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Objective: Huntington's Disease (HD) is an inherited neurodegenerative disease caused by

the mutation of the Htt gene, impacting all aspects of living and functioning. Among

cognitive disabilities, spatial capacities are impaired, but their monitoring remains scarce

as limited by lengthy experts' assessments. Language offers an alternative medium to

evaluate patients' performance in HD. Yet, its capacities to assess HD's spatial abilities are

unknown. Here, we aimed to bring proof-of-concept that HD's spatial deficits can be

assessed through speech.

Methods: We developed the Spatial Description Model to graphically represent spatial re-

lations described during the Cookie Theft Picture (CTP) task. We increased the sensitivity of

our model by using only sentences with spatial terms, unlike previous studies in Alz-

heimer's disease. 78 carriers of the mutant Htt, including 56 manifest and 22 premanifest

individuals, as well as 25 healthy controls were included from the BIOHD & (NCT01412125)

& Repair-HD (NCT03119246) cohorts. The convergence and divergence of the model were

validated using the SelfCog battery.

Results: Our Spatial Description Model was the only one among the four assessed ap-

proaches, revealing that individuals with manifest HD expressed fewer spatial relations

and engaged in less spatial exploration compared to healthy controls. Their graphs

correlated with both visuospatial and language SelfCog performances, but not with motor,

executive nor memory functions.
eil, INSERM U955, Institut Mondor de Recherche Biom�edicale, Equipe NeuroPsychologie

(M. Lunven).
s work.

y Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://
).

mailto:marine.lunven@u-pec.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cortex.2024.04.014&domain=pdf
www.sciencedirect.com/science/journal/00109452
www.elsevier.com/locate/cortex
https://doi.org/10.1016/j.cortex.2024.04.014
https://doi.org/10.1016/j.cortex.2024.04.014
https://doi.org/10.1016/j.cortex.2024.04.014
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


c o r t e x 1 7 6 ( 2 0 2 4 ) 1 4 4e1 6 0 145
Conclusions: We provide the proof-of-concept using our Spatial Description Model that

language can grasp HD patient's spatial disturbances. By adding spatial capabilities to the

panel of functions tested by the language, it paves the way for eventual remote clinical

application.

© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Huntington's Disease (HD) is an autosomal dominant neuro-

degenerative disorder caused by a repeated expansion of the

CAG trinucleotide (�39 repeats) in the Huntingtin gene

(Tabrizi et al., 2019). It is characterized by motor, cognitive,

and psychiatric symptoms. The evolution of HD includes an

asymptomatic pre-manifest phase (preHD) and a manifest

phase with symptoms gradually affecting patients' daily

living, before leading to death within 35 years after clinical

onset (Walker, 2007).

Among daily impairments in HD, individuals have reported

spatial abilities deficits, which refers to the way individuals

mentally represent and manipulate spatial information (Shah

& Miyake, 2005). These deficits include visuoperceptual,

visuoconstructive, visual scanning, and mental rotation dif-

ficulties, starting before clinical onset. This causes confusion

in daily functioning, which can influence overall cognitive

performances (Coppen et al., 2018). Although spatial disorders

are less common in HD compared to diseases like Alzheimer's,
it is likely undervalued, especially since significant occipital

atrophy is evident even in the preHD stage of the disease

(Scahill et al., 2013). However, due to the challenges associated

with monitoring spatial capacities, this atrophy and its con-

sequences have not been thoroughly explored.

Spatial deficits are traditionally measured with pen-and-

pencil tests during neuropsychological assessments (Brandt

et al., 2004; G�omez-Tortosa et al., 1996; Lawrence et al.,

2000). However, individuals with HD often face limited ac-

cess to appropriate healthcare systems and lengthy compre-

hensive assessments involving a multidisciplinary clinical

team. This can lead to poor symptom management and a

reduction of individuals' quality of life (Frich et al., 2016; van

Lonkhuizen et al., 2023). Because it is easily collectible, brief,

and examiner-free, speech is thought as the best candidate to

assess patients' performances remotely and will see greater

utilization in future healthcare systems (Fagherazzi et al.,

2021; Robin et al., 2020). In HD, it has been shown that

speech can predict patients’ disease progression, motor, and

functional performances, as well as cognitive functions such

as attention, executive functions, and cognitive flexibility

(Riad et al., 2020, 2022; Romana et al., 2020; Vogel et al., 2012).

However, to make it a more complete tool and optimize its

future use, it remains to assess its ability to test HD patients'
visuospatial performance.

Several studies have yet demonstrated that spatial lan-

guage is a specific domain within language. Spatial language

translates spatial representation in language by using spatial

terms, i.e., spatial prepositions and action verbs, to describe
the spatial relations between objects (Chatterjee, 2008; Landau

& Jackendoff, 1993). Descriptions of objects' spatial relations
are influenced by the referential position of the object in

space, with entities positioned on the left being more

frequently mentioned first than those on the right in a scene

in healthy individuals (Baltaretu et al., 2016). Processing

spatial language involves brain activity in the occipito-parietal

stream which supports the “where pathway”, whereas object

semantics activates the occipito-temporal stream which

supports the “what pathway” in neuroimaging studies

(Conder et al., 2017; Rocca et al., 2020). The ability to use

appropriate language to describe a visual scene correlates

with the acquisition of spatial abilities in children (Bowerman

et al., 1995; Miller et al., 2017), as well as its decline with

normal aging showing that language grasps visuo-spatial ca-

pacities (Ardila & Rosselli, 1996; Markostamou & Coventry,

2022). Likewise, cerebral lesions may yield difficulties in pro-

duction and understanding spatial terms (Tranel &

Kemmerer, 2004). Lastly, language allows the encoding of

spatial representation, as demonstrated by the ability to

create geographical maps from written corpora (Friedman

et al., 2002; Louwerse & Zwaan, 2009). Embodiment based on

sensorimotor interaction could also offer a conceptual spatial

shortcut in the hypothesis of symbolic interdependence

(Louwerse, 2011). Altogether, these findings suggest that

spatial language reflects individuals’ spatial abilities.

This has triggered the use of the Cookie Theft Picture (CTP)

description task to assess spatial abilities through, in which

participants are required to scan, infer relationships between

pictorial elements, and report them orally (Goodglass &

Kaplan, 1972). Thus, three studies were run in Alzheimer's
disease, each focusing on various aspects of spatial language

(Fig. 1). First, the Spatial neglect method enabled classifying

Alzheimer's individuals from controls by counting the number

of times each pictorial elements are mentioned in the

different divisions of the picture (Masrani, 2018). Attention,

concentration, repetition, and perception scores were then

calculated based on the occurrence of the mentioned pictorial

elements without considering the spatial relations between

the elements in the descriptions. Secondly, Bosse's study

described the frequency of spatial prepositions that charac-

terized location and direction of pictorial elements in Alz-

heimer's individuals CTP descriptions. The frequency was

lower for left/right, directional, and dynamic prepositions

compared to healthy individuals. However, action verbs were

not assessed, excluding some spatial and directional infor-

mation held by these action verbs (Bosse, 2019). Because both

methods, partially integrated spatial context, Ambadi et al.

proposed the Spatio-semantic model using graph theory for

Alzheimer's CTP description analyses. Graph theory is a

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 e Comparison between methods capturing spatial information from spoken language production of the Cookie theft

picture (CTP).
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mathematical framework, which represents a network of

nodes (the pictorial elements like objects, people, location

etc.) connected by arrows according to the order of the

description (called edges in graph theory).Whereas thismodel

distinguishes Alzheimer's and healthy individuals by reflect-

ing their descriptions' visual narrative paths, attentional, and

organizational abilities (Ambadi et al., 2021), it does not assess

spatial prepositions and action verbs. Therefore, in “The boy is

wearing trousers and the mother a dress. This girl is on the left side

of the boy, wearing a skirt”, the Spatio-semantic approach

models the entire path between the mentioned elements

encompassing the single spatial relation with the non-spatial

descriptions (Boy / Mother / Girl / Boy), thus accounting

for three semantic relations rather than a single spatial one.

This might artificially increase the representation of each

element as a spatial object despite the fact the utterance is not

expressing a spatial relation and could constitute a caveat in

perseverative patients.

Therefore, considering the low spatial disturbances and

high perseverative behavior in HD compared to AD (Coppen

et al., 2018; Rosenblatt et al., 2007), to ensure capturing the

spatial deficit in HD strengthening the Spatio-semantic model

appears necessary. Here, we thus developed the Spatial

Description Model, a comprehensive language-based assess-

ment of spatial disturbances, selectively considering only

sentences that contain spatially relevant information before

modeling them graphically. The Model operated by removing

sentences without any information about the pictorial ele-

ments' location or their spatial relations. It maximized the

extraction of spatial information by integrating together the

mentioned pictorial elements with spatial language. Spatial

relations were identified by detecting labeled spatial terms,

pictorial elements, and determining if they were used

together to describe the picture spatially. Thus, using the

previous example, our algorithm would identify only a single

spatial relation (Girl / Boy) rather than three. To validate our
Model, we assessed its convergence/divergence validity using

the SelfCog battery in a cross-sectional cohort of HD carriers

and control participants (Lunven et al., 2023). In addition, we

checked the added value of our model by comparing its per-

formance with the ones developed in Alzheimer's disease

(Fig. 1).
2. Material & methods

2.1. Participants

We enrolled 81 HD gene carriers (CAG �38), including 19

preHD and 59 manifest HD at an early disease stage (stage I or

II) (Shoulson, 1981), and 25 healthy controls (HC) without any

cognitive deficits (Mattis Dementia Rating Scale score �136

(Mattis, 1976)) from two observational cohorts (Repair-HD

NCT03119246 & BIO-HD NCT01412125) at the Henri Mondor

Hospital (Cr�eteil, France). PreHD participants were defined by

a Total Motor Score (TMS)&5 and a Total Functional Capacity

(TFC) ¼ 13 (Kremer & Huntington Study Group, 1996; Tabrizi

et al., 2009). All participants were French native speakers,

aged above 18who had signed an informed consent. Exclusion

criteria were incapacity to consent, and significant neurologic

or psychiatric comorbidities unrelated to HD. Ethics approval

was given by the institutional review board from Henri Mon-

dor Hospital (Cr�eteil, France) for the BioHD cohort and the CPP

Saint Louis French part of the Repair-HD cohort, in compli-

ance with the Helsinki Declaration.

2.2. Participants assessment

2.2.1. General assessment
All participants were evaluated with the Huntington's Disease

Rating Scale © (UHDRS) which included the TMS, TFC, Func-

tional Assessment Scale and a cognitive evaluation (Symbol

https://doi.org/10.1016/j.cortex.2024.04.014
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Digit Modalities Test (SDMT), Letter fluency (1 min), Stroop

test (word, color and interference)) (Butters et al., 1986;

Huntington Study Group, 1996; Jensen, 1965; Smith, 1982;

Strauss et al., 2006). The Categorical fluency test (over 1 min)

was also added. Disease severity was defined using the com-

posite UHDRS (cUHDRS) (equation (1)) and Disease Burden

Score (DBS) (equation (2)) (Penney Jr et al., 1997; Schobel et al.,

2017). The preHD group estimated onset to motor symptoms

was predicted based on their CAG repeats (Langbehn et al.,

2004). Group differences were assessed using ANOVAs and

Tukey's post-hoc analysis.

cUHDRS¼
�

TFC � 10:4
1:9

� TMS� 29:7
14:9

þSDMT � 28:4
11:3

þStroop word � 66:1
20:1

�
þ 10

(1)

DBS¼age� ðCAG� 35:5Þ (2)

For convergence and divergence validity between the

Spatial Description Model's graph features and cognitive

measures, 22 HD participants also performed the digitized

cognitive SelfCog © battery that tested motor, executive,

spatial, language and memory functions in 15 min (Lunven

et al., 2023). The sample of participants were similar to the

rest of the HD participants (Appendix 2. Supplementary Table

7). In this battery, all functions are measured according to the

same paradigm. For each trial of each subtest, the input

stimuli (two images presented on the screen) and output re-

sponses (pressing a key) are similar, the only variations being

the instructions. It allowed to subtract the mean motor

response time (RT) from the cognitive ones to avoid con-

founding motor impairment from cognitive processing. The

Inverse Efficiency Score (IES) measure was used for each

cognitive function consisting of the mean cognitive RT cor-

rected by the motor RT divided by the test accuracy.

2.2.2. The Cookie Theft Picture description task (CTP)
French verbal descriptions of the CTP were recorded by a

trained neuropsychologist using amicrophone for subsequent

transcription and analysis. Participants were shown the CTP

picture and instructed “Please tell me everything you see

happening in this picture”. The recordingswere stoppedwhen

the participants indicated they finished or according to a time

limit of 5 min. The recordings were transcribed by speech

therapists using Praat and Seeshat softwares (Boersma et al.,

2001; Titeux et al., 2020). For subsequent analyses, language

fillers, stuttering, unintelligible words, nonlinguistic addi-

tions, and pauses were excluded from transcripts.

2.3. The Spatial Description Model

The Spatial Description Model produced a graphical repre-

sentation of a participant's CTP spatial description.

2.3.1. Spatial annotation
The CTP is composed of multiple pictorial elements that

constitute the scene. The major pictorial elements are

referred to as Information Unit (IU). Based on healthy sub-

jects' picture description, the list of IUs was composed with
11 objects, 4 persons/groups and 2 locations (Appendix 1.

Supplementary Table 2) (Croisile et al., 1996; Lindsay et al.,

2021). The IUs in the transcript of CTP descriptions were

manually labeled by one of the authors prior to any analysis

using the defined IUs list (Appendix 1. Supplementary Table

2), which instructed how to handle the different naming

possibility of an IU. For example, if the term usedmake direct

reference to an IU (for example ‘Women’ for the IU “Mother”),

it is a valid synonym, accounting for that IU. Similarly,

spatial prepositions or action verbs were labeled as spatial

terms (Appendix 1. Supplementary Table 3). The annotation

inter-rater reliability of descriptions was carried out on 12

participants' descriptions by 3 independent raters. The

agreement was assured with an average Cohen's Kappa score

of .69, considered a substantial agreement following McHugh

(2012).

2.3.2. Spatial selectivity
To achieve spatial selectivity and avoid for the Spatial

Description algorithm to integrate non-spatial elements, the

Model integrated a preprocessing step on the labeled de-

scriptions. Here, sentences that did not link two IU labels with

a spatial term label were filtered out by the Model. This

enabled the Model to extract only sentences that carried

spatial information, hence, spatial descriptions. These were

then used to generate the Spatial Description graphs.

2.3.3. Spatial description graphs
The spatial descriptions were transformed into graphs using

Python's NetworkX package (Hagberg et al., 2008) (Fig. 2).

Before processing an individual's spatial description, an initial

graph was first generated where all possible IUs (e.g., “Boy”,

“Girl”, “Cookie” etc. see Appendix Supplementary Table 2) are

represented graphically by a node with an initial weight of 0.

Each occurrence of spatial relations of that IU, adds a weight

(þ1) to the node, allowing to count the number of occurrences

for each IU. In addition, each node is associated with a fixed

pair of coordinates according to the IU's location on a CTP

picture of 546 � 190 pixels. Each graph node was attributed a

quadrant position (top-left in light blue, top-right in red,

bottom-left in green, bottom-right in yellow, and virtual in

grey. A virtual quadrant was created to account for IUs

mentioned in sentences using spatial terms without explicit

reference to a second IU. In the example “The water is falling

down”, falling down is an action verb and water an IU associ-

ated to the virtual quadrant as there is no second referential

IU. This quadrant was positioned at the mean node co-

ordinates in the graph.

The algorithm modeled spatial relations between two IUs

when it identified the following label scheme: a locative

pictorial element (a first IU), a spatial term (spatial preposition

or action verb) and a referential pictorial element (a second

IU). An arrow was modeled between the two IUs nodes when

they were linked verbally by a spatial term depicting their

spatial relation. The arrows of the graph were further classi-

fied according to the type of spatial terms label annotated

(spatial prepositions in red, action verbs in blue and both in

orange). This enabled graphically to represent a participant's
spatial descriptions of the CTP picture.

https://doi.org/10.1016/j.cortex.2024.04.014
https://doi.org/10.1016/j.cortex.2024.04.014


Fig. 2 e The Spatial Description Model. The description example is in English for understanding purposes. The transcribed

description of the Cookie Theft Picture (CTP) task is labeled according to a list of Information Units (IUs) (the different

pictorial elements in the picture) and spatial language (spatial prepositions and action verbs). The Spatial Description Model

identifies which IUs are connected by spatial terms. It models the spatial relation on the graph, where the predisposed

nodes are the representation of the IUs. If a spatial relation is identified, an arrow is modeled between the nodes. A weight

(W) is added to the node, counting the number of times that IU is involved in a spatial relation. Each node is color coded

according to its quadrant position of the picture it is in (top-left ¼ light blue; top-right ¼ red; bottom-left ¼ green; bottom-

right ¼ yellow; virtual quadrant ¼ grey). Arrows are color coded according to the type of spatial language used (spatial

prepositions in red; action verbs in blue, both in orange) and counted (n). Graph features can then be extracted. Virtual

quadrant (VQ).
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2.3.4. Spatial graph features
Once descriptionswere transformed into graphs, we extracted

different graph features to assess spatial disturbances,

inspired form Ambadi et al. (2021) (Table 1). We distinguished

the occurrence of the node depiction in a spatial relation

(weight þ1 each time) whichever the eventual repetitions of a

spatial relation (labeled as Node). We also assessed the

occurrence of all nodes depicted excluding repetitions of the

spatial relation (labeled Unique node) which corresponds to

the proportion of IUs that have been spatially described.

General node information gave insight on both the average

node position (Average x and Average y) and the distribution

of nodes across reflecting spatial exploration (Standard devi-

ation (SD) x, SD y). Other measures assessed eventual

perseverative behavior, defined as an uncontrolled repetition
of a response (Gillen& Rubio, 2016). Such behaviormay appear

at the node level with a participant locked on describing

repeatedly a node according to itself (Selfcycle) or at the

quadrant level, through spatial descriptions confined to the

same quadrant (Quadrant selfcycle) or inversely by measured

by the crossing ratio which consists in shifts between quad-

rants (Quadrant cross ratio).

To grasp quantitative spatial information at the node and

overall spatial descriptions graph level, we includedmeasures

of spatial connectivity between the IUs:

- To measure the distance covered by overall spatial re-

lations between IUs within the task (Total path distance),

- The average distance between two specific spatially

described IUs (Total path distance/Unique nodes).

https://doi.org/10.1016/j.cortex.2024.04.014
https://doi.org/10.1016/j.cortex.2024.04.014


Table 1 e Spatial description Model's graph features.

Graph features Measurement Interpretation

Nodes Number of nodes mentioned (weight S1) with eventual

repetitions

The number of times a participant describes an IU's spatial relation in their narrative. This includes

repeated mentions of the same IU reflecting their occurrence with spatial context and with

repetitions.

A high node number indicates that many IUs are described with spatial context.

Unique nodes Number of nodes mentioned (weight S1) without repetitions The number of times a participant describes an IU's spatial relation, however not counting the

repeated mentioned of the same IU.

This reflects the how many IUs (out of 18 IUs) occurred with spatial context.

A high unique node count indicates a rich spatial description of the different IUs on the picture.

Average x Average x position of all nodes with a weight S1 in pixels The average horizontal node position of mentioned IUs describing a spatial relation.

This reflects the average horizontal spatial focus of a CTP description. (0,0) is the top left corner of

the CTP. Repeated IUs are counted.

Average y Average y position of all nodes with a weight S1 in pixels The average vertical node position of mentioned IUs describing a spatial relation.

This reflects the average vertical spatial focus of a CTP description (0,0) is the top left corner of the

CTP. Repeated IUs are counted.

SD x Standard deviation of x positions of all nodes with a weight S1

in pixels

This reflects howwidely spread are all spatially described objects on the horizontal axis and spatial

exploration.

A small SD x denotes a less dispersed spatial description, and a more concentrated spatial

exploration.

SD y Standard deviation of y positions of all mentioned nodes with a

weight S1 in pixels

This reflects how widely spread are all spatially described objects on the vertical axis and spatial

exploration.

A small SD y denotes a less dispersed spatial description, and a more concentrated spatial

exploration.

Selfcycle Number of consecutive occurrence of a node The number of times a participant mentions the same IU consecutively when making spatial

descriptions.

This assesses perseveration at the node level.

A high selfcycle indicates perseveration from the participant in describing the spatial relation of the

IU repetitively.

Quadrant

selfcycles

Number of edge connecting nodes within the same quadrants The number of times a participant spatially describes two IUs within the same quadrant.

This assesses perseveration at the quadrant level.

A high quadrant selfcycle indicates a perseveration in describing only spatial relations in a confined

quadrant.

Quadrant cross

ratio

Number of edge connecting nodes in different quadrants

divided by the number of edges connecting nodes in the same

quadrants (quadrant selfcycles)

This indicates the intra-quadrant ratio of all the spatial relations made by the participant.

This reflects if a participant shifts quadrants often.

A high ratio indicates a preference in spatially describing an IU with another IU in a different

quadrant.

Total path

disance

Sum of edges length in pixels The total distance covered by the overall spatial relations between IUs in the participant's graph.

This represents the sum of the relations between IUs.

A too small total path distance indicates an insufficient connectivity of spatial relations and

description. A too high total path distance indicates a disorganized of spatial relation and

description.

Total path

distance/

Unique nodes

Total path distance divided by the number of unique nodes The average distance between two spatially described IUs across the participants graph, without

accounting for repeated mention of the same IU.

This enable to reflect the how close are the spatially described IUs.

A low total path distance/unique node ratio indicates an average small distance between two

spatially described IUs.
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- The density of the produced graph which is the number of

depicted relations between nodes by the participant over

the number of all possible relations in the task (Density)

- The number of bidirectional relations between IUs over the

total number of relations between these IUs whatever the

direction (Reciprocity).

- The likelihood of describing an IU according to its two

closest IUs nodes (Average clustering).

The Spatial description graph script is available on https://

gitlab.cognitive-ml.fr/lchenain/spatial_feature, and suited for

python integrated development environments.

2.4. Statistical analysis

2.4.1. Spatial Description Model graph features
The graph features extracted were normalized using z-scores

to account for normal distribution and homoscedasticity.

Group differences were assessed with ANCOVAs controlling

for sex, age, education, and unique node count. Post-hoc an-

alyses were performed with Scheffe's test designed to deter-

mine significant group difference after an analysis of variance,

hence relying on critical value of the maximum F-statistic of

the ANCOVAs. It controls for family wise error rate (proba-

bility of making a Type I error when conducting multiple

comparisons). It is particularly adapted after ANCOVAs that

compare small sample sizes or imbalanced data sets as in our

study (Agbangba et al., 2024).

2.4.2. Convergence and divergence validity
Convergence and divergence validity was performed with a

correlation analysis evaluating the significant variables with

cognitive measures (the SelfCog© (Lunven et al., 2023)). The

Total Information Coefficient estimator (TICe) and the

Maximal Information Coefficient estimator (MICe) were used

with minepy to measure the strength of linear and non-linear

associations (Albanese et al., 2013; Reshef et al., 2016). This

correlation method addresses the typical challenges faced

during analysis. First, it increased statistical power by

decreasing the probability of making a type II error when

rejecting the null hypothesis. It also can rank the associations

by relationship strength no matter the type of association,

also known as equitability. Lastly, it aims to resolve multiple-

comparison issues. The TICe allows to screen for variables

thanks to its higher power, but lower equitability, while the

MICe estimates the strength of the associations because of its

high equitability but lower power.

2.4.3. Post-hoc analysis: linear regressions
Evaluation of the association between the Spatial Description

Model (density and SD x), disease severity measures (DBS and

cUHDRS), and functional scores (UHDRS Functional Assess-

ment Scale) was performed with univariate linear regressions

in HD and preHD.

2.5. Comparison with previous language-based CTP
approaches

To assess the interest of the spatial selectivity of the Spatial

Description Model we compared its performance with the

https://gitlab.cognitive-ml.fr/lchenain/spatial_feature
https://gitlab.cognitive-ml.fr/lchenain/spatial_feature
https://doi.org/10.1016/j.cortex.2024.04.014
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previously developed language-based CTP spatial approaches

issued from Alzheimer's disease on HD, preHD, and HC's CTP

descriptions. We performed the spatial terms frequency

analysis of spatial prepositions and action verbs (Bosse, 2019),

spatial neglect analysis focusing on attention, concentration,

repetition and perception (Masrani, 2018), and the Spatio-

semantic graph model characterizing the descriptions' visual
narrative path (Ambadi et al., 2021). The three methodological

approaches are described in the Supplementary Methods

(Appendix I. Supplementary Methods, Supplementary Tables

1e2), comparing HD with preHD and HC.
3. Results

3.1. Demographic and clinical assessments

The demographics and clinical scores of participants are

summarized in Table 2. An ANOVA revealed no significant

differences in age and years of education. As expected, sig-

nificant differences were found for the TFC, Functional

Assessment Scale, TMS, cUHDRS, Letter fluency (1 min), Cat-

egorical fluency (over 1 min), SDMT, Stroop color, word, and

interference. Post-hoc analysis using Tukey's test revealed

poorest performance in HD individuals compared to preHD

and HC individuals. Fig. 3 presents the SelfCog's subtests and
Table 2 e Participants’ demographic and clinical assessment.

Participants

HD (¼59)
32 F/27 M

preHD (¼19)
8 F/11 M

HC (¼25)
13 F/12 M

Age (years) 52.7 ± 11.2 48.6 ± 12.7 54.1 ± 8.3

Education (years) 13.5 ± 3.4 14.7 ± 3.9 13.2 ± 3.6

CAG 43.8 ± 3.3 41.7 ± 2.3

DBS 415.2 ± 96.7 286.3 ± 65.2

Estimated onset

(years)

6.3 ± 9.7

TFC 10.5 ± 2.1 13.0 ± .0 13.0 ± .0

Functional

Assessment

Scale

21.25 ± 3.73 25 ± .0 25 ± .0

TMS 33.0 ± 15.6 .7 ± 1.3 .5 ± 1.1

Letter fluency

(1min)

23.0 ± 10.1 42.2 ± 11.2 40.8 ± 11.9

SDMT 26.3 ± 10.5 51.5 ± 12.1 49.8 ± 8.3

Stroop color 47.5 ± 15.3 75.1 ± 11.1 76.7 ± 9.7

Stroop word 64.5 ± 20.2 97.9 ± 13.9 99.7 ± 10.8

Stroop

interference

26.1 ± 10.3 44.4 ± 10.4 46.3 ± 8.3

Categorial

fluency (1min)

12.8 ± 5.5 19.8 ± 4.6 19.1 ± 4.5

cUHDRS 9.6 ± 3.5 16.9 ± 1.5 16.9 ± 1.1

Demographic and clinical assessments of healthy control participants (H

ease participants (HD).Worst clinical and cognitive performances are char

(DBS) and TotalMotor Score (TMS) and low Functional Assessment Scale, L

Stroop word, Stroop inferences, Categorical fluency (1 min) and composit

et al., 1986; Huntington Study Group, 1996; Jensen, 1965; Smith, 1982; Stra

Capacity (TFC) ¼ 13. preHD's estimated onset predicts the years until HD

similarly regarding spatial language, only differences between HD an

mean ± standard deviations. Male (M); Female (F). p-value<.001: ***; p-va
average scores. ANCOVAs and post hoc analysis using Tukey's
test revealed for each subtests poorer performance in HD in-

dividuals compared to preHD, and HC individuals.

3.2. Spatial Description Model graph features

The ANCOVAs determined the effect of group categories

after controlling for age, education, sex, and unique nodes

for graph features (Table 3). SD x, reflecting how widely

spread the mentioned IUs are on the horizontal axis, was

lower in HD (x ¼ 109.5 ± 9.1) than in preHD (x ¼ 112.8 ± 9.8)

and HC (x ¼ 113.2 ± 7.9) with F(2, 94) ¼ 6.527, p-value ¼ .002.

Scheffe's test confirmed that HD's participants description of

spatial representations was less dispersed than in controls

(difference (d) ¼ - .41, p-value <.05), but that preHD per-

formed similarly than controls and HD (respectively d¼�.04,

p-value ¼ .990, and d ¼ .36, p-value ¼ .380). Density, a mea-

sure of graphs' connectivity between the nodes, was also

reduced in HD (x ¼ .026 ± .011), compared to preHD

(x ¼ .028 ± .009) and HC (x ¼ .030 ± .006) with F(2, 94) ¼ 6.887,

p-value ¼ .002 as confirmed by the Scheffe's test (HD/HC

d ¼ �.38, p-value <.005), without any difference in preHD vs

HC and HD (respectively d ¼ �.13, p-value ¼ .914; d ¼ .25, p-

value ¼ .636). All other graph measures were similar among

groups as detailed in Table 3 (all F-statistics (2,94) S 2 and p-

values S .1).
Group comparison Post hoc

F p-value

F(2.0, 100.0) ¼ 1.498 .228

F(2.0, 98.0) ¼ 1.115 .332

F(1.0, 76.0) ¼ 29.300 <.001*** HD > preHD

F(2.0, 99.0) ¼ 31.008 <.001*** HC > HD preHD > HD

F(2.0, 97.0) ¼ 21.52 <.001*** HC > HD preHD > HD

F(2.0, 99.0) ¼ 91.14 <.001*** HD > HC

HD > preHD

F(2.0, 100.0) ¼ 36.658 <.001*** HC > HD preHD > HD

F(2.0, 100.0) ¼ 69.367 <.001*** HC > HD preHD > HD

F(2.0, 99.0) ¼ 56.561 <.001*** HC > HD preHD > HD

F(2.0, 99.0) ¼ 49.836 <.001*** HC > HD preHD > HD

F(2.0, 99.0) ¼ 48.567 <.001*** HC > HD preHD > HD

F(2.0, 78.0) ¼ 16.202 <.001*** HC > HD preHD > HD

F(2.0, 98.0) ¼ 84.748 <.001*** HC > HD preHD > HD

C), premanifest Huntington's Disease (preHD) and Huntington's Dis-

acterized by high number of CAG repeats (CAG), Disease Burden Score

etter fluency (1min), Symbol Digit Modality Test (SDMT), Stroop color,

e Unified Huntington's Disease Rating Scale (cUHDRS) scores (Butters

uss et al., 2006). preHD is defined by a TMS <5 and a Total Functional

's motor onset (Langbehn et al., 2004). As preHD and HC performed

d preHD or HC were presented here. Unless specified otherwise

lue<.01: **; p-value<.05: *.

https://doi.org/10.1016/j.cortex.2024.04.014
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Fig. 3 e SelfCog Inverse Efficiency Score Boxplot. A high score indicates a lower cognitive performance for Inverse Efficiency

Scores of the SelfCog. Huntington's Disease participants (HD), premanifest Huntington's Disease (preHD), Healthy controls

(HC). p-value<.001: ***; p-value<.01: **; p-value<.05: *.
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3.3. Convergence and divergence correlation analysis

The correlation analysis displayed the MICe and compared

TICe, Spearman and Pearson coefficients between the HD

participants that completed the SelfCog with the significant

Spatial Description graph features (Table 4). The spatial

measure of density correlated with the SelfCog Visuospatial

component (MICe ¼ .725, TICe p-value ¼ .036) with both

negative Pearson (R ¼ �.208) and Spearman correlation

(�.346). Density also correlated with the SelfCog Language

component (MICe ¼ .7110, TICe p-value ¼ .050) with both

negative Pearson (R¼�.134) and Spearman correlation (�.310)

(Fig. 4). None of the other SelfCog measures correlated with

Spatial Description density or SD x measurements, namely

the executive,memory and average components, with all TICe

p-values S.05 and MICe & .65.
Table 3 e Spatial description model graph summary and group

HD preHD

Average x 121.7 ± 39.7 (41.2e255.5) 126.1 ± 25.5 (100.4e19

SD x 109.5 ± 9.1 (79.7e130.0) 112.8 ± 9.8 (96.7e137

Average y 80.3 ± 25.5 (28.6e149.4) 83.8 ± 16.6 (65.6e130.8

SD y 62.7 ± 11.7 (11.3e77.0) 67.4 ± 4.1 (58.3e76.1)

Total path

distance

1573.4 ± 692.0 (380.1e2929.5) 1713.1 ± 651.1 (715.9e

Total path

distance/

Unique nodes

171.0 ± 65.8 (51.0e354.6) 163.6 ± 36.7 (79.5e228

Nodes 21.4 ± 9.0 (4.0e50.0) 21.7 ± 7.1 (10.0e36.0)

Selfcycle .4 ± .7 (.0e3.0) .1 ± .3 (.0e1.0)

Quadrant selfcyle 3.2 ± 2.1 (.0e11.0) 3.5 ± 1.7 (1.0e7.0)

Quadrant Cross

ratio

1.9 ± 1.4 (.0e7.0) 2.0 ± 1.6 (.7e8.0)

Density .026 ± .011 (.007e.059) .028 ± .009 (.016e.042

Reciprocity .023 ± .079 (.0e.4) .019 ± .058 (.0e.2)

Average

Clustering

.012 ± .028 (.0e.102) .012 ± .02 (.0e.046)

Unless specified otherwise mean ± standard deviation (min - max). Hunt

(preHD); Healthy control participants (HC); Standard deviation of x positio

mentioned nodes (SD y). p-value<.001: ***; p-value<.01: **; p-value<.05:
3.4. Post-hoc analyses

Linear regression showed that gene-carriers’ density perfor-

mance was associated with the UHDRS Functional Assess-

ment Scale (coefficient (b)¼ 1.28, p-value¼ .002), with the DBS

(b ¼ �30.11, p-value ¼ .011), and with the cUHDRS (b ¼ 2.05, p-

value&.001). SD x was also associated with the cUHDRS

(b ¼ 1.78, p-value&.001) but not with the UHDRS Functional

Assessment Scale (b ¼ .78, p-value ¼ .069), nor with the DBS

(b ¼ �20.64, p-value ¼ .086) (see Appendix 2. Supplementary

Figs. 1e6).

3.5. Replication of previous methods

Previous language-based CTP approaches’ results are dis-

played in Appendix 2. Supplementary Results (Supplementary
comparison.

HC F p-value

2.8) 125.3 ± 37.1 (70.2e240.8) F(2.0,94.0) ¼ .17 .844

.9) 113.2 ± 7.9 (99.3e132.6) F(2.0,94.0) ¼ 6.527 .002**

) 85.3 ± 25.0 (51.8e169.1) F(2.0,94.0) ¼ .209 .812

64.2 ± 7.0 (35.7e71.6) F(2.0,94.0) ¼ 1.72 .185

3653.4) 1797.6 ± 810.7 (550.3e3423.4) F(2.0,94.0) ¼ 2.038 .136

.3) 171.4 ± 57.9 (91.7e260.8) F(2.0,94.0) ¼ .206 .814

22.2 ± 8.9 (8.0e46.0) F(2.0,94.0) ¼ .509 .603

.4 ± .6 (.0e2.0) F(2.0,94.0) ¼ 1.409 .250

3.6 ± 1.6 (1.0e8.0) F(2.0,94.0) ¼ 1.862 .161

1.8 ± 1.0 (.4e5.0) F(2.0,94.0) ¼ .173 .841

) .030 ± .009 (.013e.049) F(2.0,94.0) ¼ 6.887 .002**

.006 ± .031 (.0e.154) F(2.0,94.0) ¼ .494 .612

.014 ± .027 (.0e.1) F(2.0,94.0) ¼ .068 .934

ington's Disease participants (HD); premanifest Huntington's Disease

n of all mentioned nodes (SD x); Standard deviation of y position of all

*.

https://doi.org/10.1016/j.cortex.2024.04.014
https://doi.org/10.1016/j.cortex.2024.04.014


Table 4 e Correlation of significant spatial description graph features with SelfCog inverse efficiency score.

Spatial Feature SelfCog TICe p-value MICe Pearson R Spearman r Measure of non linearity

Density Executive .275 .395 �.453 �.365 .189

Language .050* .711 ¡.134 ¡.31 .693

Memory .383 .516 �.135 �.147 .498

Visuospatial .036* .725 ¡.208 ¡.346 .682

Average .144 .57 �.18 �.359 .537

SD x Executive .098 .519 �.096 �.102 .509

Language .174 .626 .208 .011 .582

Memory .916 .432 .113 .017 .420

Visuospatial .875 .273 �.158 .021 .249

Average .756 .342 .146 �.014 .321

Standard deviation of x position of allmentioned nodes (SD x); Maximum information coefficient estimator (MICe); Total information coefficient

estimator (TICe). p-value<.001: ***; p-value<.01: **; p-value<.05: *.

Fig. 4 e Huntington's Disease Density Score and SelfCog Language and Visuospatial Inverse Efficiency Score. A high score

indicates a lower cognitive performance for Inverse Efficiency Scores of the SelfCog.

c o r t e x 1 7 6 ( 2 0 2 4 ) 1 4 4e1 6 0 153
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Tables 4e6). The analyses in HD, preHD, and HC did not yield

any significant results in any of the approaches demon-

strating similar ratio of spatial terms, spatial neglect, and

Spatio-semantic graphs.
4. Discussion

In this study, we assessed how language conveyed spatial

impairments in HD by analyzing graphical representations of

spoken language production of the Cookie Theft Picture task

(CTP) focusing on spatial relations. We developed the Spatial

Description Model in which spatial descriptions were graphi-

cally represented as a network or nodes and arrows between

pictorial elements (IUs) depicted using spatial terms. In

contrast with other language-based CTP approaches devel-

oped in Alzheimer's disease who failed to find any difference

between HD and controls, our Model showed that language

can grasp spatial abilities in manifest HD. Spatial descriptions

of individuals with manifest HD expressed fewer spatial re-

lations and less spatial exploration than both preHD and

healthy controls. The convergent validity of our Model was

excellent: lower graph performances in HD were solely asso-

ciated with the visuospatial and language cognitive scores.

The lack of association with memory or executive perfor-

mances supported its divergence validity. This provides a

proof-of-concept that language can capture spatial impair-

ment in HD, paving the way for its eventual application in

clinical practice.

The study provided substantial evidence for showing that

spatial language reflects both spatial abilities and linguistic

processing, as in healthy individuals (Bowerman et al., 1995;

Dessalegn & Landau, 2013; Markostamou & Coventry, 2022;

Miller et al., 2017; Rocca et al., 2020; Wallentin et al., 2007).

Typically this has been demonstrated by presenting to par-

ticipants experimentally controlled spatial relations, i.e.,

showing only two objects next to each when assessing spatial

object locations (Coventry et al., 2014; Munnich et al., 2001) or

by using unrelated spatial sentences (Wallentin et al., 2005).

However, such approaches limit the understanding of the

convergence of spatial and language systems to induced and

forced spatial relations. In contrast, we used a spontaneous

description task, enabling individuals to describe the picture

based on their own judgment of the elements’ salience, with a

free-choice selection of spatial relations. As a result, our study

supported proof-of-concept of our language-based analysis to

assess spatial abilities in HD.

More specifically, the Spatial Description Model revealed

that HD individuals have a narrower focus of spatial attention

compared to controls or preHD when describing the picture.

Their enumerated IUs were less dispersed along the hori-

zontal axis than the ones of the other groups. One could argue

that patients are perseverative and would keep locked on

some IUs (Liu et al., 2023; Oosterloo et al., 2019; Read et al.,

2013). Yet, we did not find any perseverative behavior like

the previous studies (De Lucia et al., 2020; Rich et al., 1997). In

contrast, individuals with HD are known to be impaired in

scanning the picture and allocating their spatial attention, as

shown by their attentional impairments in visuospatial

attention (Bublak et al., 2006; Finke et al., 2006) and attention
shifting (Georgiou et al., 1996, 1997). We showed that in-

dividuals with HD are capable of naming as many pictorial

elements as controls, suggesting that they can orient their

spatial attention. This is consistentwith Couette et al. who did

not show reduced alerting capacities but a deficit in atten-

tional disengagement from cued locations (Couette et al.,

2008). This might explain their reduction of spatial atten-

tional focus which could be related to reduced dopaminergic

neurotransmission within the cortico-striatal pathway

(Lawrence et al., 2000; Nieoullon, 2002). However, the reduced

spatial connectivity between the depicted pictorial elements,

and the reduced spatial exploration of manifest HD here

might rather be attributed to the early cortical degeneration

found in HD neuroimaging studies. This included parietal and

temporal cortices atrophy, which are areas responsible for

spatial processing, thus explaining HD's difficulties when

scanning for spatial information regarding an environment

(Blekher et al., 2009; Johnson et al., 2021; H. Lange, 1981;

O'Rourke et al., 2011; Wolf et al., 2014). Damage to brain

structures may vary from one individual to another in HD,

including the parietal and temporal cortices but also the hip-

pocampus and fronto-striatal brain circuit involved in work-

ing spatial, the last being majorly involved in cognitive

dysfunction (Brandt et al., 2005; Glikmann-Johnston et al.,

2019). The Spatial Description Model does not predict the

brain structures affected in patients but shows sensitivity in

HD pathology, where spatial disorders are not in the fore-

ground. Presumably, the model is adaptable to other neuro-

degenerative pathologies with various brain damage as long

as patients are able to describe orally an image. It follows the

same constraints as any image description task.

In traditional HD spatial assessment, tests heavily relied on

other high-order cognitive domains. For instance, visuo-

constructive and visual-perceptual tasks also require motor

and executive effort, while spatial navigation tasks rely on

memory encoding and retrieval (Brandt et al., 2004; Lawrence

et al., 2000). The use of the SelfCog allows to properly validate

the psychometric properties of the Spatial Description Model

as it allows comparison of several functions with similar

input, output, and time procedure. We demonstrated the

convergence validity by the correlation of the graph density

with both the visuospatial and language tasks of the SelfCog.

The former includes trials featuring visually similar but

semantically unrelated objects, stimulating situations that

may be encountered in a scene-dependent description tasks

like the CTP. It also evaluates other components, such as

different examples of the same object and object mental

rotation, which are equally important for reflecting a

comprehensive visuospatial assessment (Lunven et al., 2023;

Mueller et al., 2018). This shows that the attentional expla-

nation of the disturbances observed in HD with the Spatial

Description Model cannot resume the whole story. Acknowl-

edging that the visuospatial part of the SelfCog does not assess

attention, this shows that patients also have proper spatial

abilities impairments. In addition, the language part of the

SelfCog supposes to name a picture covertly by comparing the

onset of the names of the two pictures displayed on the

screen. The patients’ impairments in this task thus reflects

their difficulty in expressing orally the spatial relations from

the CTP. In contrast, the lack of correlation between the

https://doi.org/10.1016/j.cortex.2024.04.014
https://doi.org/10.1016/j.cortex.2024.04.014
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Spatial Description performances and the motor, executive

andmemory parts of the SelfCog endorsed the targeted spatial

language selectivity. By utilizing a picture description task,

individuals engaged primarily in visual scanning, object

localization, attention allocation and language abilities

(Taylor & Cutsuridis, 2011). The study thus demonstrated that

such a task can efficiently assess spatial abilities while

limiting the involvement of other cognitive domains with an

excellent divergent validity. Achieving such construct validity

has been recognized as a challenge in the cognitive assess-

ment of HD individuals. Even if numerous cognitive tests are

available to assess decline, HD cognitive scales or screening

tools that have met clinimetric/psychometric properties for

screening, measuring severity and measuring change are

scarce (Mestre et al., 2018). The construct validity of the

Spatial Description Model is thus one of those, with its inter-

nal validation of spatial assessment through language for HD.

Finally, spatial disturbances follow the course of the disease

(cUHDRS) and are influenced by genetic factors (DBS). They

correlate with patients' functional abilities (UHDRS functional

rating scales), revealing their impact on their daily lives.

The dissimilarities in performance observed between Alz-

heimer's disease and HDmay stem from the distinct cognitive

profile associated with each pathology. Indeed, as we strictly

compared the Spatial Description Model with the other

language-based CTP spatial assessments on our HD popula-

tion, we showed that our Model was sensitive in HD whereas,

the spatial term frequency analysis, spatial neglect evalua-

tion, and Spatio-semantic graph model were not. This might

look surprising at first glance, but is easily explained by the

contrastive pattern between patients with HD and Alz-

heimer's disease. Alzheimer's disease primarily affects the

hippocampus, which plays an essential role in memory and

navigation (Coughlan et al., 2018; Nedelska et al., 2012; Rao

et al., 2022) whereas HD affects primarily the striatum and

the fronto-striatal circuit (Tabrizi et al., 2019). Consequently,

individuals with Alzheimer's disease encounter more im-

pairments than HD with navigation, spatial memory and

orientation difficulties, leading Alzheimer's patients to

commonly get lost comparedwith the latter (K.W. Lange et al.,

1995; Lineweaver et al., 2005; Possin, 2010; Snowden et al.,

2007). In contrast, the main reported complaints in HD

concern psychomotor, attention and time processing domains

(Lemoine et al., 2021; Paulsen, 2011; Snowden et al., 2007).

While spatial disturbances are present in HD (Coppen et al.,

2018), such as mental rotation or visual scanning, they

remain subtler compared to the prominent spatial impair-

ments seen in Alzheimer's disease. Thus, the reported disor-

ganized narrative path in Alzheimer's (Ambadi et al., 2021) and

spatial neglect (Masrani, 2018) matches with their expected

cognitive profile. Regarding Alzheimer's production of spatial

terms, the reduced spatial prepositional frequency (Bosse,

2019) cannot bring definite evidence for a true spatial lan-

guage production impairment. Indeed, CTP linguistic studies

have shown older speakers' lexical content is less diverse, a

cofactor which was not considered in the original study by

Bosse (Ardila & Rosselli, 1996; Cho et al., 2021). Our approach

also focused on the integration of action verbs, unlike any

other CTP methods. This was particularly relevant in HD as

patients display difficulties in verb productions along the
evolution of the condition (P�eran et al., 2004; Jensen et al.,

2006). We also strengthened the Model by avoiding persever-

ations, which might be useful in a more severe cohort of HD

patients as the ones assessed here; they were presumably at a

too early stage to make perseverations a problem. This might

explain why the Spatial Description Model unmasked subtle

defects that were not captured by the models developed in

Alzheimer's disease. These results show that developing a

digital and remote test using language is worth the effort,

including in the space domain.

Translation to clinical practice would require the auto-

mation of voice data which implies technical challenges in

HD. While the field of natural language processing (NLP) has

greatly developed in the past years, it has not proved efficacy

for dysarthric patients yet. The existing NLP models for dys-

arthric individuals rely on speaker-dependent speech fea-

tures, creating a bias towards speech intelligibility (acoustic-

phonetic decoding) opposed to comprehensibility (message

reconstruction), limiting their generalization (Alaka &

Shibwabo, 2023; Qian & Xiao, 2023). Once they will be adapt-

ed to dysarthric patients, the automation of spatial language

and object annotation with an automatic verification system

at the utterance level (e.g., identifying the relevant words)

could be applied to our Spatial Description Model (Barbera

et al., 2021) using an automatic extraction of the IUs and

spatial terms. In the meantime, language models can be

applied and fine-tuned on transcribed speech, as demon-

strated in the automated scoring of autobiographical in-

terviews (van Genugten & Schacter, 2024).

Some limitations should be considered for future research

on spatial language and cognition using the Spatial Descrip-

tion Model. First, while the CTP is the worldwide picture

description task reference, the design of the picture may

prevent us from showing neglect impairment in HD. Despite

that spatial neglect is not a characteristic of the HD population

(only a case report (Ho et al., 2003)), studies have reported

exaggerated left-side pseudo-neglect (Ho et al., 2004) and

deficits in simultaneous object perception (Finke et al., 2006,

2007). The current study did not report these findings with the

developed approach nor with spatial neglect assessment

(Masrani, 2018). These discrepancies may be due to the un-

equal distribution of objects and actions across the CTP,

which challenges their assessment. A picture description task

should have a balanced spatial distribution of objects and

events within the frame, which may improve diagnostic ac-

curacy for patients with visual or attention deficits (de Vries

et al., 2022). Considering the advantages of picture descrip-

tion tasks, including their ecological validity, easy imple-

mentation, collection and ability to elicit real-life spoken

language, this encourages future applications to test the

Spatial Description Model with a different picture. For

example, the updated CTP developed byMiro (http://miro.one)

(Berube et al., 2019) has equally balanced objects, making it

optimal for spatial neglect assessment. Secondly, the CTP was

designed to assess different degree of saliences, semantics,

and causal and temporal relations (Cummings, 2019). This

leads to describing the scene's objects by drawing causal re-

lations between them, in other words, only using allocentric

spatial coding of information (object-to-object). Additionally,

preHD individuals performed similarly to non-carriers

http://miro.one
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presumably because their occipital atrophy is less important

than manifest HD individuals (Johnson et al., 2015). In-

dividuals transitioning from the preHD to manifest stage

exhibited a highest rate of cortex volume change in the oc-

cipital regions, followed by the parietal regions (Johnson et al.,

2021). Alternatively, the limited preHD cohort size could have

prevented us from identifying spatial disturbances consistent

with their preserved performance of preHD in the visuospatial

SelfCog subtask, their normal cognitive functions measured

with the cUHDRS, and other SelfCog functions. Lastly, the size

of our groups was not estimated in the prospective longitu-

dinal cohorts REPAIR-HD & BIO-HD as they were designed for

developing new tools, in which the measures efficacy was

unknown. Finding eligible participants and controls can be a

challenge for any rare disease, making small sample size

inevitable. We know higher sample sizes increase statistical

power (Djulbegovic& Ioannidis, 2019; Lan et al., 2010). Still, the

sample size was adequate enough to obtain differences be-

tween the group and was consistent with the size with other

current HD speech studies (Riad et al., 2022; Chan et al., 2022;

Kouba et al., 2018).
5. Conclusion

The Spatial Description Model presented in this study

demonstrated that language can grasp spatial deficits in the

context of HD, in contrast to previous language-based CTP

spatial analyses (Ambadi et al., 2021; Bosse, 2019; Masrani,

2018). We graphically modeled spatial relations of HD's pic-

ture description speech production. It avoided counting non-

spatial content of the picture descriptions as spatial. Our

study contributes to the line of work demonstrating how

speech and language is a powerful tool in HD assessments. By

showing that speech can also track spatial capacity, we show

that the required automatization of the Spatial Description

Model assessment for easy clinical dissemination is worthful.

This contributes to the development of a comprehensive

speech approach to spatial abilities in both clinical and

research settings, making patient assessment easier, digi-

tized, and ultimately remote. This may answer some needs

associated with the disease, namely limited access to appro-

priate healthcare systems and lengthy assessments.
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