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ABSTRACT
Immunotherapy profoundly changed the landscape of 
cancer therapy by providing long-lasting responses in 
subsets of patients and is now the standard of care in 
several solid tumor types. However, immunotherapy 
activity beyond conventional immune checkpoint inhibition 
is plateauing, and biomarkers are overall lacking to 
guide treatment selection. Most studies have focused 
on T cell engagement and response, but there is a 
growing evidence that B cells may be key players in the 
establishment of an organized immune response, notably 
through tertiary lymphoid structures. Mechanisms of B cell 
response include antibody-dependent cellular cytotoxicity 
and phagocytosis, promotion of CD4+ and CD8+ T cell 
activation, maintenance of antitumor immune memory. In 
several solid tumor types, higher levels of B cells, specific 
B cell subpopulations, or the presence of tertiary lymphoid 
structures have been associated with improved outcomes 
on immune checkpoint inhibitors. The fate of B cell 
subpopulations may be widely influenced by the cytokine 
milieu, with versatile roles for B-specific cytokines B 
cell activating factor and B cell attracting chemokine-1/
CXCL13, and a master regulatory role for IL-10. Roles 
of B cell-specific immune checkpoints such as TIM-1 
are emerging and could represent potential therapeutic 
targets. Overall, the expanding field of B cells in solid 
tumors of holds promise for the improvement of current 
immunotherapy strategies and patient selection.

INTRODUCTION
The first clinical observations hinting at a 
host-dependent antitumor immunity date 
back from more than 150 years ago, with 
reports of disappearing cutaneous mela-
nomas in the event of hypodermitis.1 Evidence 
of metastases disappearing without any 
systemic therapy has since been reported in 
the context of various solid tumors including 
cutaneous or kidney cancers.2 3 The devel-
opment of anticancer therapies harnessing 
immunity has been first proposed through 
the use of bacterial strains. Coley’s toxins 
have sometimes resulted in cure in solid 

tumors,4 while adjuvant intravesical BCG in 
non-muscle invasive bladder cancer remains 
standard of care up to this day.5 Since the 
1980s, cytokine-based therapies using inter-
feron or interleukin (IL)-2 were associated 
with durable remissions6 7 and could still be a 
relevant contemporary option in melanoma 
or renal cell carcinoma.8

Modern takes on immunotherapy involve 
immune checkpoint inhibitors,9 of which most 
used in routine care target the programmed 
cell death (PD)-110 or cytotoxic T lympho-
cyte antigen (CTLA)-411 axis. A minority 
of patients will experience objective tumor 
response though, and biomarkers including 
checkpoint expression or gene expression 
signatures remain scarce with little predic-
tive power.12 13 Agents targeting novel check-
points have yet to demonstrate their ability to 
overcome resistance to PD-1 or CTLA-4 inhi-
bition.9 While the activity of immune check-
point inhibitors was mostly dissected through 
the lens of CD8+T cell response,14–16 other 
immune factors are likely to shape the anti-
tumor immunity.

The role of B cells has long been established 
in the defense against pathogens, although 
respective implication of B cell subtypes in 
antitumor immunity has only been recently 
studied. The versatility of the B lineage may, 
however, be of key importance to generate 
efficient and sustained immune responses 
against solid tumors: antibody secretion 
by plasma cells and plasmablasts allows for 
antibody-dependent cellular cytotoxicity 
(ADCC) and phagocytosis of opsonized 
cells17; multiple types of memory B cells may 
provide long-lasting immunity through pools 
of highly specific IgG memory cells, as well 
as unswitched IgM memory B cells that can 
replenish B cell subpopulations on repeated 
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antigenic stimulation18–20; cross-talks between T and B 
cells appear essential not only for T CD4 but also for T 
CD8 expansion and activation.21–24 Here, we will review 
current evidence about the B cell role in antitumor immu-
nity and response to checkpoint inhibitors, and how their 
determinants could inform patient selection for systemic 
therapies.

Mechanisms of B cell-mediated antitumor immunity
The pivotal role of B cells in immune activation
The roles of B cells in immunity have been largely 
described, ranging from the production of antibodies that 
drive humoral immunity to maintenance of T cells. The 
maturation process of B cells begins with antigen recogni-
tion by the B cell Receptor (BCR), after which activated B 
cells will interact with CD4+ follicular helper T cells (TFh) 
in lymphoid organs or tertiary lymphoid structures (TLS). 
Antigen presentation through the B cell major histocom-
patibility complex (MHC) II to the T cell receptor allows 
for TFh activation; costimulatory signals from the CD40/
CD40L axis, as well as the secretion of IL-4 and IL-21 by 
activated TFh will allow the activated B cell to enter the 
germinal center reaction.25 26 The germinal center reac-
tion consists of B cell expansion and somatic hypermuta-
tion in the variable region of the immunoglobulin gene 
within the germinal center dark zone, allowing for the 
generation of centrocytes with variable antigen affinity. In 
the light zone, centrocytes undergo positive selection in 
the presence of TFh and follicular dendritic cells (FDC), 
where immunoglobulin class switch recombination ulti-
mately occurs. These centrocytes then differentiate into 
long-lived antibody-producing plasma cells or switched 
memory B cells that govern long-term immunity.18 Other 
pathways involve T-independent B cell activation without 
immunoglobulin class switching nor somatic hypermuta-
tion; this process allows for quicker generation of short-
lived plasma cells and unswitched (IgM+) memory B cells. 
Despite lesser antigen specificity compared with germinal 
center B cells, unswitched B cells remain more versatile 
with broader antigen recognition and lower activation 
thresholds, and retain the ability to reinitiate germinal 
center reaction on repeated antigen exposition.18 27 28

Interactions between B and T cells within lymphoid 
organs and secondary lymphoid structures are key for 
antitumor T cell-mediated cytotoxicity (figure 1).29 B cells 
can induce antigen-specific CD8+ and CD4+ T cell activa-
tion, respectively, through MHC class I or II, as repeatedly 
shown in the context of cancer, bacterial or viral infec-
tions,23 30–32 along with costimulation signals involving 
CD80/CD2831 and CD40/CD40L.25 Previously described 
interactions between B cells and TFh, by inducing IL-21 
secretion, also promote the maintenance of the CD8+ 
immune response.24 33 More recently, it has been shown 
that B and T cell relationships may also involve B cells in 
later maturation stages, as evidenced by the secretion of 
T-attracting chemokines by plasmablasts which promotes 
cytotoxic immunity in melanoma.34

Humoral immunity is another key feature of B cell-
mediated antitumor immunity. Antibodies secreted by B 
cells may recognize and bind neoantigens that emerge 
from mutations or aberrant post-transcriptional modifica-
tions.35 Those can be found on the surface of tumor cells, 
in the tumor microenvironment on immunogenic cell 
death, or may even be targeted intracellularly by IgA.36 
Other self-peptides may also be recognized, including 
normal peptides overexpressed in specific cancer settings 
such as metalloproteinases, viral epitopes in virus-
associated tumors, or peptides that underwent aberrant 
post-translational modifications.35 37–39 Opsonization with 
immunoglobulins has been demonstrated notably in 
melanoma and renal cell cancer,40 41 allowing for ADCC 
by natural killer cells and phagocytosis (ADCP) by macro-
phages. Crescioli et al reported an overall decrease of the 
peripheral memory B cell compartment and circulating 
memory B cells, and an increase of antibody-secreting 
plasmablasts in stage IV melanoma patients compared 
with healthy volunteers, which was in line with a higher 
proportion of IgG in melanoma lesions compared 
with normal tissue.41 In renal cell carcinoma, Meylan 
et al demonstrated that intratumor plasma cells were 
correlated with higher levels of tumor-coating IgG, as well 
as with tumor cell apoptosis likely due to a macrophage-
dependent process.40 Other Ig isotypes such as IgA may 
also elicit antitumor activation of myeloid cells such as 
in ovarian cancers.36 Neoantigen-binding antibodies may 
not only elicit ADCC or ADCP but also T cell-mediated 
cytoxicity via distinct mechanisms. In murine experi-
ments using an allogeneic tumor rejection model, based 
on the injection of B16F10 melanoma cells derived from 
C57BL/6 mice into 129S1 mice, dendritic cells could 
uptake antibody-coated tumor antigens end elicit T cell 
activation through antigen presentation.42 Non-specific 
antibody binding may also occur through polymeric 
immunoglobulin receptors (pIgR) that allow transcy-
tosis of IgA into the gastrointestinal mucosa in physio-
logical conditions; in ovarian cancers that universally 
express pIgR, non-specific IgA transcytosis elicited modi-
fication of cancer cells transcriptional programs, notably 
increasing interferon γ-related pathways, increasing T cell 
cytotoxicity and tumor control.36

Tissue-based organization of B cell response
Close interactions between B and T cells have been 
shown essential for the generation of an effective cyto-
toxic CD8+ response, which is reflected by the colocal-
ization of B and T cells found in several tumor types. In 
ovarian cancer tissues with low dendritic cell infiltration, 
the most common tissue-resident APC, B cells are found 
in close proximity to T cells, which suggests that they 
may exert antigen presentation.43 In a murine 4T1 breast 
cancer model, simultaneous transfer of both activated B 
cells and T cells from tumor-draining lymph nodes led 
to more significant tumor regression compared with the 
transfer of either population.44 The importance of intra-
tumor CD4+, CD8+T cells, and B cells colocalization has 
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been recapitulated in lung adenocarcinoma models in 
which neoantigen-specific B cells were necessary to acti-
vate TFh, which in turn activated effector CD8+T cells by 
IL-21 secretion.24

A more organized B cell-centered immune response 
may arise within tumor tissues in the form of TLS 
that aggregate multiple immune cell types.45–47 Early 
TLSs are mostly composed of B and T cell aggre-
gates and lack FDC, while primary follicle-like TLS 
involve CD21+CD23 FDC. The organization of a 
mature, or secondary follicle-like TLS is similar to 
that of a secondary lymphoid organ, with the pres-
ence of a germinal center allowing B cell maturation 
and differentiation into high-affinity plasma cells of 

switched memory B cells (figure  1). A mature TLS 
is evidenced by the presence of germinal center 
FDCs, coexpressing CD21+ and CD23+, and may be 
surrounded by plasma cells secreting tumor-directed 
IgG or IgA antibodies.40 48 49 These TLS have been 
identified across a wide spectrum of cancers at all 
disease stages, with variations in abundance between 
cancer types and between patients.50–52 It is suggested 
that patients whose tumor-associated TLS are mature 
and present a high density of B cells harbor more 
effective antitumor immunity, while immune regula-
tory phenotypes have been mostly described in the 
absence of structured TLS.53–56

Figure 1  BCR in solid tumors. (A) Coordination of the antitumor immune response by B cells. Antigen recognition by the B-
cell receptor triggers a T cell-dependent or T cell-independent B cell response. The T cell-dependent response involves B and 
T-cell crosstalks within secondary or tertiary lymphoid structures. Interactions between B-cells and TFh through the CD40/
CD40L axis allows for TFh activation, as well as initiation of a B cell germinal center reaction. Activation of TFh cells promotes 
T CD8+ activation and expansion in the T cell zone, ultimately prompting efficient T cell-mediated cytotoxicity. The germinal 
center reaction involves a positive selection of high-affinity, class-switched B cells that will differentiate into long-lived switched 
(IgG+) memory B cells or IgG+plasma cells. The humoral response exert antitumor effects through antibody-dependent 
cytotoxicity and phagocytosis. The T-independent response allows for swift generation of IgM+plasma cells or unswitched 
(IgM+) memory B cells, which harbor lower somatic hypermutation rates and lower antigen affinity compared with their switched 
(IgG+) counterparts; unswitched memory B cells have the ability to reinitiate a B-cell response and a germinal center reaction 
on repeated antigenic stimulation. (B) Modulation of the immune response by B cells. Tumor infiltration by regulatory B cells 
secreting immunosuppressive cytokines such as IL-10 allows for an immunosuppressive microenvironment. Immune complexes 
involving immunoglobulins and tumor antigens may promote activation of myeloid-derived suppressor cells. Complement 
activation by immunoglobulins may also promote MDSC activation and angiogenesis, inducing a protumoral microenvironment. 
BCR, B cell receptor Ig, immunoglobulin; MDSC, myeloid-derived suppressor cell; MHC, major histocompatibility complex; 
TCR, T cell receptor complex; TFh, T CD4+ follicular helper.
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Mechanisms of B cell modulation of antitumor immune response
Despite their key roles in coordinating effective anti-
tumor immunity, B cells can be involved in immune toler-
ance in specific settings. As such, humoral responses do 
not always correlate with effective antitumor immunity. 
Polyreactive, aspecific IgG1 antibodies have been notably 
been reported in melanoma without antitumor activity.41 
Conversely, some antibody isotypes could drive immune 
suppression and thus harbor a protumoral role.57 Kara-
giannis et al notably showed immunoregulatory func-
tions for IgG4 antibodies and IgG4+B cells in melanoma. 
Here, IgG4 inhibited FcγRI activation on macrophages, 
and therefore, inhibited potential IgG1 antitumor 
properties.58 59 The formation of immune complexes 
in premalignant and malignant stroma may also drive 
chronic inflammation as shown in skin squamous cell 
carcinoma, by driving protumoral myeloid infiltration.60 
Immune complexes may also trigger the activation of 
the classical complement pathway which can contribute 
to tumor progression. The anaphylatoxin C5a, released 
from the cleavage of C5 downstream of the complement 
cascade can promote the recruitment of myeloid-derived 
suppressor cells that will impair efficient antitumor 
immune response61 62; C5a may also lead to increased 
angiogenesis by direct interaction with C5aR-expressing 
endothelial cells.63 Conversely, complement components 
may harbor context-dependent antitumor roles, notably 
through interactions with tumor vasculature or tumor-
infiltrating immune cells,64 65 although the implication of 
the humoral response in these mechanisms is yet to be 
explored.

Specific regulatory populations of B cells (Bregs) have 
been also described, which are functionally defined by 
their capacity to inhibit effector cells such as CD8+T cells 
and NK cells.57 66 Their action is mediated by inhibitory 
cytokines including IL-10, which secretion is a hallmark of 
B regulatory cells, as well as IL-35 or TGF-β.67–70 Secretion 
of IL-10 by regulatory B cells may impair MHC I and II 
expression on the surface of tumor or antigen-presenting 
cells,71 72 thus limiting antigen recognition and induction 
of immune responses. IL-10 and TGF-β also promote Treg 
activation and expansion,73 74 and drive tumor-associated 
macrophages (TAMs) towards a protumoral phenotype.75 
These TAMs have been shown to harbor transcriptional 
programs favoring tumor invasion, involving notably 
expression of various matrix metalloproteinase genes, 
and could reinforce the immunosuppressive contexture 
by IL-10 or TGF-β production.76 Unlike expression of 
FoxP3 by regulatory T cells (Treg), there is no unique 
single surface marker or transcription factor to identify 
B cells harboring regulatory functions, supporting the 
idea that Bregs are not confined to a specific lineage but 
Instead may arise from B cells at various developmental 
stages in response to specific stimuli.66 77

It is yet unclear whether other specific B cell subpopu-
lations may induce immune tolerance. Double negative B 
cells, lacking the CD27 memory marker and IgD expres-
sion, have been described as displaying an exhausted 

phenotype with potential for aberrant auto-immune reac-
tions, respectively, in the context of chronic infections 
and autoimmune disease.78 Emerging evidence showed 
that expansion of double negative B cells in lung cancer 
was inversely related to the proportion of mature B cells.79 
In nasopharyngeal carcinoma, double negative B cells 
were shown to harbor alterations in pathways involved 
in mRNA processing, questioning their ability to induce 
antitumor responses.80 81 Senescence mechanisms in B 
cells have also been partially described, with a decrease 
in class-switching capabilities and impaired effective 
immune response associated with ageing,82 83 but those 
have not yet been described in solid tumors in contrast 
with T cell immunosenescence.84

B cells as predictive markers in the era of immune checkpoint 
inhibitors
B cells and immune checkpoint inhibitors activity in solid tumors
Consistent with their role in T cell activation and TLS 
formation, B cell infiltration has been associated with 
improved prognosis in several solid tumor types such as 
melanoma,85 breast cancer,86 lung adenocarcinoma87 or 
oral squamous cell carcinoma88 before the era of modern 
immune checkpoint inhibition. Multiple studies since 
evaluated B cells as potential predictors of response to 
immune checkpoint inhibition, evaluating B cell infiltra-
tion, B cell-derived gene signatures, TLS, or circulating B 
cell subtypes (table 1).

The impact of B cell infiltration has been mostly studied 
in melanoma, where it has been associated with improved 
response rates to immune checkpoint inhibitors in both 
localized neoadjuvant and metastatic settings withPD-1 
blockade as monotherapy or PD-1 and CTLA-4 combined 
inhibition.89 90 Predictive histological scores have been 
explored in distinct melanoma and renal cell carcinoma 
cohorts, integrating B cell infiltration and features such 
as T CD8+ coinfiltration to improve response predic-
tion.53 56 The association between improved outcomes 
and B cell infiltration has since been demonstrated in 
several tumor types, including metastatic urothelial carci-
nomas treated with dual PD-L1 and CTLA-4 inhibition,91 
or triple negative breast cancers treated with neoadju-
vant PD-L1 plus chemotherapy.92 Molecular studies using 
RNA-sequencing yielded similar results in patients treated 
with PD-1 or PD-L1 inhibition across various tumor types, 
including melanoma, urothelial or lung cancers, where B 
cell signatures were associated with improved outcomes. 
Such association was also confirmed in rare tumors 
usually displaying lower susceptibility to immune check-
point inhibitors such as soft tissue sarcomas.93

The impact of specofoc B cell subpopulations infiltrates 
is still being investigated. Studies conducted in melanoma 
and urothelial carcinoma patients treated with immune 
checkpoint inhibitors highlighted an association between 
survival and presence of antibody-producing plasma 
cells and plasmablasts.34 90 94 In non-small cell lung carci-
noma patients treated with atezolizumab, an increased 
plasma cell signature was related to longer survival and 
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higher response rates; such association was, however, not 
reported with germinal center or follicular B cell signa-
tures.95 Tumor-directed antibodies, which may constitute 
potential surrogates of plasma cell infiltration, may also 
inform response to immunotherapy, in patients with 
renal cell carcinoma, the presence of IgG-stained tumor 
cells was associated with improved survival on nivolumab 
alone or in combination with ipilimumab.40

The respective role of in situ naïve and memory B cells 
remains less clear. Intratumor switched memory B cells 
have been associated with increased responses to PD-1 
inhibition in melanoma53 and renal cell carcinoma,53 
while a memory B cell signature was linked to higher 
response rates and survival benefits for patients with meta-
static urothelial carcinoma and melanoma treated with 
PD-(L)1 inhibitors.96 These reports contrast with other 
cohorts including patients with melanoma, in which the 
naïve B cell compartment was most positively associated 
with outcomes.34 90 The impact of the rarer double nega-
tive B cells has not been directly studied in the context 
of immune checkpoint inhibition, although some reports 
hint at a potentially immunotolerant role in nasopharyn-
geal carcinoma.80 81

There is now growing evidence that an organized B-cell 
response with intratumor TLS, rather than the pres-
ence of individual B cell subtypes, could be associated 
with better outcomes to immune checkpoint inhibitors. 
Previously described studies highlighting the predictive 
role of plasma cells or tumor-directed immunoglobulins 
also demonstrated that such markers could be surro-
gates of intratumor TLS.40 95 In melanoma or renal cell 
carcinoma, B cells infiltration associated with improved 
outcomes was also consistently associated with the pres-
ence of TLS.53 56 Association between TLS and response to 
immune checkpoint inhibition has notably been reported 
in lung cancer, as well as in sarcoma.91 93 The TLS matu-
rity stage may be a more stringent predictor of response 
to immunotherapy. In patients with various metastatic 
solid tumors subtypes treated mostly (90%) with PD-1 or 
PD-L1 inhibition alone, mature TLS were associated with 
increased response rates and survival.97 A similar associa-
tion has been demonstrated in dedicated series including 
localized lung cancers treated with neoadjuvant chemo-
immunotherapy, and metastatic esophageal cancers 
treated with immune checkpoint inhibition.98 99

Few studies explored the interplay between circulating 
B cells and immune checkpoint inhibition, which could 
be a promising strategy for non-invasive and dynamic 
evaluation of the immune contexture. High levels of 
baseline unswitched memory B cells, which may reinitiate 
germinal center reactions on repeated antigenic stimu-
lation, have been described as predictors of outcomes in 
patients treated with PD-1 inhibitors for metastatic non-
small cell lung carcinoma100 or renal cell carcinoma.101 
In the latter cohort, the baseline circulating memory B 
cells were also associated with TFh, known to promote B 
cell maturation and T CD8+ lymphocyte expansion, in a 
peripheral immune landscape that remained consistent 

during the course of treatment. These observations 
contrast with another pan-tumor cohort, in which base-
line B cell levels did not impact outcomes, but in which an 
increase in naïve B cells was associated with better disease 
control on PD-1 inhibition.102 These discrepancies across 
studies highlight the limited level of evidence currently 
available regarding circulating B cell subpopulations and 
outcomes on immune checkpoint inhibition, owing to 
small cohorts and non-uniform measurement methods, 
which have yet to be replicated in larger and more homo-
geneous studies.

B cells as potential mediators of immune checkpoint inhibitors 
toxicity
Approximately 20% of patients treated with anti-PD-1 
monotherapy develop grade 3 or higher treatment-
related adverse events, and up to 50% with dual check-
point inhibition.103 Toxicity mechanisms involving T 
CD8+ lymphocyte activation are thought to be similar to 
those that drive immune response,104 but data remain 
scarce regarding the specific role of B cells. A few studies 
described potential mechanisms of B cell-mediated 
toxicity, either through the expansion of B autoreactive 
populations or modified cytokine expression profiles.

Immune-related adverse events were notably associ-
ated with an increase in plasmablasts, which may express 
autoreactive antibodies, in a cohort of patients with 
metastatic melanoma treated with immune checkpoint 
inhibitors.105 Likewise, specific autoreactive antibodies 
have been described in patients treated with immune 
checkpoint inhibitors and presenting with hypophysitis 
or pneumonitis.106 Toxicity may also be promoted by 
the expansion of CD21low B cell subtypes: these autore-
active B cells harbor strong antigen presentation capa-
bilities and are understood to trigger T cell-mediated 
inflammation in autoimmune diseases or chronic infec-
tions.105 107 Impaired regulatory B cell functions have 
also been described in patients with non-small cell lung 
cancer harboring immune-related toxicities, which iden-
tification may help improve patient monitoring.108 Novel 
efforts focus on genomic polymorphisms that may impact 
immune signaling. A polymorphism in the IL-7 gene 
has been recently identified as a potential predictor of 
immune-related toxicities in melanoma patients.109 While 
IL-7 is necessary for lymphocyte maintenance, variant IL-7 
expression by B cells has been associated with increased 
T cell clonality and expansion of terminally activated 
TEMRA CD8+T cells. The increased toxicity in this popu-
lation was also associated with increased responses to 
immune checkpoint inhibition, hinting at a global impact 
on immune activation.

The understanding of B cell-mediated autoimmunity in 
cancer remains to be fully characterized as several mecha-
nisms may be in play, including activation of autoreactive 
clones by immune checkpoint inhibitors, or recognition 
of neoantigens homologous to non-cancer antigens. 
Large-scale integrative studies exploring genetic polymor-
phisms, systemic immune cell and cytokine contexture, 
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such as the PREMIS trial (NCT03984318), may help 
better understand the determinants of immune-related 
adverse events and help improve patient management.

A developing role for immune checkpoint expression on B 
cells
Expression of immune checkpoints and their relationship 
with antitumor response have been lesser studied in B 
cells, although current evidence confirms inhibitory roles 
for the PD(L)-1 axis. Mechanisms of PD-(L)1 immune 
suppression involve impaired BCR engagement110 111 and 
decreased interactions between B and T cells that are 
necessary for B cell-driven CD4+ and CD8+ expansion.112 
More ambivalent roles for the PD(L)-1 axis have been 
described with regard to germinal center formation and 
crosstalk with TFh. Notably, expression of PD-1 and PD-L1 
has been associated with germinal center B cell survival, 
leading to increased production of plasma cells. Though, 
this survival mechanism impaired negative B cell selec-
tion, yielding plasma cells with lesser affinity and flawed 
humoral response, comforting its overall inhibitory role 
in B cell-mediated immunity.113

Specific B cell checkpoints may also be at play in B cell-
driven immunity. Notably, the surface receptor TIM-1 has 
been recently described as a potential hallmark of B cell 
regulation.114–116 In murine models of melanoma, tumor 
growth was associated with an expansion of TIM-1+B cells 
in draining lymph nodes.117 Likewise, responders to PD-1 
targeted therapy demonstrated decreased tumor infil-
trating TIM-1+B cells over time. Loss of TIM-1 on B cells 
in several solid tumors models impaired tumor growth 
through enhanced antigen presentation, and expression 
of type I interferon signatures promoting T cell responses. 
As such, TIM-1 could be an essential B cell-restrained 
immune checkpoint and a promising therapeutic target.

Cytokines as correlates of B cell fate and immune contexture
The cytokine contexture is key to shape immune activa-
tion or tolerance, potentially impacting immune cell acti-
vation and lineage fate.118 Cytokines may be secreted by 
immune, stromal or tumor cells, and can be assessed at 
tissue or systemic levels, making them potentially versa-
tile biomarkers of immune response (table 2). Some have 
been described as directly involved in B cell expansion and 
activation, such as B cell attracting chemokine (BCA)-1 
also known as CXCL13, or B cell activating factor (BAFF). 
So far, published cohorts provided mixed signals about 
their respective role in prognosis or response to immune 
checkpoint inhibition. For instance, high BCA-1/CXCL13 
tissue levels have been associated with adverse outcomes 
in prostate cancer,119 and soluble BCA-1/CXCL13 with 
shorter survival in patients with kidney cancer treated 
with anti-PD-1 nivolumab.101 120 Inverse associations have 
been described regarding prognosis in ovarian cancer,121 
or response to immune checkpoint inhibitors in urothe-
lial carcinoma,94 122 while reports remain conflicting in 
breast cancer.123–125 The pleiotropy of BCA-1/CXCL13 
may explain differential effects across cancer subtypes. 

Antitumor roles may be exerted not only through B cell 
activation, but also through cytotoxic CXCR5+T cells as 
well as promotion of TLS formation.126–128 Conversely, 
BCA-1/CXCL13 may promote Bregs expansion129 and 
act as a growth factor in CXCR5-expressing tumor cells.130 
Similarly controversial roles have been described for BAFF, 
which has been associated with improved response to 
immune checkpoint inhibitors in melanoma131 132 but not 
in kidney cancer.101 Antitumor immune effects of BAFF 
have been described through B cell expansion,131 133 134 T 
cell memory and TH1 polarization,131 while maintenance 
of a FOXP3+Treg pool131 and increased competitiveness 
for clonal antitumor B cell expansion134 135 could be 
responsible for its detrimental effects.

Other key cytokines have been broadly associated with 
acquisition of B regulatory phenotypes and immune 
tolerance, such as IL-10 as previously described, which 
is generally expressed by B regulatory cells but may also 
be secreted by tumor cells and other immune cells.68 136 
Consistently, high IL-10 expression was associated with 
poor outcomes in patients with colorectal, lung cancer, 
or melanoma.72 136–138 While prostimulatory roles of IL-10 
of T CD8+ and NK cells have been otherwise suggested 
at high concentrations,137 139 140 recombinant pegylated 
IL-10 in solid tumors did not improve antitumor immune 
responses.141 142 Levels of TNF-α may also play a role in 
the engagement toward regulatory function in B cells as 
depicted in squamous cell carcinoma,143 but this role has 
not yet been confirmed in clinical cohorts, prompting 
further research regarding TNF-α involvement in B cell 
fate.144

Chronic inflammation has been largely associated with 
protumoral myeloid infiltration and T cell dysfunction. 
These immune states are usually reflected by high levels 
of inflammatory cytokines,145–147 with recent evidence 
of a potential association with specific B cell features. 
Data from patients with kidney cancer treated with 
immune checkpoint inhibitors as monotherapy notably 
demonstrated inverse relationships between unswitched 
memory B cell subpopulations, which were associated 
with longer survival, and protumoral inflammatory cyto-
kines IL-6 and IL-8.102 High IL-6 levels have been previ-
ously linked with myeloid tissue signatures and resistance 
to immune checkpoint inhibitors in kidney cancer and 
melanoma,13 145 148 while IL-8 expression has been associ-
ated with high neutrophil infiltration and poor outcomes 
in melanoma, lung or kidney cancer.149 These associa-
tions differ from our previously limited understanding of 
IL-6, IL-8 and B cells interactions: IL-6 was first described 
as a B cell stimulating factor with potential autoimmune 
implications150; IL-8 is expressed by germinal center 
immune cells to promote B and T cell interactions, but 
could also limit B cell expansion in distinct settings.151 152 
A better understanding of the relationship between B 
cells and inflammatory cytokines could help leverage 
soluble factors as potential biomarkers or therapeutic 
targets.
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Perspectives
The multifaceted involvement of B cells in antitumor 
immunity, promoting T cell-dependent and independent 
response, could be used to identify potential biomarkers 
and therapeutic targets. Easily accessible surrogate 
markers of B cell activation, such as peripheral cytokines, 
may provide dynamic insights into immune contexture at 
a patient level. Additional insights into B cell response 
may be provided by their BCR repertoire, which clonality 
and diversity could inform potential sensitivity to immune 
checkpoint inhibition.53 90

Accurately picturing the antitumor immunity land-
scape remains, however, a challenging endeavor. Mitiga-
tion of an efficient immune response may occur owing to 
metastatic niches with distinct resident immune cells and 
potential intrapatient tumor heterogeneity.153 Reliable 
assessment of B cell infiltration and TLS by conventional 
pathology may be impacted by tissue sampling despite 
efforts to standardize practice.49 Marker genes or proteins 

used for B cell subtyping still differ across studies, while 
bulk molecular signatures have yet to demonstrate their 
ability to accurately discriminate B cell subtype infiltra-
tion when compared with standard pathological assess-
ments.90 As such, prospective validation will be essential 
to implement a pragmatic B cell-derived biomarker into 
clinical practice.

To further refine the patient selection, what has been 
mostly reported in the context of single-agent anti-PD1 
has to be more widely demonstrated in the setting of 
combinations, which have become standard of care 
in multiple solid tumors.9 So far, ancillary studies of 
pivotal combination trials in kidney cancer, involving 
dual checkpoint inhibition or targeted therapies plus 
immune checkpoint inhibitors, did not yet identify 
specific immune states amenable to guide therapy.154 155 
Sustained translational research efforts, thus, remain 
essential to identify contemporary relevant predictors of 
outcomes.

Table 2  Cytokines reportedly associated with distinct B cell contexture in selected solid tumors

Cytokine Tumor type Model Outcomes Immune cell contexture Ref

BCA-1/CXCL13 Kidney cancer Human Shorter overall survival with ICI Decreased peripheral memory B cells
peripheral T follicular helper

101

Melanoma, lung, ovarian 
cancer

Murine Decreased responses with ICI Increased IL-10+regulatory B cells 129

Ovarian cancer Human Improved prognosis Increased B cell infiltration
CD8+T cell infiltration
TLS presence

121

Urothelial carcinoma Human Longer progression-free and 
overall survival with ICI

Increased B cell infiltration CD8+T cell 
infiltration
TLS presence

94 122

Breast cancer Human Longer disease-free survival Increased T cell infiltration TLS presence 125 128

BAFF Kidney cancer Human Shorter overall survival with ICI Decreased peripheral memory B cells
peripheral T follicular helper

101

Melanoma Human, murine Longer overall survival with ICI Increased B cell antigen presentation 
TH1 cells infiltration
T cell memory acquisition FOXP3 
expression on T cells

131

IL-10 Melanoma Human, cell 
cultures

Tumor growth Increased Tumor-associated 
macrophages
Decreased T cell infiltration and 
activation

71 76 136

Colon cancer Cell cultures Tumor growth Decreased CD8+T cell activation
MHC I and II expression

72

Squamous skin carcinoma Murine Tumor regression Increased CD8+T cell infiltration and 
activation

139

TNF-α Squamous skin carcinoma Murine Tumor growth Increased B regulatory cells expansion 143

IL-6 Kidney cancer Human Shorter overall survival with ICI Decreased peripheral memory B cells
peripheral T follicular helper

101

Melanoma, colon Human, murine Lower response rates with ICI
Higher autoimmunity

Decreased CD8+T cell infiltration
Increased TH17 cells, neutrophil, 
macrophage infiltration

145 148

IL-8 Kidney cancer Human Shorter overall survival with ICI Decreased peripheral memory B cells
peripheral T follicular helper

101

Melanoma, lung, kidney 
cancer

Human Shorter overall survival with ICI Increased neutrophil and monocyte 
infiltration
Decreased T cell infiltration

149

ICI, immune checkpoint inhibitors; MHC, major histocompatibility complex; TLS, tertiary lymphoid structures.
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The potential for therapeutic implications, with regard 
to B cells, may not be limited to patient selection. Novel 
insights into B cell-specific checkpoints such as TIM-1 
may accelerate development of B cell-specific thera-
pies. Cytokines impacting B cell development could be 
used to modulate the immune response; such proof of 
concept has been shown in autoimmune diseases with 
BAFF inhibitors,156 although indiscriminate cytokine-
directed therapies are still stuttering in solid tumors with 
no contemporary positive phase 3 trials.141 157 Promising 
avenues may also reside in adoptive transfer of engi-
neered B cells to confer long lasting tumor immunity, a 
therapeutic area that is still in its infancy.44 158 159 Overall, 
the field of B cells is swiftly growing in patients with solid 
tumors and may be one of the keys to continue improving 
immune-based approaches in cancer.
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