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Abstract
Bipolar disorder (BD) is a polygenic disorder that shares substantial genetic risk factors with
major depressive disorder (MDD). Genetic analyses have reported numerous BD susceptibility
genes, while some variants, such as single-nucleotide polymorphisms (SNPs) in CACNA1C have
been successfully replicated, many others have not and subsequently their effects on the
intermediate phenotypes cannot be verified. Here, we studied the MDD-related gene CREB1 in a
set of independent BD sample groups of European ancestry (a total of 64 888 subjects) and
identified multiple SNPs significantly associated with BD (the most significant being SNP
rs6785[A], P = 6.32 × 10−5, odds ratio (OR) = 1.090). Risk SNPs were then subjected to further
analyses in healthy Europeans for intermediate phenotypes of BD, including hippocampal volume,
hippocampal function and cognitive performance. Our results showed that the risk SNPs were
significantly associated with hippocampal volume and hippocampal function, with the risk alleles
showing a decreased hippocampal volume and diminished activation of the left hippocampus,
adding further evidence for their involvement in BD susceptibility. We also found the risk SNPs
were strongly associated with CREB1 expression in lymphoblastoid cells (P<0.005) and the
prefrontal cortex (P<1.0 × 10−6). Remarkably, population genetic analysis indicated that CREB1
displayed striking differences in allele frequencies between continental populations, and the risk
alleles were completely absent in East Asian populations. We demonstrated that the regional
prevalence of the CREB1 risk alleles in Europeans is likely caused by genetic hitchhiking due to
natural selection acting on a nearby gene. Our results suggest that differential population histories
due to natural selection on regional populations may lead to genetic heterogeneity of susceptibility
to complex diseases, such as BD, and explain inconsistencies in detecting the genetic markers of
these diseases among different ethnic populations.
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INTRODUCTION
Bipolar disorder (BD) is a severe psychiatric disorder characterized by profound mood
symptoms including episodes of mania, hypomania and depression, and is often
accompanied by psychotic features and cognitive changes. Though worldwide lifetime
prevalence of BD is 0.5–1.5% in general populations,1 the rate of concordance for
monozygotic twins is roughly 40–70% (compared with 5% in dizygotic twins) and the risk
among the first-degree relatives of individuals with BD is 10-fold greater than among the
general populations, implying a strong genetic predisposition for BD.1 Despite the relatively
high heritability of BD, however, only a few risk single-nucleotide polymorphisms (SNPs)
have been found and many cannot be successfully replicated in samples from different
populations of various ethnicities. For example, a genome-wide risk SNP for BD in
Europeans, rs1012053 in DGKH,2 was not replicated in Chinese.3 This phenomenon can be
explained by environmental factors, such as environmental exposure, dietary or cultures.
Moreover, differential population histories (caused by genetic drift and/or natural selection)
on the risk genes may lead to differentiation in allele frequencies and linkage disequilibrium
(LD) patterns, resulting in inconsistent associations between different populations. Petryshen
et al.,4 for example, illustrated that rs6265, a risk SNP of BDNF for psychiatric disorders,
showed inconsistent results among different samples; they detected evidence of positive
selection on the BDNF loci, which could influence the detection of susceptibility genes.

Clinical, epidemiological and genetic findings have suggested shared risk factors between
BD and major depressive disorder (MDD).5 BD shares phenotypic similarity with MDD,
and there is an increased morbidity of MDD within family members of a proband with BD.1

BD and MDD also share some common risk genes, such as CACNA1C and SYNE1, which
were identified in a recent meta-analysis of BD genome-wide association study (GWAS).6

These two BD risk genes also showed significant associations with MDD.7,8 Similarly,
PCLO, a candidate susceptible gene for MDD identified by GWAS,9 has also been
implicated in the genetic susceptibility of BD.10

Similarly, CREB1 has been identified as a susceptibility gene for MDD, with lines of
supporting evidence.11–16 Spanning 75.7 kb on human chromosome 2q34, CREB1 encodes a
transcription factor cAMP (cyclic adenosine monophosphate) responsive element binding
protein 1, and is involved in the cAMP signaling pathway, which is often malfunctional in
patients with MDD and BD.11,12 Previous studies suggested CREB1 has an important role in
anxiety and depression in animal behavioral models.13 Independent human studies have also
reported female-specific linkage to CREB1 in families with recurrent early-onset MDD.14,15

Sequence variations in the CREB1 promoter region were also implicated in the pathogenesis
of MDD.16 In addition, CREB1 has also been implicated in antidepressant response,17

anger18 and neuronal plasticity as well as in hippocampus dependent memory process,12

although the mechanism is complicated.11 These findings led us to speculate that CREB1
may be a risk gene for BD, though current GWASs haven’t highlighted this genomic region
in the genetic risk of BD.

In patients with BD, the volume of the hippocampus is reduced,19 and hippocampal
abnormalities (for example, memory impairment) have been repeatedly observed in BD
patients as well as in their unaffected relatives, suggesting that hippocampal abnormalities
are related to the genetic risk for BD.20 Meanwhile, functional neuroimaging studies
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consistently found that dysfunctions of hippocampus and closely related regions underpin
abnormal affective responses and dysfunctional emotion regulation in BD.21 Postmortem
studies have also provided further evidence for the hypothesis that hippocampal
abnormalities are relevant to the altered synaptic plasticity and diminished resilience in
BD.22 Therefore, analysis of the risk genes on these intermediate phenotypes could provide
additional evidence for their involvement in BD susceptibility.

In light of these findings, we opted to analyze CREB1 in two large-scale BD sample
populations of European ancestries alongside analyzing intermediate phenotypes, including
hippocampal volume, hippocampal function and cognitive performance in healthy European
subjects. We also tested the effects of the risk SNPs on CREB1 expression in independent
lymphoblastoid cell and brain samples. To test if these findings were universally applicable
or particular to populations of a unique ancestry, we conducted a population analysis to
determine if the risk SNPs were present in Chinese, and found they were totally absent while
the non-risk SNPs were not, likely due to differential population histories of CREB1 caused
by regional natural selections.

SUBJECTS AND METHODS
Case–control subjects

The Psychiatric GWAS Consortium (PGC) BD group recently conducted a meta-analysis of
large-scale genome-wide data on BD in populations of European ancestry.6 In this study, all
patients had experienced pathologically relevant episodes of elevated mood (mania or
hypomania) and met the established criteria for BD within the primary study classification
system, and the subjects with a low probability of having BD from the same geographic and
ethnic populations were selected to use as a control. We extracted the results of all available
common SNPs (minor allele frequency (MAF) >0.05) covering the entire genomic region of
CREB1 gene (85.4 kb, Chromosome 2: 208382600–208468000, GRCh37.p5) from the
primary GWAS samples (7481 cases/9250 controls).6 Detailed descriptions of the samples,
data quality, genomic controls and statistical analyses can be found in the original GWAS.6

For replication analysis, we recruited six independent BD sample groups of European
ancestries from several different locations: France (451/1631), Sweden (836/2093),
Germany (181/527), Australia (330/1811), Poland (411/504) and Iceland (544/34 426).
Considering the substantial genetic overlap between MDD and BD,5 we also added two
MDD samples independently collected from Munich-Germany (640/542) and the UK
(1636/1,594). All replication samples were previously reported in the large-scale
collaborative studies or individual GWAS,6,23–25 and showed no overlap with the PGC BD
GWAS samples. Written informed consent for participation was obtained from all the
subjects in this study, in accordance with local ethical regulations (for detailed information
of the samples, including genotyping methods see Supplementary Data and Supplementary
Table S1).

Genotyping and association analysis
For genotyping in our samples, we mainly used the Illumina (San Diego, CA, USA) and
Affymetrix platforms (details shown in Supplementary Data), and the genotyping yield was
at least 95% in cases and control subjects of all groups. Control subjects were tested for
deviation from the Hardy–Weinberg equilibrium, and we found no SNPs deviated from
Hardy–Weinberg equilibrium. Genomic control was used to correct for relatedness and
population stratification in each replication sample.26 With the exception of the Icelandic
group, the genomic inflation factors (λ) were all <1.1. In the Icelandic sample, some related
individuals were included in the analyses and the genomic control factor (λ) was 1.11. We
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used Haploview v4.1 to estimate the LD between paired SNPs with the r2 algorithm and to
define haplotype blocks.27 P-values and allele-specific ORs for each individual sample were
calculated with a logistic regression model adjusted using genomic control, assuming an
additive effect. Meta-analysis of the results from different case–control samples were
performed by PLINK v1.07 using the Mantel–Haenszel method with the fixed effect
(inverse variance) method.28 A total of 34 SNPs in CREB1 were included in the GWAS by
the PGC BD group.6 Among these 34 SNPs, we selected 25 common SNPs with the MAF
>0.05 (according to data from the 1000-Human-Genome Project29) in European populations
for our analysis. P>0.002 was set to as the statistical significance level in the discovery and
combined samples; in the replication sample, P>0.05 was considered significant.

Analysis of hippocampal volume, hippocampal function and cognitive performance
Recently, GWASs on bilateral hippocampal volume were conducted by two independent
consortia: (1) the Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE),30 and (2) the Enhancing Neuro Imaging Genetics through Meta-Analysis
(ENIGMA) consortium.31 Briefly, the CHARGE group included 9232 dementia-free
subjects whose ages ranged from 56.0–84.0 years (with a weighted average of 67.1 years),
and the ENIGMA samples contained 5775 young healthy individuals (mean age: 34.8
years). Detailed information on the samples, imaging procedures and genotyping methods of
the two samples can be found in the original GWASs.30,31 We extracted the association
results of CREB1 SNP with bilateral hippocampal volume instead of single-side
hippocampal volume from these two GWASs, because the volumes of the right and left
hippocampus do not differ significantly in healthy subjects,31 and the genetic bases are
likely the same.32

For brain functions, we analyzed the data of a German sample of healthy individuals (N =
279) that was part of an ongoing study on neurogenetic mechanisms of psychiatric disease to
study the effects of risk CREB1 SNPs on hippocampal function,33–35 using blood
oxygenation level-dependent functional magnetic resonance imaging measurement during
three consecutive blocks of memory tasks (that is, encoding, recall and recognition of face-
profession pairs). We analyzed the effects of the SNPs on right and left hippocampal
function separately, assuming potential asymmetry in hippocampal function, with the right
hippocampus supporting processes contributing to visuo-spatial memory and the left
hippocampus to verbal/narrative or episodic memory.36–38 All participants were of
European ancestry with no lifetime or family history of psychiatric diseases. Detailed
information on sample, data acquisition and statistical analysis are provided in the
Supplementary Data.

We also recruited an Irish sample (N = 88) consisted of healthy subjects to study the effects
of risk CREB1 SNPs on cognitive performance (that is, IQ, episodic memory, working
memory, attention and social cognition). All participants were of European ancestry with no
history of major mental health problems, intellectual disability or acquired brain injury.
Detailed information on the sample description, cognitive assessment and statistical analysis
are presented in the Supplementary Data.

Gene expression analysis
To detect the functional effects of the risk SNPs in CREB1, we analyzed their associations
with gene expression levels. We first utilized the Genevar database39 containing data from
lymphoblastoid cell lines in the healthy European subjects (N = 75).40 We also extracted the
data of genome-wide expression analysis in the prefrontal cortex of healthy Caucasian and
African American samples (N = 261) from the BrainCloud database (http://
braincloud.jhmi.edu).41 In addition, we used the Stanley Neuropathology Consortium
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Integrative Database (SNCID, http://www.stanleyresearch.org/sncid/);42 a web-based tool
for exploring neuropathological markers in neuropsychiatric disorders and the biological
processes associated with abnormalities of those markers. The SNCID is a collection of 60
brains, consisting of 15 each diagnosed with BD, MDD, SCZ and healthy controls. The four
groups are matched by age, sex, race, postmortem interval, pH, side of brain and mRNA
quality (Supplementary Table S2). In SNCID, we studied the associations of the risk SNPs
with CREB1 expression in several brain regions separately, including frontal cortex,
cerebellum, thalamus and hippocampus. Finally, we also used data reported previously, from
a whole-genome association mapping of gene expression in the cerebellar cortex of
neuropsychiatric patients and controls (N = 164).43,44 Briefly, that study obtained 164 brain
samples from the Stanley Medical Research Institute (SMRI), including BD, MDD, SCZ
and healthy controls, and analyzed gene expression using Affymetrix U133A array. All the
samples included data on collection group, diagnosis, age, sex, race, postmortem interval,
brain pH, smoking, alcohol use, suicide status and psychotic feature, which were used as
covariates in their analysis.43

Bioinformatics analysis of the CREB1 SNPs and functional prediction
To detect the potentially functional variant(s) for CREB1 expression, we obtained the
sequence data of the entire CREB1 gene (85.4 kb, Chromosome 2: 208382600–208468000,
GRCh37.p5) in Europeans from the 1000-Human-Genome Project.29 We identified a total
of 49 SNPs (Supplementary Table S3) in strong LD (r2 ≥ 0.90) with highly similar
frequencies (20.6–22.4%), including the risk SNPs for BD (for example, rs2709370 and
rs6785). None of these SNPs are located in the CREB1 exon region. With the use of the
ENCODE data (http://www.genome.gov/10005107),45–50 we conducted a bioinformatics
analysis to predict the function of these SNPs. The ENCODE data provides a multitude of
experimental data suitable to annotate regulatory variants outside of protein-coding regions,
and this was achieved by the Regulome DB (http://www.regulomedb.org);51 a fairly
comprehensive variant annotation tool that makes use of functional sources. We also
predicted whether the SNPs are located in the microRNA-binding sites using an online-tool
mirSNP (http://202.38.126.151/hmdd/mirsnp/search/).52

Population genetic analysis
Global distributions of the CREB1 SNPs among 53 populations were derived from the
HGDP Selection Browser (http://hgdp.uchicago.edu/).53 Re-sequencing data for CREB1 and
its adjacent genes (FAM119A, CCNYL1 and FZD5) were obtained from the 1000-Human-
Genome Project,29 including 85 CEU (Utah residents with Northern and Western European
ancestry) and 97 CHB (Han Chinese in Beijing, China) subjects.

We first calculated nucleotide diversity, π, and the proportion of segregating sites, θw, for
each human population. Then in DnaSP v5.0, we used the statistics including Tajima’s
DT,54 Fu and Li’s D, F, D*, F*,55,56 and Fay and Wu’s H57 to detect the deviation from
neutrality. To calculate the significance of the deviation from neutrality, coalescent
simulations were then constructed incorporating the best-fit human demographic parameters
of Europeans and East Asians, as described in Schaffner et al.58 Africans were used as an
out-group when analyzing Fu and Li’s D, F and Fay and Wu’s H-test.

RESULTS
CREB1 variants confer risk of BD

Data were recruited for all available common SNPs in CREB1 in the PGC GWAS on BD,6

and even after a multiple testing correction we observed significant associations for many
SNPs (P<0.002, Figure 1), with the strongest signal located in the 3′-UTR region (rs6785, P
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= 3.38 × 10−4, OR = 1.111 for A allele). Most of these risk SNPs were in highly similar
frequencies (~20%, Supplementary Table S4) and strong LD in Europeans (r2 ≥ 0.90,
Supplementary Figure S1).

To further test the observed associations with BD in the PGC GWAS sample, we selected
two representative SNPs, rs2709370 (P = 1.80 × 10−3, OR = 1.094 for C allele) in the 5′
near gene region (10 kb upstream of CREB1) and rs6785 in the 3′UTR region and conducted
replication analysis on a large collection of independent BD and MDD case–control samples
of European ancestry (2753 BD cases, 2276 MDD cases and 43 128 controls;
Supplementary Table S1). These two SNPs showed nominally significant associations
among the replication samples (rs2709370[C], P = 0.0303, OR = 1.070; and rs6785[A], P =
0.0433, OR = 1.066). Meta-analysis conducted by combining the PGC BD GWAS and
replication samples (N = 64 888) indicated stronger significance levels (rs2709370[C], P =
1.68 × 10−4, OR = 1.083; and rs6785[A], P = 6.32 × 10−5, OR = 1.090, Figure 1), with no
heterogeneity among the individual samples (rs2709370, P = 0.7044; and rs6785, P =
0.6827). The results for each sample are shown in Supplementary Table S5. The odds ratios
in the cumulative analysis are comparable with other genes reported as significantly
associated with psychiatric disorders in larger meta-analyses59,60 and exceed the Venice
interim criteria for ‘small summary’ findings.61 Taken collectively, the association analysis
suggests that SNPs in CREB1 may confer risk of BD among Europeans.

Effects of the risk SNPs on hippocampal volumes and hippocampal function
Given the known function of CREB1 in the hippocampus, a brain region subserving
attention and memory processes and consistently implicated in the neuropathology of BD,
we hypothesized that if the risk-associated SNPs affect the biology of this brain region,
cognitive deficits referable to this region would also be associated with risk genotypes,
regardless of disease status. We selected the two risk SNPs from the meta-analysis
(rs2709370 and rs6785) and tested their effects on the biological phenotypes related to
hippocampus in healthy subjects. The use of healthy controls for genetic association at the
level of brain function avoids potential confounders related to chronic illness and medical
treatment.

First, we tested the effects of the risk CREB1 SNPs (rs2709370 and rs6785) on hippocampal
volume variation using published samples.30,31 In the ENIGMA sample (mean age 34.8
years), these SNPs were significantly associated with hippocampal volume (rs2709370[C], β
= −17.70 mm3, P = 0.0477; rs6785[A], β = −22.27 mm3, P = 0.0127; β represents the
difference in hippocampal volume per copy increase of the risk allele), with risk alleles
possessing smaller volumes. However, the associations were not replicated in the CHARGE
samples (weighted average age is 67.1 years) (rs2709370[C], β = 4.9 mm3, P = 0.6827;
rs6785[A], β = 7.6 mm3, P = 0.5271). We evaluated effects of age and age × SNP
interaction on the hippocampal volume in both samples, and there are significant effects of
age on hippocampal volume in both samples (P<0.05), consistent with prior studies showing
the influence of age on brain structures.62 However, the age–SNP interaction analysis was
not significant (P>0.05). Hippocampal volume is a complex trait, and only around 40% of
the variance in volume is attributable to genetic influences.63 Consequently, the SNP effect
is barely detectable even if the sample size is large, and we are very underpowered to pick
up an age × SNP interaction effect, as it requires orders of magnitude higher power than
picking up the SNP effect itself. Hence, the nominally significant associations of CREB1
SNPs with hippocampal volume likely exist in young adult healthy individuals (ENIGMA),
however, due to the influence of age and the limited genetic basis of hippocampal volume,
such effects diminish in older subjects (CHARGE).
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We next investigated the effects of the same risk CREB1 SNPs on hippocampal function
with functional magnetic resonance imaging data using a recently published healthy sample
from Germany (N = 279).33–35 As expected, we observed significant association of
rs2709370 with hippocampal function during memory recall (P<0.01, family wise error
corrected for multiple comparisons across the region of interest, Figure 2). The risk allele
[C] carriers likewise showed diminished activation of the left hippocampus, consistent with
a previous study of patients with BD who showed impaired hippocampal function, further
supporting the involvement of CREB1 in BD. However, rs2709370 did not show evidence of
association with the right hippocampal function (P>0.1), suggesting that rs2709370 may
contribute to processes including mainly verbal/narrative or episodic memory (related to the
left hippocampus), and less to visuo-spatial memory (related to the right hippocampus). We
also showed that the demographic characteristics (for example, age and sex and so on.) of
the functional magnetic resonance imaging sample was not modulated by the rs2709370
genotype (Supplementary Table S6). However, rs6785 did not show any significant
associations with hippocampal function (data not shown).

Finally, we analyzed the associations of the risk CREB1 SNPs (rs2709370 and rs6785) with
neuropsychological measures of cognitive performance in a healthy Irish sample (N = 88).
These SNPs, however, showed no detectable associations with variation in cognition as
measured by either IQ, working memory, episodic memory recall, attention or social
cognition (Supplementary Tables S7 and S8). As the sample size is small and the statistical
power is limited, particularly when testing the effects of common genetic variants on
behavioral response rather than cortical activation (as in the German data), further analysis
is needed.

Association of the risk SNPs with CREB1 mRNA expression
The association of CREB1 with BD and related brain phenotypes in multiple independent
samples lends statistical and biological support to the involvement of this genomic region in
the risk of illness. However, these findings do not identify the underlying molecular
mechanism. To test the effects of the risk SNPs on CREB1 expression in vivo, we utilized
several existing expression quantitative trait loci databases. Unfortunately, rs2709370 and
rs6785 were not available in most of these databases, so we instead selected rs2709373 (r2 =
0.93 with rs2709370 in European populations, according to data from the 1000-Human-
Genome Project) and rs2551949 (r2 = 1.0 with rs6785). We firstly used the Genevar
expression database, consisting of 75 lymphoblastoid cell lines from healthy European
individuals,40 and found rs2709373 and rs2551949 were significantly associated with
CREB1 expression (rs2709373, P = 2.4 × 10−3; rs2551949, P = 5.0 × 10−4, probe ID:
ILMN_2334242; Figure 3a), with the risk alleles having higher expression. Conversely,
these SNPs were not associated with the expression of the nearby genes located within 500
kb (P>0.01, Supplementary Figure S2; a total of five genes were included, so P = 0.01 was
set as the significance level).

Colantuoni et al.41 recently conducted genome-wide expression analyses of the human
prefrontal cortex in 261 healthy Caucasian and African American individuals (BrainCloud).
Both rs2709373 and rs2551949 showed strong associations with CREB1 expression in the
sample (rs2709373, P = 1.25 × 10−7; rs2551949, P = 1.30 × 10−7, probe ID: 7409_Illumina;
Figure 3b). Again, the risk alleles had higher CREB1 expression. We then conducted the
analysis stratified by ethnics in BrainCloud database, and found these two SNPs also
significantly associated with CREB1 expression in Caucasians only (P<1.0 × 10−3; data not
shown). In addition, in another web-based database SNCID, all four SNPs (rs2709370,
rs2709373, rs6785 and rs2551949) were included and were likewise strongly associated
with CREB1 expression in several brain regions, including the frontal cortex, cerebellum,
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hippocampus and thalamus (P<5 × 10−6, probe ID: 204314_s_at and 204313_s_at;
Supplementary Table S9). Furthermore, Liu et al.43 also reported significant associations of
rs2709370 with CREB1 expression in the combined cerebellum samples of healthy controls,
SCZ, BD and MDD patients (empirical P = 3.03 × 10−5, N = 164, probe ID: 204314_s_at;
refer to the Supplementary data of their study).43 Collectively, these consistent results across
multiple studies suggest that the risk CREB1 SNPs may influence CREB1 expression,
although it is not clear which may be the causal SNP because all the risk SNPs are in high
linkage.

To seek the causal variant(s) potentially influencing the expression of CREB1, we conducted
a bioinformatics analysis (refer to Subjects and Methods for details). The results showed
that, among the 49 candidate SNPs, there are at least 26 SNPs (having Regulome DB scores,
Supplementary Table S3) that located in the potentially functional regions, that is, either
containing predicted transcription factor binding motifs, having protein binding sequences as
demonstrated by ChIP-seq method, or located in the chromatin structures or the histone
modification regions. Notably, rs2464976 is located in the 5′ flanking region of CREB1, and
has the highest Regulome DB score (Supplementary Table S3). In addition, we found that
all the four SNPs located in the CREB1 3′UTR region (rs2551928, rs1806584, rs1045780
and rs6785) could bind at least one kind of microRNA with predicted binding affinity
changes (Supplementary Figure S3). Collectively, our functional predictions identified
multiple SNPs with potential functional roles in regulating CREB1 expression, which need
to be tested in the future.

A CREB1 downstream neighboring gene FAM119A, has an overlap (~22.7 kb) with CREB1
in the genome. This gene also contains some risk SNPs for BD (for example, rs2551949),
which are in high LD with the risk SNPs located in CREB1 in Europeans (for example,
rs25519149 is in perfect LD with rs6785, r2 = 1.00). However, these risk SNPs in FAM119A
were not associated with the expression of FAM119A (Supplementary Figure S2), and we
concluded that FAM119A is unlikely to be the causative risk gene in BD.

Genetic differentiation between Europeans and Chinese for risk SNPs
To further replicate our results, we intended to test whether rs2709373 and rs6785 are also
risk SNPs in Chinese. To our surprise, both SNPs were monomorphic in Chinese
populations (Supplementary Table S3) and the risk alleles were completely absent. To
characterize this situation, we obtained the sequence data of the entire CREB1 gene in
Europeans and Chinese from the 1000-Human-Genome-Project (85.4 kb, Chromosome 2:
208382600-208468000, GRCh37.p5).29 Sequence comparisons showed 72 common CREB1
SNPs (MAF >0.05) in Europeans, 49 of them (Supplementary Table S3) were in strong LD
(r2 ≥ 0.90) with highly similar frequencies (20.6–22.4%), including the risk SNPs for BD
(for example, rs2709370 and rs6785). Among these 49 SNPs in Europeans, 44 SNPs were
totally monomorphic in Han Chinese and the other 5 SNPs were nearly monomorphic (MAF
≤ 0.01). By contrast, a total of 23 common SNPs were observed in Chinese, all of them
polymorphic in Europeans.

To reveal the detailed global allele frequency distributions of the risk CREB1 SNPs, we
compared the allele frequencies of rs6785 and rs2709373 in 53 world populations.
Intriguingly, these 2 SNPs showed a regional enrichment with the highest frequencies
(~20%) in Europe and the Middle East, followed then by North Africa, becoming common
in Central Asia, rare in southern Africa and Latin America and totally absent in East Asia,
South Asia, Southeast Asia and Oceania (Figure 4a and Supplementary Figure S4). In
contrast, the global distribution of the non-risk CREB1 SNPs (for example, rs2254137)
showed no regional enrichment (Figure 4b).

Li et al. Page 8

Mol Psychiatry. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Detection of differential CREB1 population history between Europeans and Chinese
As we stated earlier, allelic differences between populations may possibly be due to
different population histories on CREB1. We therefore conducted neutrality tests to detect
which evolutionary forces may have acted on the different populations. We calculated
Tajima’s DT, Fu and Li’s D, F, D*, F* and Fay and Wu’s H for CREB1 gene and evaluated
whether these statistics significantly deviated from expectations under neutrality using
coalescent simulations. The results showed that the values of Fu and Li’s D, D*, F, F* are
significantly negative among Chinese, which can be attributed to recent population
expansion or natural selection. Conversely, neutrality tests of CREB1 in Europeans only
found marginally significant results (Fu and Li’s D and D*, Table 1).

To gain further insight into the population history of CREB1, we analyzed the sequence data
of three other nearby genes (FAM119A, CCNYL1 and FZD5) located within 500 kb of
CREB1. For CCNYL1, Europeans showed a low negative Tajima’s DT value (P<0.05, Table
1), an indication of natural selection or population expansion. The Fay and Wu’s H value for
CCNYL1 was also significantly negative (P<0.01, Table 1) in Europeans, implying selective
sweep (that is, a reduction or elimination of sequence variations as a result of recent and
strong positive selection) for this gene in Europeans, but we observed no such signal in
Chinese. Therefore, CCNYL1 is the gene under selection in Europeans, and it can influence
the sequence variation pattern of its neighboring genes through hitchhiking effect, which
explains the elevated CREB1 risk allele frequencies in Europeans. By contrast, in Chinese,
the reduced sequence diversity and absence of the risk SNPs can be attributed to different
evolutionary forces (that is, selection or population expansion) acting on CREB1 itself.
Collectively, the neutrality test results indicated a diverged genetic history for CREB1
between Europeans and Han Chinese.

DISCUSSION
In recent years, there have been numerous genetic association studies on a variety of BD
samples, but many could not produce compelling evidence that reached genome-wide
significance except for a few GWASs, which reported several genome-wide risk genes, such
as CACNA1C, ANK3, ODZ4 and the like.2,6,23,64 These genes can only explain a small
portion of the genetic liability for BD, as BD is widely known to be a polygenic disorder
with many risk genes of small effects. Previous aggregated analysis indicated there may be
accurate findings among those markers passing nominal significance in the GWASs.65

Many studies reported psychosis risk genes, although they did not reach genome-wide
significance in the initial GWAS samples, they later showed consistent replications in
multiple independent samples, such as CMYA5, VRK2 and FGFR2.59,60,66–68

In small sample sets (<300 cases), association of CREB1 with BD has previously been
reported,69–71 with one study finding nominal significant association for the CREB1 variant.
However, due to the small sample size and lack of replications, the possibility of false-
positive results in their study could not be excluded.70 Here, we further confirmed CREB1 as
a risk gene for BD by utilizing a large-scale BD samples of European ancestry (also
included a small portion of MDD samples). Our results also suggest that the molecular
mechanism of genetic susceptibility relates to changes in gene expression. Although we
report here the significant association of several SNPs across independent samples and by
meta-analysis, the exact risk structure may vary between populations, whereas the regional
location and overall effect on CREB1 gene processing may remain consistent with what is
described here. Additionally, the same risk CREB1 SNPs, although showing significant
associations with susceptibility to BD, are also associated with SCZ (rs2709370[C], P =
0.026, OR = 1.060; and rs6785[A], P = 0.013, OR = 1.067) and MDD (rs2709370[C], P =
0.022, OR = 1.063; and rs6785[A], P = 0.042, OR = 1.056) in recent large-scale GWASs on
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SCZ and MDD.72,73 These findings are consistent with the known overlap of genetic risk
factors that exist between different psychiatric disorders as well as the less clear-cut
boundaries between diagnostic entities.

To our knowledge, the region of interest on chromosome 2q34 has not, to date, been
reported as a major locus in the few GWASs of BD, and the P-values reported here would
not be significant if we corrected for all SNPs across the genome. Scanning the genome with
hundreds of thousands of SNPs and employing the necessary rigid statistical correction as no
prior probability of any SNP being positive is a popular strategy at the moment, as it makes
no assumptions about biology or function. This strategy has the appeal of a level of
statistical significance being clear and incontrovertible. However, statistical significance
does not, in and of itself, imply biological significance, nor does it necessarily identify the
genes most likely to be important in unraveling new strategies for prevention and treatment,
such as CREB1, which is of sufficient biological interest in mood disorders and treatment to
merit further genetic and biological investigation.

To move beyond statistical association with clinical diagnosis and to obtain convergent
evidence for association between CREB1 and BD-related biology, we have performed a
series of convergent experiments testing risk-associated SNPs on several intermediate
biological phenotypes. On the basis of clinical evidence22 and repeatedly reported roles of
CREB1 in hippocampus,11 we expected that the genetic risk for BD associated with risk
CREB1 SNPs would be mediated through hippocampal function. Consistent with this
hypothesis, we observed strongly reduced hippocampal activity in healthy human carriers of
the rs2709370 risk allele. This effect appears cognitively specific in that it was observed
only during memory recall but not during encoding or recognition. Memory recall has been
proposed to critically rely on the hippocampus,74 and thus our data provide evidence for a
possible link between the role of CREB1 in genetic risk for BD and its functional relevance
for hippocampal function, further confirming the associations of CREB1 with BD.

Our expression quantitative trait loci analysis of CREB1 has provided preliminary evidences
of molecular mechanisms for the associated SNPs, in which risk alleles showed significantly
higher expression in both blood cells and brain tissues when compared with the non-risk
alleles, although the results are counter intuitive to our initial expectation that ‘the risk allele
indicated lower CREB1 expression’ based on the observations of previous studies such as
CREB1 could enhance memory ability,11 which were aberrant in BD patients. However,
after a relatively comprehensive summary of CREB1 expression in the brains of BD patients
and healthy controls, we observed seven studies showing significant upregulation of CREB1
expression in BD patients (P<0.01, Supplementary Figure S5), which seems consistent with
our expression quantitative trait loci analysis. We are, however, cautious in interpreting our
results as CREB1 is a target of antipsychotic drugs and it was unclear whether BD patients
received medication. Gene expression analyses indicated potential more complicated
underlying mechanisms between CREB1 and BD, and future studies on gene expression may
shed further light on this relationship.

The striking differences of BD risk alleles between Europeans and Chinese were not
expected. As mentioned in our results, analyses showed that this between-population genetic
divergence of CREB1 is likely caused by differential genetic histories of CREB1 and its
neighboring genes in regional populations. Recent population expansion and natural
selection are two major forces shaping the genetic diversity of CREB1 between Europeans
and Chinese, thereby resulting in the highly diverged CREB1 genetic backgrounds.
Regionally selective forces, such as different environments and lifestyles, may have shaped
the genetic background of Europeans. This is the first evidence suggesting that risk alleles
for BD in CREB1 arose in Europeans through genetic hitchhiking due to natural selection on
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its neighboring gene. Consequently, the prevalence of the BD risk alleles of CREB1 among
Europeans can be considered the cost of natural selection (the so-called genetic load).
Because of the different selective pattern, we found no such cost in Chinese. Similar
observations have been reported on SCZ risk genes.75 On a broader scale, these findings
suggest that natural selection acting on regional populations could have profound effects on
different genes, and by extension, on the detection of susceptibility genes for complex
diseases. Accordingly, analyses of population genetic histories may help explain why we
frequently observed inconsistent genetic associations of complex diseases among different
ethnic populations, as we saw in our analyses of CREB1’s association with BD between
Europeans and Chinese.
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Figure 1.
Genomic and linkage disequilibrium (LD) structure of CREB1 as well as association results
with bipolar disorder. The results in the discovery sample were shown in red circle, and the
results in the replication sample were shown in blue square, and the results in the combined
sample were shown in green triangle. The LD color scheme was defined using the R-squared
and the LD value of the paired SNPs was calculated using the r2 algorithm. The r2 value for
each color was: black (r2>0.90), dark gray (0.2 < r2 < 0.6), gray (0.01 ≤ r2 < 0.2), white (r2

≤ 0.01).
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Figure 2.
Effect of the risk single-nucleotide polymorphism (SNP) rs2709370 on hippocampal
function. During memory recall, carriers of the risk allele (C) of rs2709370 exhibit
significantly decreased allele-dosage-dependent hippocampal activation in the left
hippocampus (Z = 3.97, P<0.01, family wise error corrected for multiple testing across
region of interest). Each red dot represents size of effect in one subject and reflects
hippocampal activation. Number of subjects in each group: CC = 14, AC = 99, AA = 166.
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Figure 3.
Effects of risk single-nucleotide polymorphisms (SNPs) on CREB1 mRNA expression. (a)
Results in the lymphoblastoid cell lines of 75 healthy European subjects. (b) Results in the
prefrontal cortex of healthy Caucasian and African-American subjects (N = 261).
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Figure 4.
Global distribution of CREB1 single-nucleotide polymorphisms (SNPs) in world
populations. (a) Global distribution of rs6785 (risk SNP) allele frequencies in world
populations. The derived allele [A] is the risk allele. (b) Global distribution of rs2254137
(non-risk SNP) allele frequencies in world populations.
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