4H and I).

Additionally, we observed a marked increased in a mono-
nuclear macrophage subset sharing a signature and localiza-
tion with MGC (Fig. 4D, G, and J; Supplementary Fig. S8), 
termed MGC-MNP (Fig. 4K). To characterize deeper MGC 
and MGC-MNP, we performed a second multiplex imaging 
panel containing CHIT1, CD163, CD68, and TREM2 anti
bodies, in nine patients (four MGCHigh and five MGCLow). 
MGC and surrounding MGC-MNP expressed CHIT1 and 
TREM2 proteins (Fig. 4L and M; Supplementary Fig. S9A–S9C; 
Supplementary videos S1 and S2). These TREM2-expressing 
MGC-MNP were clustering with MGC in keratin-rich niches 
(Fig. 4N), leading us to speculate that they might be MGC 
precursors.

Discussion
Herein, we observed in two cohorts of patients with  

HNSCC from TCGA (n = 110 patients) and GR (n = 284 pa-
tients) that the density of MGC associates with a longer OS 
and PFI. As in treatment-naive patients (n = 394), the associ-
ation was also observed in preoperative chemotherapy-treated 
(n = 52) patients. To improved patient stratification, we devel-
oped a deep-learning approach to automatically quantify the 
MGC-to-tumor-cell ratio on standard H&E/HES WSI, which 
proved as effective and faster than manual pathologist assess-
ment. We then investigated the MGC-related TME using spa-
tial transcriptomic and proteomic: we found an increase in 
CD4 TCM T cells and TREM2High TAM that share a signature 
and localization with MGC in keratin-enriched tumor niches 
and correlate with MGC abundance.

MGC accumulation is well documented in response to 
foreign body (17). Indeed, following its introduction, mac-
rophages and monocytes fused to form foreign-body giant 
cells (17). In HNSCC, the carcinoma synthesizes the keratin 
that is seen as a foreign body by the immune system (10). 
However, it is not the presence of keratin per se, but rather 
of keratin-associated MGC that is associated with longer 
survival. Understanding why only a fraction of patients with 
keratinizing SCC have high MGC densities could reveal the 
missing steps of the foreign body reaction toward keratin, 
providing insights into the drivers of this antitumor program 
and paving the way for new treatments.

The presence of MGC in SCC after preoperative therapy has 
been long known (18) and is part of the histological scoring 
for pathological response following antitumor therapy (19). 
However, only recently a study in esophageal SCC high-
lighted MGC as the only factor associated with prolonged OS 
in multivariate analysis after preoperative therapy (20). In ad-
dition, two other recent studies suggest a positive impact of 
MGC in treatment-naive patients with SCC of the esophagus 
or tongue (12, 13). Here, we confirmed these observations and 
defined the first evidence-based threshold for the relationship 
between MGC density and patient risk, demonstrating its po-
tential for informing therapeutic decisions.

Although the clinical relevance of MGC is emerging, their 
biology remains poorly understood. We analyzed the whole 
transcriptomes of individual MGC in HNSCC, revealing 
their specific “single giant cell RNA signature,” that share 
strong similarities with TREM2High mononuclear macrophages. 
TREM2High TAM are known to be protumoral in several 
cancers (8), including colorectal (21), breast (21–23), and  
lung (24) adenocarcinomas and are more abundant in pa-
tients with nonresponding melanomas treated by immu-
notherapy (25). Their deletion enhances the efficacy of 
immunotherapy in a model of ovarian adenocarcinoma (26). 
Interestingly, neither adenocarcinomas nor melanomas pro-
duce keratin. In contrast, we report a good prognosis for 
TREM2High MGC in HNSCC—a carcinoma producing extra-
cellular keratin. We found that TREM2High TAM and MGC 
clustered in keratin-containing tumor niches, suggesting that 
keratin creates specific intratumoral niches leading to the 
accumulation of TREM2High TAM, which then fuse into anti- 
tumoral MGC. These opposite prognosis values of TREM2High 
macrophages across cancers highlight the specificity of each 
tumor type and underline that the protumoral and anti-
tumoral features of macrophage populations cannot be gen-
eralized. Notably, it urges caution for current clinical trials 
of anti-TREM2 therapies in keratinizing SCC as they could 
hamper patient prognoses.

CHIT1 expression was shown to be associated with good 
prognosis in bulk RNA-seq data from three HNSCC cohorts 
(16) and elevated in the blood of good responder patients 
with HNSCC after radiotherapy (27). In addition, a population 
of CHIT1- and TREM2-expressing macrophages associated 
with complete response to neoadjuvant immunotherapy in 
patients with esophageal SCC (28). Here we confirmed the 
favorable impact of CHIT1 and TREM2 on OS and identified 
MGC as a major source of CHIT1 production via single giant 
cell analysis.

Figure 3.  Spatial transcriptomics reveals a unique MGC signature. A, Low magnification of a representative HES section of a carcinoma selected for 
spatial transcriptomic analysis. Inset, high magnification of an MGC. B, Same HES section with the overlay of the spots analyzed by Visium technology. 
One spot is covering a single MGC. C, Low magnification of a representative HES of an MGCHigh carcinoma from a patient in the GR cohort. D, Overlay of the 
seven cell populations analyzed by unsupervised clustering. E, Same HES section showing pathologist annotations of the tumor area (blue) and the MGC 
(yellow). F, Low magnification of a representative HES of an MGCLow carcinoma from a patient in the GR cohort. G, Overlay of the seven cell populations 
analyzed by unsupervised clustering. H, Same HES section showing pathologist annotations of the tumor area (blue). I, Projection of the Visium spots onto 
a UMAP space; spots from nine different patients. J, Histograms showing the number of spots capturing the different cell types in MGCHigh and MGCLow 
carcinomas. K, Volcano plot showing MGC RNA signature extracted from the DEG analysis between supervised MGC spots and all the other non-MGC 
spots. L, Volcano plot showing the DEG between MGCHigh and MGCLow tumors from patients in TCGA cohort (n = 108 patients). M, GSEA plot showing the 
enrichment of the Visium MGC signature in MGCHigh vs. MGCLow patients classified from TCGA. The green line represents the running enrichment score for 
the MGC signature, with the peak indicating maximum enrichment. The normalized enrichment score (NES) is 3.24, and the P value is 0.000522, demon-
strating significant enrichment of the MGC signature in MGCHigh patients. The barcode plot shows the positions of the MGC signature genes within the 
ranked list of genes from the bulk RNA sequencing data, with a higher density of genes towards the left, indicating higher enrichment.
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In line with previous results (29, 30), we showed that 
MGCHigh patients had high levels of TILs. We then explored 
the contribution of each lymphoid cell subset using 
high-throughput multiplex analysis. We highlighted an in-
crease in TCM CD4 T cells in MGCHigh patients, which were 
found in proximity to B-cell clusters. Notably, a recent study 
highlighted the expansion of TCM CD4 T cells, B cells, and 
plasma cells in patients with HNSCC treated with a com-
bination of anti-CTLA4 and anti-PD-L1 (31). Furthermore, 
tumor-infiltrating TCM CD4 T cells have been associated with 
favorable prognosis in OSCC (32). Collectively, the increase of 
these immune cell ecosystems, composed of TCM CD4 T 
cells, B cells, and plasma cells, may contribute to the favorable 
prognosis in patients with high MGC density.

The digitization of pathology laboratories opens the way 
for AI algorithms to improve diagnostic and prognostic (33). 
Manual quantification of MGC is time-consuming for over-
whelmed pathologists (34) and impossible to apply in rou-
tine. Thus, we designed a deep learning model to quantify the 
MGC-to-tumor cell ratio automatically on routine diagnostic 
WSI stained by H&E/HES, without the need for additional 
costly techniques such as immunohistochemistry or genetic 
testing. This approach is faster, yet equally efficient as pathol-
ogists, and effectively stratifies patients. Pending further vali-
dations in additional HNSCC cohorts from different centers, 
this method could identify patients in need of therapeutic 
optimization based on predicted risk level.

Lastly, because SCC is widely spread across the body, we took 
advantage of our deep learning model to screen for the presence 
of MGC in laryngeal SCC and CESC. Consistent with previous 
esophageal publications (11, 20), MGC density indicated  
favorable prognosis in SCC of Larynx and Uterine cervix.  
Robust validation on external cohorts is required.

To conclude, TREM2High MGC are major contributors to good 
prognosis in treatment-naive and preoperatively treated SCC, 
and their monitoring will be of tremendous value to improve the 
clinical management of patients suffering from HNSCC.

Methods
Patients

TCGA Oral Cavity Cohorts.  Data from 527 patients with HNSCC 
were retrieved from the TCGA website. Exclusion criteria were pa-
tients with only frozen sections, low quality slides, no diagnostic 

slides, absence of surgical resection, only biopsies, HPV-positive tu-
mors, or tumor localization elsewhere than oral cavity: this led to 
exclusion of 417 patients, leaving data from 110 patients eligible for 
further analyses (Supplementary Table S1). These patients were con-
sidered “treatment-naïve” because they did not receive preoperative 
therapy. All slides were stained by H&E. We had access to the bulk 
RNA-seq data for 108 of these patients. These patients had a median 
follow-up of 34 months (interquartile range 21; 56 months).

TCGA Larynx and CESC Cohorts.  Data from 307 patients with 
uterine cervix carcinoma and from 527 patients with HNSCC were 
retrieved from TCGA. Exclusion criteria for uterine cervix were pa-
tients without squamous cell carcinoma, frozen sections, low qual-
ity slides, and no diagnostic slides: this led to the exclusion of 118 
patients, leaving data from 189 patients eligible for further analyses. 
Exclusion criteria for Larynx were frozen sections, low quality slides, 
no diagnostic slides, and tumor localization elsewhere than larynx: 
this led to exclusion of 427 patients, leaving data from 100 patients 
eligible for further analyses. All slides were stained by H&E.

GR Cohorts.  We had access to samples from two previously pub-
lished cohorts of patients with HNSCC treated at GR (14, 15). These 
patients did not receive preoperative therapy and were thus considered 
as “treatment-naive.” Exclusion criteria were patients with not enough 
representative pathological diagnostic slides, low quality slides, or the  
presence of neoadjuvant therapy: out of 419 patients, 284 were in-
cluded (Supplementary Table S1). These patients had a median follow- 
up of 113 months (interquartile range 81; 150 months). We further had 
access to a retrospective cohort of 52 patients with HNSCC treated by 
ICT at GR. All FFPE blocks and slides came from the pathology labora-
tory of GR and were stained by HES. All patients gave a written in-
formed consent. For each patient, the study protocol was approved by 
the institutional review board of GR (IRB-2023-293). All experiments 
were in accordance with the Declaration of Helsinki. The REporting 
recommendations for tumor MARKer prognostic studies were followed.

Pathologist Annotations and Quantifications
MGC and Tumor Surface Quantification.  A pathologist quanti-

fied the MGC per mm2 of tumor for each H&E/HES slide from each 
patient from TCGA (n = 110 slides) and GR cohorts (n = 1,304 slides). 
A second pathologist quantified the MGC per mm2 of tumor for a 
subset of the patients (TCGA n = 10 slides; GR n = 20 slides): the 
counts from the two pathologists showed almost perfect agreement 
(r2 = 0.9606, P value<0.0001 and weighted kappa = 0.876; Supplemen-
tary Fig. S10A and S10B).

MGC-related stratification was based on two thresholds for manual 
quantification: MGCHigh (≥1 MGC/mm2), MGCInt (≥0.2 MGC/mm2 
and <1 MGC/mm2), and MGCLow (<0.2 MGC/mm2). The threshold 

Figure 4.  MGC-related tumor microenvironment is enriched in CD4 TCM T cells and TREM2-expressing mononuclear macrophages. A, Low magnifica-
tion of a representative HES section MGCHigh carcinoma selected for CosMx 64-plex protein panel analysis. Scale bar, 500 μm. Inset, high magnification 
of an area annotated by a pathologist, enriched in TILs (green) close to tumor cells (blue) and a granuloma with MGC (yellow). Scale bar, 50 μm. B, Low 
magnification of the same tumor section, stained by the CosMx protein panel, with the overlay of 20 cell populations (non-immune and immune). Scale 
bar, 500 μm. Inset, high magnification of the same area, with the annotation overlay of tumor cells, MGC (yellow), TCM CD4 T cells (red), B cells (light 
gray) and plasma cells (dark gray). C, Projection of the CosMx cell population onto a UMAP space. D, Heat maps showing the expression of immune 
markers across the 14 immune cell types. Red indicates a higher expression and blue a bottom expression. E, Box-plot showing the TCM CD4 T cells 
ratio between MGCLow (n = 4) and MGCHigh patients (n = 4). F, Box-plot showing TCM CD4 T cells degree centrality (left) and average clustering (right) 
between MGCLow (n = 4) and MGCHigh patients (n = 4). G, Heat maps of neighborhood enrichment scores showing the spatial colocalization of the 22 
cell types across four MGCHigh patients. Yellow indicates a high enrichment and purple a low enrichment. White boxes are highlighting the proximity 
between (i) TCM CD4 T cells and B cells and (ii) MGC and MGC-MNP. H, Box plots showing B cells (left) and plasma cells ratio (right) between MGCLow 
(n = 4) and MGCHigh patients (n = 4). I, Box plots showing B cells (left) and plasma cells average clustering between MGCLow (n = 4) and MGCHigh patients 
(n = 4). J, Low magnification of a representative section stained by the CosMx protein panel, of two granulomas, with the annotation overlay of tumor 
cells (blue), stromal cells (green), MGC and MGC-MNP (yellow). Insets: high magnification showing MGC surrounded by numerous MGC-MNP. Scale bar, 
800 μm. K, Box-plot showing the MGC-MNP ratio between MGCLow (n = 4) and MGCHigh patients (n = 4). L, Representative image of a single MGC stained 
by CD68 (pink), TREM2 (orange), and Hoechst (cyan). The merge image is shown (scale bar, 50 μm). M, Representative high magnification image of a 
small granuloma. The arrow indicates mononuclear macrophages (scale bar, 20 μm). N, Histograms showing the distance of TREM2High MGC from keratin 
(left) and histograms showing the distance of TREM2High mononuclear macrophages from keratin (right).
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of 0.2 was selected using the maximally selected rank statistics, on 
the OS endpoint in the combined TCGA and GR cohorts (n = 394 
patients). The threshold of 1 was selected to obtain a group of more 
than 50 patients with very high MGC densities.

The annotations were carried out with QuPath version 0.4.3, an 
open-source software for digital pathology images analysis (35).

Stratification of patients treated by ICT into good, partial, and 
poor responders was made by a pathologist using the original grading 
system published by Braun and colleagues (19).

TILs Quantification.  Two pathologists quantified the TILs on  
H&E/HES slide for each TCGA (n = 110 slides) and GR patients  
(n = 1,304 slides). TILs were evaluated according to a scoring method  
developed by the International Immuno-Oncology Biomarkers Work-
ing group (36). TILs were scored as the percentage of surface occupied 
by lymphocytes. Only the tumor and tumor-related stroma were 
included in the analysis. The percentage of TILs was assessed semi-
quantitatively from 0% to 100%. Challenging cases were reviewed by 
the two pathologists until an agreement was reached.

Tumor Grade Quantification.  Two pathologists quantified the tu-
mor grade on H&E/HES slides for each TCGA (n = 110 slides) and GR 
patients (n = 1,304 slides). Grade was evaluated according to the fifth 
edition of the WHO that is based on the similarity to healthy squa-
mous epithelium as described by Broder in 1920 (37). Squamous cell 
carcinoma was graded in well (G1: grade 1), moderate (G2: grade 2), 
and poorly (G3: grade 3) differentiated tumors. Challenging cases were 
reviewed by the two pathologists until an agreement was reached.

Digitization of HES Pathological Slides
We retrieved the 1,304 physical microscopic slides from the two 

cohorts of treatment-naïve patients from GR (14, 15). Multiple slides 
per patient were available (range 1–17). While most of the slides had 
a standard microscopic size (75 × 25 mm), several of them were larger 
(75 × 50 mm) and did not physically fit into the digital slide scanner. 
Therefore, all large microscope slides were removed from the analysis 
and 44 patients with large slides only were excluded from the digital 
analysis. Quality control was performed by a pathologist to exclude 
slides with common artifacts such as tissue folds, blurring or faint 
staining, resulting in the exclusion of nine additional patients. Over-
all, 839 slides were analyzed, representing tumors from 231 patients 
(of the original 284 included patients). Slides were digitized at 20× 
resolution, with an Olympus VS120.

Slides from TCGA cohort were already digitized and one slide per 
patient was quantified (n = 110 patients and n = 110 slides).

Training of Deep Learning Models
Training Data for MGC.  To train the MGC detection model, 16 

oral cavity WSI from TCGA and 12 oral cavity WSI from the GR 
cohort were retrieved. A pathologist annotated a total of 5,000 MGC 
by drawing bounding boxes using QuPath software version 0.4.3. 
Rather than exhaustively annotating all MGC in a small number of 
slides, we opted to maximize the variability by nonexhaustively anno-
tating some of the MGC on many slides. The annotation instructions 
were to draw bounding boxes around each MGC and then to draw an 
englobing bounding box that ensured that all MGC were exhaustively 
annotated in the latter. As such, all pixels outside the englobing boxes 
were not used to train the detection model. We randomly annotated 
additional negative patches, i.e., patches that contained no MGC, by 
drawing an englobing bounding box. All englobing bounding boxes 
were extracted with both tissue image and annotations using an in-
house software at 20×, resulting in fields of view (FOV) with varying 
size and with exhaustively annotated MGC. All FOV of 20 WSI were 
randomly assigned to the training set and the remainder FOV from 

eight WSI to the validation set. All the training and validation slides 
from the GR cohort that were used to train the MGC detection model 
were discarded from the rest of the study.

Training Data for Tumor Cells.  The same protocol was applied 
to obtain ground-truth annotations for training the tumor detection  
model. In total, 814,606 tumor cells were collected from 15 WSI of  
TCGA tongue and 52 WSI of the GR cohort. Additionally, a patholo-
gist exhaustively annotated the viable tumor cells in 107 WSI from the 
GR cohort, ensuring that there were not any tumor cells outside the 
annotated regions. Patches outside the annotated regions were added 
to the training data with an associated empty ground-truth since these 
patches do not contain tumor cells. The final training data contained 
13,624 256 × 256 pixels patches with at least one tumor cell and 106,000 
patches without tumor cells. All FOV of 47 WSI were randomly as-
signed to the training set and FOV from the remainder 20 WSI to the 
validation set. Here again, all the training and validation GR slides for  
the tumor detection model were discarded from the rest of the study.

Model Architecture and Hyper Parameters.  We trained the Fully 
Convolutional One-Stage (FCOS; ref. 38) detection architecture 
for both tumor cells and MGC automatic annotation. Contrary to 
region proposal models, detections of FCOS are made at the pixel 
level: each pixel notably produces four values that are reconstructed 
as a predicted bounding box and an additional probability value for 
each class—1 in our case for both tumor and MGC. During training, 
each proposed bounding box is first matched with one ground-truth 
bounding box or no bounding box. Then, a regression loss and a clas-
sification loss are computed based on the predicted box coordinates 
and its associated probability. We used the ResNet50 architecture 
(39) pretrained on ImageNet (40) as the backbone model. Both clas-
sification and regression heads comprised four ReLU-activated convo-
lutional layers of kernel size 3 and stride 1, with batch normalization. 
Contrary to the original implementation of FCOS, image rescaling was 
discarded to input patches with the same magnification as the model. 
Data augmentation consisted of rotations, flips, shifts, and color jitter. 
For each input patch, the same data augmentation was performed to 
the associated ground-truth bounding boxes using the Albumenta-
tions (41) Python library version 1.2.1. The detection model parameters 
were stochastically updated using the Adam optimizer (42) from errors 
computed by the focal loss (43) cost function with a learning rate of 
10−4, a regularization of 10−4 and a batch size of four patches. Training 
was conducted for up to 2,000 epochs on a NVIDIA A40 GPU. We 
selected the model snapshot with the maximum mean average preci-
sion at intersection-over-union of 0.5 (mAP@50) on the validation set 
for both tumor and MGC tasks for the remainder of our study. All 
deep learning implementation was done in Python 3.8, PyTorch (44) 
version 1.13, and Torchvision version 0.14.0.

Cell Detection Model Performances.  We assessed the performanc-
es of the MGC and tumor cell detection model. Briefly, ground truth 
MGC and tumor cells (annotated by a pathologist) were compared 
to automatically detected MGC and tumor cells and the average pre-
cision was computed using the MMdetection package version 3.1.0 
(arXiv 1906.07155). To assess further the performance of the MGC 
detection model, we compared the number of automatically detected 
MGC to the number of MGC that were quantified by a pathologist 
(Fig. 2C–F).

AI-Based Biomarker Inference
Once both tumor detection and MGC detection models were 

trained, the biomarker was computed for each WSI as follows. Patch-
es of width 2,048 pixels were extracted from a WSI in a sliding win-
dow fashion with an overlap of 256 pixels for both sides. We used a 
non-zero overlap to remove border artifacts (such as false positives) 
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arising from a lack of context at the borders. Each patch was forward-
ed into both the tumor and MGC models, producing two lists of pre-
dicting bounding box coordinates and their predicted probabilities.  
Bounding boxes predicted with a probability below 0.4 were dis-
carded and we applied non-maximum suppression with a threshold 
of 0.6 intersection-over-union to remove highly overlapping predic-
tions. We finally computed the proposed MGC biomarker as the ratio 
of the number of predicted MGC to the number of predicted tumor 
cells for each patient.

Spatial Transcriptomics
Library Preparation.  The Visium Spatial Gene Expression Slide, 

Visium FFPE Reagent Kit, and Visium Human Transcriptome Probe 
Kit (10x Genomics) were used to generate sequencing libraries. RNA 
quality was accessed for all samples using the DV200 method. For 
library construction, 5 μm cryosections of 6.5 × 6.5 mm from each 
FFPE sample were placed into the four capture areas of the Spatial 
Transcriptomics slides (10x Genomics). Samples were then deparaf-
finized, stained, imaged, and decrosslinked. Probe hybridization and 
ligation to RNA were then performed, followed by the single-stranded 
ligation product release and extension. Libraries were then prepared 
following the manufacturer’s instructions. All the libraries were se-
quenced with a 10-base index read (dual index), a 28-base Read1 con-
taining cell-identifying barcodes and unique molecular identifiers 
(UMI), and a 90-base Read2 containing transcript sequences on an 
Illumina NovaSeq 6000.

Visium Data Analysis.  All sections were processed individually us-
ing the Seurat package, with spots containing less than 500 UMI and 
500 RNA counts were discarded from further analyses. Afterward, all 
slides were merged into one object used for DEG analysis and inte-
gration was based on the slide ID. For this, reciprocal principal com-
ponent analysis (PCA) integration based on 30 first PCA dimensions, 
with k.anchor = 20 was performed. The Loupe software (10x Genom-
ics) was used to explore the data.

Identification of MGC Signature.  To identify the DEG between 
MGC spots and non-MGC spots, we used the R package Seurat, and 
the volcano plot was plotted using the Enhanced Volcano R package. 
Only the genes with a log2 fold change (log2FC) over 0.25 and an ad-
justed P value less than 0.05 were considered significant.

TCGA Bulk RNA-seq Data
Preprocessing of Data.  Bulk RNA-seq data of primary tumors 

from 108 out of the 110 patients with tongue SCC were used for 
survival analysis. Data were retrieved using TCGABiolinks R pack-
age, then normalized using the EDAseq package based on gene 
length; genes whose expression was zero in more than 25% of the 
samples were removed.

Differentially Expressed Genes.  The 108 patients with available 
histological slides were split into three groups based on the presence 
of MGC as annotated by a pathologist. DEGs were calculated between 
groups using the R package DESeq2, and the volcano plot was plot-
ted using the Enhanced Volcano R package. Only genes with a log2FC 
higher than 0.25 and an adjusted P value less than 0.05 were consid-
ered significant.

Gene Set Enrichment Analysis.  The patients were separated based 
on the pathology score of MGCHigh and MGCLow. Differential expres-
sion analysis was performed with DESeq2, Logarithm fold changes 
were modified by the lfcShrink algorithm with the “Ashr” option. DEG 
cutoff was defined at an FDR less than 0.05 and an absolute log2FC 
value greater than 1 in pairwise comparisons. R package clusterprofiler 

(4.12) was used to analyze the DEGs between different groups for GO 
analyses. For the Visium GO analysis, only genes with log2FC superi-
or to 1.5 were considered.

Venn Diagram Analysis.  The analysis was made in the interac-
tivenn website (45). The top DEG whose adjusted P value was lower 
than 0.05 and log2FC higher than 0.25 were extracted from TCGA 
bulk RNA-seq data and from the Visium MGC signature.

Multiplex Immunofluorescence
5-Plex Protein Panel Performed in GR.  Nine FFPE blocks of  

HNSCC (four MGCHigh patients and five MGCLow patients) were 
stained by multiplex immunofluorescence. The Experimental and 
Translational Pathology Platform of GR performed the stainings 
using a preset routine protocol. Briefly, FFPE blocks were cut into 
3-μm-thick sections. Multiplex staining was performed on a Bond RX 
(Leica Biosystems). Slides were baked in high pH for 20 minutes at 
100°C for epitope retrieval. Then, multiple rounds of staining were 
performed. Each round included endogenous peroxidase blocking 
for 10 minutes, nonspecific sites blocking for 5 minutes, primary an-
tibody incubation, secondary HRP-labeled antibody incubation for  
10 minutes and OPAL reactive fluorophore incubation for 10 min-
utes to covalently label the primary epitope, and heat denaturation of 
antibodies. The sequence of the antibodies with the associated Opal 
dyes is as follow: (i) rabbit anti-TREM2 (clone D814C; Cell Signaling, 
reference 91068), 1/400 dilution, 1 hours, 37°C, with OPAL 520, 
1/100 dilution; (ii) rabbit anti-CHIT1 (polyclonal; Biorbyt, reference 
orb377995), 1/50 dilution, 30 minutes, ambient temperature, with 
OPAL 570, 1/100 dilution; (iii) mouse anti-CD68 (clone KP1; DAKO, 
reference M0814), 1/1,000 dilution, 1 hours, ambient temperature, 
with OPAL480; (iv) mouse anti-CD163 (clone 10D6; Diagnostic 
BioSystems, reference Mob 460-05), 1/600 dilution, 15 minutes 
ambient temperature, with OPAL690, 1/100 dilution. Nuclei were 
visualized by a final incubation with the Spectral DAPI (Akoya Biosci-
ences) for 5 minutes. Slides were mounted with mounting medium  
for fluorescence. Finally, images were acquired on the Polaris 2 
(Akoya Biosciences).

64-Plex Protein Panel Performed in GR.  Eight FFPE blocks of 
HNSCC (four MGCHigh patients and four MGCLow patients) were 
stained by multiplex immunofluorescence. The stainings were per-
formed with the CosMx SMI 64-plex Human Immuno-Oncology 
Protein Panel. For each patient, two serial slides were cut: one slide 
stained by immunofluorescence and one slide stained by HES.

Immunofluorescence Performed in Erlangen.  HNSCC tissue sam-
ples were cut into 500-μm-thick sections using a custom-made 
tissue slicer. Samples were permeabilized and blocked using 0.3% 
Triton-X-100 (Sigma) in PBS (Gibco) including 5% rat serum (Sigma) 
overnight at room temperature. Same buffer was used for immu-
nostaining with anti-TREM2 followed by AlexaFluor-conjugated 
Fab Fragment Goat Anti-Rabbit IgG (Jackson ImmunoResearch), 
anti-CD68 (clone Y1/82A; BioLegend), and Hoechst (Biolegend) for 
3 days at room temperature. After rigorous washing, samples were 
cleared for 3 hours using Ce3D (BioLegend). Imaging was performed 
using a Zeiss LSM 880 confocal microscope with a Plan-Apochromat 
20×/1,0 objective at Nyquist rate. Individual channels were decon-
volved using Huygens 22.10 (Scientific Volume Imaging) at default 
settings. Visualizations were done using ZEISS arivis Pro/Vision4d 
(Zeiss).

Multiplex Immunofluorescence Image Analysis
5-Plex Protein Panel.  A pathologist manually annotated the 

tumor, the keratin, and the technical artifact regions on the nine 
immunofluorescence images, using QuPath v0.4.3 (35). In addition, 
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a small proportion of TREM2-expressing mononuclear macrophages 
and MGC were manually annotated by a pathologist. These annota-
tions were used to train a pixel classifier based on a random forest 
model. The classifier model was applied to predict the presence of 
TREM2-expressing MGC and mononuclear macrophages, in the tu-
mor regions of the nine immunofluorescence images. Measurements 
of the areas and distances of these regions to the closest keratin-rich 
regions were exported and analyzed with a homemade R script 
(https://www.r-project.org) to produce graphics of surface ratios and 
distances to keratin regions.

64-Plex Protein Panel.  A pathologist manually annotated the 
MGC and the tumor regions. Cell annotation was based on the com-
bination of protein expression and cell localization on the HES slide. 
Images were processed and analyzed using the SOPA pipeline (46). 
Annotation of the cells was performed in two layers, focusing on the 
immune fraction of the slide. For the neighborhood analysis, we used 
the squidpy analysis (47).

Immunohistochemistry
CD68 Immunohistochemistry.  Among the 284 patients from GR, 

264 of them had available FFPE blocks. One representative slide 
per patient was selected by a pathologist. Patients without available  
FFPE blocks were excluded from the analysis (n = 20). Slides were 
stained with anti-CD68 antibody (clone KP1, DAKO, reference 
M0814), 1/1,000 dilution, 1 hours, 36°C.

CHIT1, CD68, and CK5 Immunohistochemistry.  For each patient 
analyzed by Visium, three serial slides were stained with anti-CHIT1 
antibody (polyclonal; Biorbyt, reference orb377995), 1/50 dilution, 
30 minutes, 36°C; anti-CD68 antibody (clone KP1; DAKO, reference 
M0814), 1/1,000 dilution, 1 hour, 36°C;and anti-CK5 antibody 
(clone SP27; Roche, reference 760-4935), prediluted antibody 
(0,17 µg/mL), 32 minutes, 36°C.

Immunohistochemistry Protocol.  The Experimental and Trans-
lational Pathology Platform of GR performed the stainings using a 
preset routine protocol. Briefly, FFPE blocks were cut into 3-μm-thick 
sections. Staining was performed on an ULTRA BenchMark (Roche 
Diagnostics). After deparaffinization, slides were baked in CC1 solu-
tion (pH 8, 20 minutes, 95°C) for epitope retrieval. Endogenous 
peroxidase activity was inhibited with peroxidase blocking reagent 
(UltraView DAB kit). Slides were then incubated with a primary an-
tibody followed by a secondary antibody. 3,3′-Diaminobenzidine 
tetrahydrochloride was used for revelation and hematoxylin was used 
for counterstaining (UltraView DAB kit). Finally, slides were mounted 
with mounting medium (Pertex) and glass coverslips.

Immunohistochemistry Analysis
A pathologist annotated the tumor region in each slide, and the 

nontumoral regions were excluded from the analysis. The intensity 
of the CD68 staining per tumor surface was quantified. The intensity 
of CD68 in MGC was removed from the analysis. The analysis was 
performed with QuPath v0.4.3.

Survival Analyses
OS and PFI were the two clinical endpoints used for the analysis. 

Log-rank test and log-rank test for trend were performed. Multivari-
able survival analyses were also performed using Cox model and 
P value of Wald test was presented. Linear relationship between the 
log-hazard and MGC density and square root of MGC density were 
tested with a smoothing spline, using the pspline function of coxph 
in R survival package. For survival curves graphical representation, 
data were truncated at 2,000 days; however, tests were performed with 
all the length of the follow-up.

TCGA Cohorts.  Clinical data were retrieved from the GDC Data 
Portal (https://portal.gdc.cancer.gov/). OS and PFI were retrieved 
from an integrated TCGA pan-cancer clinical data resource (48) in 
which the authors recommended using OS and PFI as clinical end-
points. PFI was defined as follows: “1 for patient having a new tu-
mor event whether it was a progression of disease, local recurrence, 
distant metastasis, new primary tumors all sites, or died with the 
cancer without new tumor event, including cases with a new tumor 
event whose type is N/A. 0 for censored otherwise” (48).

GR Cohorts.  Clinical data of treatment-naive patients were re-
trieved from the two ancillary annotated cohorts (14, 15). PFI was 
defined as follows: “events for progression or 2nd HNSCC or death by 
HNSCC or death of unknown cause with HNSCC”. GR clinical data 
of ICT patients were retrieved from the GR patient’s database.

Data Availability
Digital Slides.  WSI were generated from publicly available co-

horts (TCGA) and from institutional cohorts (GR). The digital WSI 
from TCGA are publicly accessible through the NIH Genomic Data 
Commons Data Portal https://portal.gdc.cancer.gov/. The digital 
WSI generated from GR cohorts are not publicly available due to gen-
eral data protection regulations and institutional guidelines. Avail-
ability could be made upon request to the lead contact after execution 
of a data transfer agreement with GR.

Bulk RNA-seq Data.  Data from TCGA can be retrieved from  
their website.

Visium RNA-seq Data.  All generated Visium RNA-seq data are 
available and have been deposited in the functional genomics data 
collection (Array Express) under accession number E-MTAB-14409 
(https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-
14409?key=dcc24ea4-8654-4f29-a4b1-26cdb071a1a5).

CosMx Protein Data.  Availability could be made upon request 
to the lead contact after execution of a data transfer agreement 
with GR.

Code Availability.  The source code of the bulk RNA-seq data, 
Visium data, and CosMx data analyses is available on GitHub 
(https://github.com/AhmedAmineAnzali/MGC_Paper_Analysis). 
The source code of the AI platform is available on GitHub (https://
github.com/mgc-ai-cancer-discovery/mgc-ai-cancer-discovery). All 
methods and software packages used in the study have been docu-
mented and explained in ways accessible to the broader scientific 
audience.

Further information and requests for resources and code should 
be directed to and will be fulfilled by the corresponding author.
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