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ABSTRACT 

Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide 

association study including 20,352 cases and 31,358 controls of European descent, with follow-

up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. 

Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery 

GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited 

power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 

20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter 

transporters and synaptic components. Pathway analysis revealed nine significantly enriched 

gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly 

genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly 

correlated with major depressive disorder. These findings address key clinical questions and 

provide potential new biological mechanisms for BD. 
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INTRODUCTION 

Bipolar disorder (BD) is a severe neuropsychiatric disorder characterized by recurrent episodes 

of mania and depression that affect thought, perception, emotion, and social behaviour. A 

lifetime prevalence of 1-2%, elevated morbidity and mortality, onset in young adulthood, and a 

frequently chronic course make BD a major public health problem and a leading cause of the 

global burden of disease 1. Clinical, twin and molecular genetic data all strongly suggest that BD 

is a multifactorial disorder 2. Based on twin studies, the overall heritability of BD has been 

estimated to be more than 70% 3,4, suggesting a substantial involvement of genetic factors in the 

development of the disorder, although non-genetic factors also influence risk. 

  BD can be divided into two main clinical subtypes 5,6: bipolar I disorder (BD1) and bipolar 

II disorder (BD2). In BD1, manic episodes typically alternate with depressive episodes during the 

course of illness. Diagnosis of BD2 is based on the lifetime occurrence of at least one depressive 

and one hypomanic (but no manic) episode. Although modern diagnostic systems retain the 

Kraepelinian dichotomy 7 between BD and schizophrenia (SCZ), the distinction between the two 

disorders is not always clear-cut, and patients who display clinical features of both disorders 

may receive a diagnosis of schizoaffective disorder-bipolar type (SAB). Likewise, in genetic 

studies BD and SCZ are usually treated separately, although recent epidemiological and 

molecular genetic studies provide strong evidence for some overlap between the genetic 

contributions to their etiology 2,8. 

Recent genome-wide association studies (GWAS) in BD have identified a number of 

significant associations between disease status and common genetic variants 9–23. The first large 

collaborative BD GWAS by the multinational Psychiatric Genomics Consortium (PGC) Bipolar 

Disorder Working Group comprised 7,481 BD patients and 9,250 controls and identified four 

genome-wide significant loci 9. Three subsequent meta-analyses that included the PGC BD data 

https://paperpile.com/c/jjWN0s/z0ufi
https://paperpile.com/c/jjWN0s/kGY9O
https://paperpile.com/c/jjWN0s/eZmD6+wzhNn
https://paperpile.com/c/jjWN0s/qrEZo+ScIQd
https://paperpile.com/c/jjWN0s/aGyg
https://paperpile.com/c/jjWN0s/kGY9O+RGZRt
https://paperpile.com/c/jjWN0s/pfkdJ+Cjs6B+8AWa1+eFQD9+QB4st+XE3HD+b2uQ2+diWls+bU5YJ+AXnsE+0DyB1+rj0cl+xKMXH+AEhlY+wmWKl
https://paperpile.com/c/jjWN0s/pfkdJ
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10,12,18 identified an additional 5 loci.  

Estimates of the proportion of variance in liability attributable to common variants 

genome-wide (SNP-heritability) indicate that ~30% of the heritability for BD is due to common 

genetic variants 8. To date, only a small fraction of this heritability is explained by associated loci, 

but results from other human complex traits suggest that many more will be identified by 

increasing the sample size of GWAS 24. Here, we report the second GWAS of the PGC Bipolar 

Disorder Working Group, comprising 20,352 cases and 31,358 controls of European descent in a 

single, systematic analysis, with follow up of top findings in an independent sample of 9,412 

cases and 137,760 controls. Some of our findings reinforce specific hypotheses regarding BD 

neurobiology; however, the majority of the findings suggest new biological insights. 

 

RESULTS 

GWAS of bipolar disorder (BD) 

We performed a GWAS meta-analysis of 32 cohorts from 14 countries in Europe, North America 

and Australia (Supplementary Table 1A), totaling 20,352 cases and 31,358 controls of European 

descent (effective sample size 46,582). This is a large GWAS of BD, a 2.7-fold increase in the 

number of cases compared to our previous GWAS 9, and includes 6,328 case and 7,963 control 

samples not previously reported. We imputed variant dosages using the 1,000 Genomes 

reference panel, retaining association results for 9,372,253 autosomal variants with imputation 

quality score INFO > 0.3 and minor allele frequency ≥ 1% in both cases and controls. We 

performed logistic regression of case status on imputed variant dosage using genetic ancestry 

covariates. The resulting genomic inflation factor (λGC) was 1.23, 1.01 when scaled to 1,000 cases 

and 1,000 controls (λ1000) (Supplementary Figure 1). The LD Score regression intercept was 

1.021 (se=0.010), and the attenuation ratio of 0.053 (se=0.027) was non-significant, indicating 

https://paperpile.com/c/jjWN0s/Cjs6B+eFQD9+AXnsE
https://paperpile.com/c/jjWN0s/RGZRt
https://paperpile.com/c/jjWN0s/Ht139
https://paperpile.com/c/jjWN0s/pfkdJ
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that the observed genomic inflation is indicative of polygenicity rather than stratification or 

cryptic population structure 25. The LD-score regression SNP-heritability estimates for BD were 

0.17-0.23 on the liability scale assuming population prevalence of 0.5-2%.  See Supplementary 

Table 1A, Online Methods and Supplementary Note for sample and method details.  

We find a marked increase in phenotypic variance explained by genome-wide polygenic 

risk scores (PRS) compared to previous publications (sample size weighted mean observed 

Nagelkerke’s R2 = 0.08 across datasets, liability scale R2=0.04, for p-threshold 0.01; 

Supplementary Figure 2 and Supplementary Table 2). Among the different datasets, we 

observed no association between the PRS R2 and: (i) the gender distribution of the BD cases 

(p=0.51); (ii) the proportion of cases with psychosis (p=0.61); (iii) the proportion with a family 

history of BD (p=0.82); or (iv) the median age of onset for BD (p=0.64). In our primary genome-

wide analysis, we identified 19 loci exceeding genome-wide significance (P< 5x10-8; Table 1).  

 

Follow-up of suggestive loci in additional samples 

We tested lead variants that were significant at P<1x10-4 in our discovery GWAS meta-analysis, a 

total of 794 autosomal and 28 X chromosome variants, for association in follow-up samples 

totaling 9,412 cases and 137,760 controls of European ancestry (effective sample size 23,005; 

Supplementary Note and Supplementary Table 1B). We first compared discovery and follow-up 

sample summary statistics using LD score regression, and estimated their genetic correlation to 

be 0.98 (se=0.07), consistent with homogeneous genetic effects between the two samples. 

Discovery and follow-up samples also show similar patterns of significant genetic correlations 

with a range of other human diseases and traits in the LD Hub database 26 (Supplementary 

Table 3; correlation of 0.93, p = 8.3x10-14, Supplementary Figure 3).  

Thirty autosomal loci achieved genome-wide significance (P< 5x10-8) in fixed-effect 

https://paperpile.com/c/jjWN0s/Kk3WD
https://paperpile.com/c/jjWN0s/8WbZ4
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meta-analysis of our GWAS and follow-up samples (Figure 1, Table 1A, Supplementary Data 1-3, 

Supplementary Table 4). In Supplementary Table 5, we present detailed descriptions of the 

associated loci and genes, with bioinformatic and literature evidence for their potential roles in 

BD. Of the 30 genome-wide significant loci from our combined analysis, 20 are novel BD risk loci. 

These include 19 loci that were significant only in the combined analysis, of which three were 

reported to have genome-wide significant SNPs in previous studies (ADCY2 18, POU3F2 18, ANK3 

12,18), and 11 that were significant in our primary GWAS. We refer to loci by the gene name 

attributed in previous BD GWAS publications, or by the name of the closest gene for novel loci, 

without implication that the named gene is causal. Results for all variants tested in the follow-up 

study are presented in Supplementary Table 4.  

Of the 19 variants that were genome-wide significant in the discovery GWAS, 8 were not 

genome-wide significant in the combined analysis (Table 1B), and 11 were non-significant in 

one-tailed association tests in the follow-up samples (p>0.05 in Table 1). Still, the follow-up 

results for these 19 variants are clearly non-null in aggregate: all 19 had consistent directions of 

effect between discovery GWAS and follow-up (9.5 expected by chance, binomial test p=4x10-6), 

and eight of the 19 had follow-up 1-tailed p<0.05 (1 expected by chance, sign test p=2x10-6). 

Using effect sizes corrected for winner’s curse 27,28 for each of the 19 variants that were genome-

wide significant in the GWAS, we calculated power to achieve significant results (1-tailed 

p<0.05) in the follow-up samples or genome-wide significance in combined analysis 

(Supplementary Note, Supplementary Table 6, Supplementary Figure 4). We found that the 

number of variants significant in follow-up is close to expectation (8 observed with follow-up 

p<0.05, 8.26 expected, Poisson binomial p = 0.57), and that 11 variants achieving genome-wide 

significance in the combined analysis is also within the expected range (p = 0.29). As an 

alternative to winner’s curse correction, we conducted a polygenic inference analysis using a 

https://paperpile.com/c/jjWN0s/AXnsE
https://paperpile.com/c/jjWN0s/AXnsE
https://paperpile.com/c/jjWN0s/AXnsE+eFQD9
https://paperpile.com/c/jjWN0s/IVV3l+aZXu2
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mixture of Gaussian effect size distributions to model BD genetic architecture and estimate the 

variants’ true effect sizes 29 (Supplementary Note, Supplementary Figure 5). Under this model, 

we found that only two variants were nominally significantly weaker in follow-up than expected 

by chance (TRANK1 rs9834970 p = 0.012, and rs13821 p = 0.026; Supplementary Table 7), and 

none were Bonferroni significant (p>0.05/19=0.0026). Thus, the overall replication rate is within 

the expected range given the polygenic architecture of BD.  

We next asked if the variants tested in the follow-up samples were, in aggregate, 

consistent with the presence of additional sub genome-wide significant BD association signals.   

After excluding 47 variants that were genome-wide significant in our GWAS, our combined 

analysis or previous BD GWAS, 775 variants remained in our follow-up experiment. 551 variants 

had the same direction of effect in the discovery GWAS and follow-up (71%, compared to a null 

expectation of 50%, sign test p = 1.3x10-32), and 110 variants had the same direction of effect 

and were nominally significant (p<0.05) in the follow-up (14%, compared to an expected value 

of 5%, binomial test p = 2.1x10-22). This consistency between our GWAS and follow-up results 

suggests that many more true BD associations exist among these variants.  

To identify additional independent signals, we conducted conditional analyses across 

each of the 30 significant BD loci (Supplementary Table 8). We used the effective number of 

independent variants based on LD structure within loci 30 to calculate a multiple test-corrected 

significance threshold (p=1.01x10-5, see Supplementary Note). Only one locus showed evidence 

for an independent association signal (rs114534140 in locus #8, FSTL5; pconditional = 2x10-6). At 

another locus (#30,STK4 on chr 20), we found two SNPs with genome-wide significance in low LD 

(r2 < 0.1); however, conditional analysis showed that their associations were not independent.  

 

Shared loci and genetic correlations with other traits 

https://paperpile.com/c/jjWN0s/cEmi
https://paperpile.com/c/jjWN0s/4WZxa
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We next examined the genetic relationships of BD to other psychiatric disorders and traits. Of 

the 30 genome-wide significant BD loci, 8 also harbor schizophrenia (SCZ) associations 31,32. 

Based on conditional analyses, the BD and SCZ associations appear to be independent at 3 of the 

8 shared loci (NCAN, TRANK1 and chr7q22.3:105Mb) (Supplementary Table 9). No genome-wide 

significant BD locus overlapped with those identified for depression (DEPR), including 44 risk loci 

identified in the most recent PGC  GWAS of major depression 33, and those reported in a large 

study of depressive symptoms or subjective well-being 34. As previously reported 35, we found 

substantial and highly significant genetic correlations between BD and SCZ 31 (LD-score 

regression estimated genetic correlation rg = 0.70, se = 0.020) and between BD and DEPR 33 (rg = 

0.35, se = 0.026). The BD and DEPR genetic correlation was similar to that observed for SCZ and 

DEPR (rg = 0.34, se = 0.025) (Supplementary Table 10A).  

We found significant genetic correlations between BD and other psychiatric-relevant 

traits (Supplementary Table 10B), including autism spectrum disorder 8 (rg = 0.18, P=2x10-4), 

anorexia nervosa 36 (rg = 0.23, P=9x10-8), and subjective well-being 34 (rg = -0.22, P=4x10-7). There 

was suggestive positive overlap with anxiety disorders (rg=0.21, P=0.04) 37 and neuroticism 

(rg=0.12, P=0.002) 38.  Significant rgs were seen with measures of education: college attendance 

39 (rg = 0.21, P=1=x10-7) and education years 40 (rg=0.20, P=6x10-14), but not with childhood IQ 41 

(rg=0.05, P=0.5) or intelligence 42 (rg=-0.05, P=0.08). Among a large number of variants in BD risk 

loci that were associated with additional traits in the GWAS catalog 43, we found a handful of loci 

with non-independent associations (in one overlapping locus with each of educational 

attainment, biliary atresia, bone mineral density, lipid-related biomarkers) (Supplementary 

Table 9). Biliary atresia and lipid- related biomarkers, however, did not show significant genetic 

correlation with BD (Supplementary Table 10B).  

 

https://paperpile.com/c/jjWN0s/t9SXu+fmAa7
https://paperpile.com/c/jjWN0s/R3Qjy
https://paperpile.com/c/jjWN0s/WbR3S
https://paperpile.com/c/jjWN0s/QQsX
https://paperpile.com/c/jjWN0s/t9SXu
https://paperpile.com/c/jjWN0s/R3Qjy
https://paperpile.com/c/jjWN0s/RGZRt
https://paperpile.com/c/jjWN0s/t8z8D
https://paperpile.com/c/jjWN0s/WbR3S
https://paperpile.com/c/jjWN0s/NHtju
https://paperpile.com/c/jjWN0s/JmilS
https://paperpile.com/c/jjWN0s/W6Ypt
https://paperpile.com/c/jjWN0s/VeRpc
https://paperpile.com/c/jjWN0s/tBQTW
https://paperpile.com/c/jjWN0s/lQN5L
https://paperpile.com/c/jjWN0s/McSx
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BD subtypes  

We performed a secondary GWAS focusing on three clinically recognized subtypes of bipolar 

disorder: BD1 (n=14,879 cases), BD2 (n=3,421 cases), and SAB (n=977 cases) (Supplementary 

Note, Supplementary Tables 1A & 11, Supplementary Figure 6). We observed variants in 14 loci 

with genome-wide significance for BD1, 10 of which were in genome-wide significant loci in the 

combined BD GWAS analysis. Not surprisingly given the sample overlap, 3 of the 4 remaining loci 

genome-wide significant for BD1 have P < 10-6 in either our discovery GWAS or combined 

analysis. The remaining locus (MAD1L1, chr7:1.9Mb, discovery GWAS p = 2.4x10-6) was recently 

published in two BD GWAS that included Asian samples 44,45. We did not observe genome-wide 

significant results for the smaller BD2 and SAB analyses. BD1, BD2 and SAB all have significant 

common variant heritabilities (BD1 h2
snp = 0.25, se = 0.014, p = 3.2x10-77; BD2 h2

snp  = 0.11, se = 

0.028, p = 5.8x10-5; SAB h2
snp = 0.25, se = 0.10, p = 0.0071). Genetic correlations among BD 

subtypes show that these represent closely related, yet partially distinct, phenotypes 

(Supplementary Table 12).  

We conducted polygenic risk score (PRS) analyses to explore the relationship between 

genetic risk of SCZ and DEPR, and BD subtypes and psychosis (Figure 2, Supplementary Table 

13). PRS calculated from SCZ 31 were significantly higher in BD1 cases than in BD2 cases 

(p=5.6x10-17, P threshold = 0.1) and in cases with psychosis compared to those without psychosis 

(p=2.12x10-6, P threshold =0.1). Conversely, PRS calculated from DEPR 33 were significantly 

higher in BD2 cases than in BD1 cases (P=8.5x10-10, P threshold = 0.01), independent of 

psychosis. Genetic correlations from LD-score regression support these results; genetic 

correlations were greater for SCZ with BD1 (rg = 0.71, se = 0.025) than with BD2  (rg = 0.51, se = 

0.072), and were greater for DEPR with BD2 (rg = 0.69, se = 0.093) than with BD1 (rg = 0.30, se = 

0.028) (Supplementary Table 12).  

https://paperpile.com/c/jjWN0s/mp35+9OTJ
https://paperpile.com/c/jjWN0s/t9SXu
https://paperpile.com/c/jjWN0s/R3Qjy
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Systems biology and in silico functional analyses  

 We tested for functional genomic enrichment in our BD GWAS using partitioned LD-

score regression and a range of functional annotations across tissues 46 (Supplementary Note, 

Supplementary Table 14). SNP-based BD heritability was most enriched in open chromatin 

annotations in the central nervous system (proportion SNPs = 0.14, proportion h2
snp = 0.60, 

enrichment =3.8, p = 3 x 10-14). We also used DEPICT 47 to test for expression of BD-associated 

genes across tissues, and found significant enrichment of central nervous system (p < 1.4x10-3, 

FDR < 0.01) and neurosecretory system (p = 2.0x10-6, FDR < 0.01) genes (Supplementary Table 

15).  

To prioritize genes that may play a functional role in BD, we integrated BD GWAS 

association statistics with eQTL (SNP-gene expression association) and mQTL (SNP-DNA 

methylation association) data using summary Mendelian randomization (SMR) 48,49,50 

(Supplementary Table 16; Supplementary Note). SMR identified 21 genes using eQTL data that 

were significant after multiple testing correction, without evidence of heterogeneity between 

GWAS and eQTL association signals. Association with GNL3 was observed in both brain and 

blood, highlighting the utility of using blood eQTL data as proxy for brain eQTLs 50. Methylation 

profiles at 6 CpGs in brain and 10 CpGs in blood were associated with BD, four of which 

overlapped between brain and blood mQTL: MUSTN1, GLT8D1, HAPLN4 and FADS2.   

 Finally, we used MAGMA 51 to conduct a gene-wise BD GWAS and to test for enrichment 

of pathways curated from multiple sources (see Supplementary Note). We note that 

significance levels were assigned to genes by physical proximity of SNPs, and do not imply that 

significant genes are causal for BD. Genic association results included 154 Bonferroni significant 

genes (MAGMA pJOINT < 2.8x10-6), including 82 genes in 20 genome-wide significant loci, and 73 

https://paperpile.com/c/jjWN0s/qerDa
https://paperpile.com/c/jjWN0s/H1Aw
https://paperpile.com/c/jjWN0s/t6krx
https://paperpile.com/c/jjWN0s/h4L5+ZpYs
https://paperpile.com/c/jjWN0s/ZpYs
https://paperpile.com/c/jjWN0s/Cgvw9
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genes in 27 additional loci that did not reach genome-wide significance (Supplementary Table 

17). Nine related pathways were significantly enriched for genes with BD associations (p < 

7.0x10-5, FDR < 0.05), including abnormal motor coordination/balance pathways (from mice), 

regulation of insulin secretion, and endocannabinoid signaling (Supplementary Table 18, 

Supplementary Figure 7).  

DISCUSSION 

We carried out a large bipolar disorder (BD) GWAS and identified 30 genome-wide 

significant loci, including 20 that were novel.  Previous BD GWAS have reported a total of 20 loci 

significantly associated with BD9–23 ; twelve of these previously reported loci were not genome-

wide significant in our GWAS meta analysis, but all had PGWAS ≤ 1.3x10-5 (Supplementary Table 

4C). Our recent GWAS of BD and SCZ 52, which included our discovery GWAS data jointly 

analyzed with published SCZ data 31 (without overlapping control subjects), highlighted 

similarities and differences in BD and SCZ in terms of known associated SNPs and PRS-

subphenotype associations; here we maximized power to identify BD associations. Phenotypic 

variance explained by polygenic risk scores (PRS) based on our BD GWAS data is ~8% (observed 

scale; 4% on the liability scale 53), an increase from 2.8% (1.2% on the liability scale) in our 

previous study 9. The results of our BD subtype PRS analyses support the nosological distinction 

between BD1 and BD2, but also highlight the importance of psychosis beyond DSM subtypes, 

corroborating and expanding evidence from previous clinical 54 and genetic studies 52,55,56. The 

DEPR vs. BD PRS analyses provide further support for the distinction between BD1 and BD2, 

independent of the presence of psychosis.  

Of the 19 loci identified in our discovery GWAS, only 11 were genome-wide significant in 

meta-analysis of our GWAS and follow-up samples. These results are not unexpected given small 

https://paperpile.com/c/jjWN0s/pfkdJ+Cjs6B+8AWa1+eFQD9+QB4st+XE3HD+b2uQ2+diWls+bU5YJ+AXnsE+0DyB1+rj0cl+xKMXH+AEhlY+wmWKl
https://paperpile.com/c/knTnyM/JZLu
https://paperpile.com/c/knTnyM/dbis
https://paperpile.com/c/knTnyM/jiRSF
https://paperpile.com/c/knTnyM/TUZHV
https://paperpile.com/c/knTnyM/24vah
https://paperpile.com/c/knTnyM/khFbi+DKiTU+JZLu


 

 17 

effect sizes, the winner’s curse 28,57 (Supplementary Note and Supplementary Figure 4); SNPs 

can teeter-totter around the genome-wide significance threshold even as sample sizes increase. 

Genetic heterogeneity observed among BD GWAS cohorts8 could also contribute to inconsistent 

replication results; we observed variable polygenic effects between BD subtypes (Figure 2, 

Supplementary Table 13) as well as between cohorts in our study (Supplementary Figure 2, 

Supplementary Table 4) which used a diversity of criteria to define cases (Supplementary 

Note). Remarkably, the strongest association signal from the discovery GWAS, at the TRANK1 

locus (rs9834970; pcombined = 5.7E-12, OR = 0.93), exhibited significant heterogeneity among 

discovery GWAS cohorts (Cochran’s Q p = 1.9x10-4), and did not replicate in the follow-up 

sample (1-tailed pfollowup = 0.3) (Supplementary Data 2 & 3). This locus has been significant in 

recent 11,12,17,18 but not earlier BD GWAS 9,13,20. Thus, complex genetic architecture as well as 

phenotypic heterogeneity may contribute to the inconsistency of genome-wide significant 

findings within and across BD GWAS studies. The observed heterogeneity is a major challenge 

for GWAS of psychiatric disorders and calls for careful and systematic clinical assessment of 

cases and controls in parallel with continued efforts to collect larger sample sizes. 

Of the 30 BD associated loci, 8 also harbor associations 31,32,58 with schizophrenia (SCZ); 

however, conditional analyses suggest that the BD and SCZ associations at 3 of the 8 shared loci 

(in the NCAN, TRANK1 and chr7q22.3:105 Mb loci) may be independent (Supplementary Table 

9). Differential BD and SCZ associations may represent opportunities to understand the genetic 

distinctions between these closely related and sometimes clinically difficult to distinguish 

disorders. We did not find BD loci that overlap with those associated with major depression33.  

The confirmed association within loci containing CACNA1C and other voltage-gated 

calcium channel genes supports the rekindled interest in calcium channel antagonists as 

potential treatments for BD, with similar examination ongoing for other genes implicated in SCZ 

https://paperpile.com/c/jjWN0s/aZXu2+qjxZO
https://paperpile.com/c/jjWN0s/RGZRt
https://paperpile.com/c/jjWN0s/eFQD9+AXnsE+bU5YJ+8AWa1
https://paperpile.com/c/jjWN0s/rj0cl+QB4st+pfkdJ
https://paperpile.com/c/jjWN0s/t9SXu+sIm1k+fmAa7
https://paperpile.com/c/jjWN0s/R3Qjy
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GWAS 59. Other genes within novel BD-associated loci include those coding for other ion 

channels and transporters (SCN2A, SLC4A1), neurotransmitter receptors (GRIN2A) and synaptic 

components (RIMS1, ANK3). Further study will confirm whether or not these are the causal 

genes in the loci. These processes are important in neuronal hyperexcitability60, an excess of 

which has been reported in iPSC derived neurons from BD patients, and which has been shown 

to be affected by the classic mood stabilizing drug lithium 61. In addition, SMR eQTL and mQTL 

analyses implicate GLT8D1, which is involved in proliferation and differentiation of neural stem 

cells 62. Pathway analyses reveal new genetic evidence for insulin secretion and 

endocannabinoid signaling in BD. There is evidence of insulin action in the brain 63 and in BD 64. 

The endocannabinoid system has possible roles in schizophrenia 65,66 and depression 67. Top 

genes appearing in these pathways include calcium and potassium channel subunit, MAP kinase 

and GABA-A receptor subunit genes (Supplementary Table 18). 

We observe significant positive genetic correlations with educational attainment, but 

not with either adult or childhood IQ, suggesting that the role of BD genetics in educational 

attainment may be independent of general intelligence. This result is inconsistent with 

suggestions from epidemiological studies 68, but in agreement with a recent clinical study 69.  

In summary, findings from the genome-wide analysis of BD reveal an extensive 

polygenic genetic architecture of the disease, implicate brain calcium channels and 

neurotransmitter function in BD etiology, and confirm that BD is part of a spectrum of highly 

correlated psychiatric and mood disorders. 

 

Accession codes:  

Accessioned data were part of the following datasets analyzed in this study. Fat2: 

phs000167.v1.p1 or PGC bundle phs001254.v1.p1 (MGS nonGAIN controls). Gain: dbGAP 

https://paperpile.com/c/jjWN0s/YdOS
https://paperpile.com/c/jjWN0s/gXNLD
https://paperpile.com/c/jjWN0s/7IQZ5
https://paperpile.com/c/jjWN0s/eBMo
https://paperpile.com/c/jjWN0s/cgR4
https://paperpile.com/c/jjWN0s/HenV
https://paperpile.com/c/jjWN0s/rPO6+q8hT
https://paperpile.com/c/jjWN0s/qlQo
https://paperpile.com/c/jjWN0s/8lBbd
https://paperpile.com/c/jjWN0s/Lh2sv
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phs000017.v3.p1 (GAIN Bip cases/controls), phs000021.v3.p2 (GAIN scz controls); also part of 

the PGC dbGAP bundle phs001254.v1.p1. Jjst: phs000092.v1.p1 or PGC bundle phs001254.v1.p1 

(SAGE controls). St2c, NIMH RGR Bipolar Study 19 (STEP-BD), dbGAP phs000294.v1.p1 (MIGEN 

controls). Mich: NIMH RGR Bipolar Study 2 (Pritzker). Wtcc: EGAD00000000002.  

 

URLs 

Psychiatric Genomics Consortium, PGC, https://med.unc.edu/pgc  

PGC results download,  https://www.med.unc.edu/pgc/results-and-downloads  

PGC data availability,  http://www.med.unc.edu/pgc/shared-methods 

PGC “ricopili” GWA pipeline, https://github.com/Nealelab/ricopili 

1000 Genomes Project multi-ancestry imputation panel, 

https://mathgen.stats.ox.ac.uk/impute/data_download_1000G_phase1_integrated.html 

LD-Hub, http://ldsc.broadinstitute.org 
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DISPLAY ITEM LEGENDS (inline above in this manuscript version): 

Figure 1. Manhattan plot for our primary genomewide association analysis of 20,352 cases and 

31,358 controls. GWAS -log10P-values are plotted for all SNPs across chromosomes 1-22 

(diamonds, green for loci with lead SNP GWAS P < 10-6). Combined GWAS+followup -log10P-

values for lead SNPs reaching genome-wide significance in either GWAS or combined analysis 

(triangles, inverted if GWAS+followup -log10P > GWAS -log10P). Labels correspond to gene 

symbols previously reported for published loci (black) and the nearest genes for novel loci 

(blue), at top if GWAS+followup P < 5x10-8. Loci with one-tailed follow-up p > 0.05 (Table 1) have 

dotted underlined locus names. 

Figure 2. Association of BD1 and BD2 subtypes with schizophrenia (SCZ) and major depression 

(DEPR) polygenic risk scores (PRS). Shown are mean PRS values (1 s.e. error bars), adjusted for 

study and ancestry covariates and scaled to the PRS mean and sd in control subjects, in BD1 

(red) and BD2 (blue) cases, for increasing source GWAS P-value thresholds (increasing grey) as 

indicated. P-values (italics) test BD1 vs BD2 mean PRS, in logistic regression of case subtype on 

PRS with covariates. Results are detailed in Supplementary Table 13. 
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Table 1. Genome-wide significant bipolar disorder risk loci 

Locus Name*1 Lead SNP CHR BP A1/A2 
GWAS Meta-analysis Follow-up samples Combined 

Freq. A1 OR P-value*2 OR P-value*3 OR P-value*2 
A. Thirty loci with lead SNP P < 5x10-8 in combined GWAS+followup analysis         
1,PLEKHO1 rs7544145 1  150,138,699  T/C 0.81 1.095 4.8E-07 1.064 0.010 1.085 4.8E-08 
2,LMAN2L** rs57195239 2  97,376,407  I/D 0.34 0.92 5.8E-09 0.96 0.030 0.93 3.8E-09 
3,SCN2A rs17183814 2  166,152,389  A/G 0.075 0.87 1.5E-07 0.89 0.0017 0.88 2.0E-09 
4,[Intergenic]*** rs61332983 2  194,465,711  I/D 0.41 0.93 2.3E-08 0.95 0.0031 0.93 7.9E-10 
5,TRANK1** rs9834970 3  36,856,030  T/C 0.51 0.90 5.5E-14 0.98 0.15 0.93 5.7E-12 
6,ITIH1** rs2302417 3  52,814,256  A/T 0.49 0.92 4.9E-09 0.94 0.0012 0.93 6.6E-11 
7,CD47 rs3804640 3  107,793,709  A/G 0.53 1.075 9.3E-08 1.044 0.016 1.065 2.0E-08 
8,FSTL5 rs11724116 4  162,294,038  T/C 0.16 0.90 3.3E-08 0.95 0.031 0.92 2.4E-08 
9,ADCY2** rs200550695 5  7,587,236  I/D 0.82 0.91 1.2E-07 0.94 0.011 0.92 1.5E-08 
10,SSBP2 rs10035291 5  80,796,368  T/C 0.68 1.081 1.1E-07 1.047 0.018 1.070 2.7E-08 
11,RIMS1 rs57970360 6  72,519,394  D/I 0.44 1.066 3.1E-06 1.062 0.0016 1.064 3.5E-08 
12,POU3F2** rs2388334 6  98,591,622  A/G 0.52 0.93 8.6E-08 0.95 0.0051 0.94 4.0E-09 
13,RPS6KA2 rs10455979 6  166,995,260  C/G 0.53 0.93 4.6E-08 0.97 0.046 0.94 4.3E-08 
14,THSD7A rs113779084 7  11,871,787  A/G 0.30 1.068 7.3E-06 1.095 2.9E-05 1.076 2.5E-09 
15,SRPK2 rs73188321 7  105,048,158  T/C 0.33 0.92 7.0E-08 0.94 0.0015 0.92 1.1E-09 
16,MRPS33 rs201231874 7  140,700,006  D/I 0.25 0.92 9.4E-08 0.93 0.0008 0.92 6.2E-10 
17,ANK3** rs10994318 10  62,125,856  C/G 0.057 1.151 4.5E-07 1.130 0.0021 1.145 6.8E-09 
18,ADD3** rs59134449 10  111,745,562  I/D 0.16 1.105 5.0E-08 1.059 0.017 1.090 1.2E-08 
19,FADS2** rs12226877 11  61,591,907  A/G 0.29 1.095 1.2E-08 1.062 0.0073 1.085 9.9E-10 
20,PACS1 rs10896090 11  65,945,186  A/G 0.81 1.094 2.1E-07 1.062 0.0089 1.084 1.9E-08 
21,PC rs7122539 11  66,662,731  A/G 0.35 0.93 2.2E-07 0.96 0.015 0.94 3.8E-08 
22,SHANK2 rs12575685 11  70,517,927  A/G 0.31 1.066 1.2E-05 1.088 5.7E-05 1.073 7.7E-09 
23,CACNA1C** rs10744560 12  2,387,099  T/C 0.34 1.087 2.9E-09 1.052 0.0086 1.076 3.6E-10 
24,STARD9 rs4447398 15  42,904,904  A/C 0.12 1.112 1.1E-07 1.072 0.0079 1.099 9.4E-09 
25,ZNF592 rs139221256 15  85,357,857  I/D 0.28 0.92 8.5E-09 0.97 0.082 0.93 2.7E-08 
26,GRIN2A rs11647445 16  9,926,966  T/G 0.65 0.93 1.2E-07 0.93 9.8E-05 0.93 1.1E-10 
27,HDAC5 rs112114764 17  42,201,041  T/G 0.69 0.93 1.7E-06 0.94 0.0021 0.93 2.5E-08 
28,ZCCHC2 rs11557713 18  60,243,876  A/G 0.29 1.074 1.2E-06 1.059 0.0038 1.069 3.6E-08 
29,NCAN** rs111444407 19  19,358,207  T/C 0.15 1.124 2.4E-10 1.040 0.075 1.097 1.3E-09 
30,STK4 rs202012857 20  43,682,549  I/D 0.28 0.923 3.0E-07 0.942 0.0043 0.929 1.1E-08 
B. Additional loci with lead SNP P < 5x10-8 in GWAS analysis          
TFAP2B rs55648125 6 50,816,718 A/G 0.90 0.89 4.9E-08 0.95 0.068 0.91 8.5E-08 
DFNA5 rs17150022 7 24,771,777 T/C 0.88 0.89 2.7E-08 0.96 0.087 0.91 8.6E-08 
SLC25A17 rs138321 22 41,209,304 A/G 0.50 1.083 4.7E-09 1.012 0.28 1.060 1.9E-07 
HLF rs884301 17 53,367,464 T/C 0.37 1.084 5.8E-09 1.013 0.26 1.061 2.1E-07 
PHF15 rs329319 5 133,906,609 A/G 0.43 1.082 1.5E-08 1.019 0.18 1.061 2.1E-07 
ODZ4** rs73496688 11 79,156,748 A/T 0.14 1.11 1.0E-08 1.016 0.29 1.083 4.2E-07 
[Intergenic]*** rs57681866 2 57,975,714 A/G 0.06 0.85 5.0E-08 0.97 0.23 0.89 1.2E-06 
[Intergenic]*** rs13231398 7 110,197,412 C/G 0.11 0.89 3.4E-08 0.998 0.47 0.92 4.6E-06 

*1 Loci are numbered 1 to 30, ordered by genomic position, with previously reported gene name for published loci 
*2 P-values for GWAS and combined analyses are two-tailed, bold and underlined if p < 5x10-8.  
*3 P-values for follow-up are one-tailed based on the direction of effect in the discovery GWAS, bold and underlined if p < 0.05.  
** Previously published and named loci. (Locus 12 would be named as Intergenic, nearest gene is POU3F2 691Kb.) 
*** Intergenic loci nearest genes: Locus 4 PCGEM1 824kb, Table 1B chr2 locus VRK2 298Kb, Table 1B chr7 IMMP2L 106Kb. 
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ONLINE METHODS 

GWAS and follow-up cohorts.  Our discovery GWAS sample was comprised of  32 cohorts from 

14 countries in Europe, North America and Australia (Supplementary Table 1A), totaling 20,352 

cases and 31,358 controls of European descent. A selected set of variants (see below) were 

tested in 7 follow-up cohorts of European descent (Supplementary Table 1B), totalling 9,025 

cases and 142,824 controls (Neff = 23,991). The Supplementary Note summarizes the source and 

inclusion/exclusion criteria for cases and controls for each cohort. All cohorts in the initial PGC 

BD paper were included 9. Cases were required to meet international consensus criteria (DSM-IV 

or ICD-10) for a lifetime diagnosis of BD established using structured diagnostic instruments 

from assessments by trained interviewers, clinician-administered checklists, or medical record 

review. In most cohorts, controls were screened for the absence of lifetime psychiatric disorders 

and randomly selected from the population.  

GWAS cohort analysis We tested 20 principal components for association with BD using logistic 

regression; seven were significantly associated with phenotype and used in GWAS association 

analysis (PCs 1-6, 19). In each cohort, we performed logistic regression association tests for BD 

with imputed marker dosages including 7 principal components to control for population 

stratification. For all GWAS cohorts, X-chromosome association analyses were conducted 

separately by sex, and then meta-analyzed across sexes. We also conducted BD1, BD2, and SAB 

GWAS, retaining only cohorts with at least 30 subtype cases and filtering SNPs for MAF > 0.02. 

Results were combined across cohorts using an inverse variance-weighted fixed effects meta-

analysis 70. We used Plink ‘clumping’ 71,72 to identify an LD-pruned set of discovery GWAS meta-

analysis BD-associated variants (P < 0.0001, and distance >500 kb or LD r2 < 0.1, n variants =822) 

for analysis in the follow-up cohorts. Conditional analyses were conducted within each GWAS 

cohort and meta-analyzed as above.  

https://paperpile.com/c/jjWN0s/pfkdJ
https://paperpile.com/c/jjWN0s/sAa9c
https://paperpile.com/c/jjWN0s/eVEB+skmO
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Follow-up cohort analysis. In each follow-up cohort we performed BD association analysis of the 

822 selected GWAS variants (when available) including genetic ancestry covariates, following QC 

and analysis methods of the individual study contributors. We performed inverse variance-

weighted fixed-effects meta-analyses of the association results from the follow-up cohorts, and 

of the discovery GWAS and follow-up analyses.  

Polygenic risk score (PRS) analyses. We tested PRS for our primary GWAS on each GWAS cohort 

as a target set, using a GWAS where the target cohort was left out of the meta-analysis 

(Supplementary Table 2). To test genetic overlaps with other psychiatric diseases, we calculated 

PRS for DEPR and SCZ in our GWAS cohort BD cases 73. In pairwise case subtype or psychosis 

analyses (Figure 2, Supplementary Table 13), we regressed outcome on the PRS adjusting for 

ancestry principal components and a cohort indicator using logistic regression, and visualized 

covariate-adjusted PRS in BD1 and BD2 subtypes (Figure 2). Outcome sample sizes were BD1 

n=8,044, BD2 n=3,365, SAB n=977; BD1 cases with and without psychosis n= 2175 and 798 

respectively, BD2 cases with and without psychosis n= 146 and 660. 

Linkage disequilibrium (LD) score regression. LD score regression 25,26 was used to conduct SNP-

heritability analyses from GWAS summary statistics. LD score regression bivariate genetic 

correlations attributable to genome-wide common variants were estimated between the full BD 

GWAS, BD subtype GWASs, and other traits and disorders in LD-Hub 26. We also used LD score 

regression to partition heritability by genomic features 46.  

Relation of BD GWA findings to tissue and cellular gene expression. We used partitioned LD 

score 47,74 and DEPICT 47 regression to evaluate which somatic tissues and brain tissues were 

enriched in the BD GWAS. We used summary-data-based Mendelian randomization (SMR) 48,50 

to identify SNPs with strong evidence of causality of brain or blood gene expression or 

methylation in BD risk (Supplementary Table 16), with a test for heterogeneity to exclude 

https://paperpile.com/c/jjWN0s/zTrSD
https://paperpile.com/c/jjWN0s/Kk3WD+8WbZ4
https://paperpile.com/c/jjWN0s/8WbZ4
https://paperpile.com/c/jjWN0s/qerDa
https://paperpile.com/c/jjWN0s/oh1Hu+H1Aw
https://paperpile.com/c/jjWN0s/H1Aw
https://paperpile.com/c/jjWN0s/t6krx+ZpYs
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regions with LD between distinct causal SNPs (pHET < 0.01).  

Gene-wise and pathway analysis. Guided by rigorous method comparisons conducted by PGC 

members 51,75, p-values quantifying the degree of association of genes and gene sets with BD 

were generated using MAGMA (v1.06) 51. We used ENSEMBL gene coordinates for 18,172 genes 

giving a Bonferroni corrected P-value threshold of 2.8x10-6. Joint multi-SNP LD-adjusted gene-

level p-values were calculated using SNPs 35 kb upstream to 10 kb downstream, adjusting for LD 

using 1,000 Genomes Project (Phase 3 v5a, MAF ≥ 0.01, European-ancestry subjects) 76. Gene 

sets were compiled from multiple sources. Competitive gene set tests were conducted 

correcting for gene size, variant density, and LD within and between genes. The pathway map 

(Supplementary Figure 5) was constructed using the kernel generative topographic mapping 

algorithm (k-GTM) as described by 77.  

Genome build. All genomic coordinates are given in NCBI Build 37/UCSC hg19. 

 

Data Availability. The PGC’s policy is to make genome-wide summary results public. Summary 

statistics for our meta-analysis are available through the PGC (see URLs). Data are accessible 

with collaborative analysis proposals through the Bipolar Disorder working group of the PGC 

(see URLs).  

 

Methods References: 

70. Ripke, S. Ricopili: a tool for visualizing regions of interest in select GWAS data sets. (2014). 

71. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based 

linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007). 

72. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer 

datasets. Gigascience 4, 7 (2015). 
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