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HIGHLIGHTS 

• • 34.4% of 1208 stage I-III breast cancer survivors had cancer-related fatigue of 

clinical importance 2 years after diagnosis  

• • High pre-treatment levels of the pro-inflammatory cytokine IL-6 were associated 

with global fatigue 2 years later  

• • Individuals with high levels of IL-6 had higher body mass index and were less 

physically active than those with lower levels  

• • Higher pre-treatment IL-2 and IL-10 were also associated with higher and lower 

likelihood of global fatigue, respectively  

• Higher C-reactive protein was associated with higher likelihood of cognitive 

fatigue  
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ABSTRACT 

Background: We aimed to generate a model of cancer-related fatigue (CRF) of clinical 

importance two years after diagnosis of breast cancer building on clinical and behavioral 

factors and integrating pre-treatment markers of systemic inflammation. 

Methods: Women with stage I-III HR+/HER2- breast cancer were included from the 

multimodal, prospective CANTO cohort (NCT01993498). The primary outcome was global 

CRF of clinical importance (EORTC QLQ-C30≥40/100) two years after diagnosis (year-2). 

Secondary outcomes included physical, emotional, and cognitive CRF (EORTC QLQ-FA12). 

All pre-treatment candidate variables were assessed at diagnosis, including inflammatory 

markers (interleukin [IL]-1a, IL-1b, IL-2, IL-4, IL-6, IL-8, IL-10, interferon gamma, IL-1 receptor 

antagonist, TNF-, and C-reactive protein), and were tested in multivariable logistic regression 

models implementing multiple imputation and validation by 100-fold bootstrap resampling.  

Results: Among 1208 patients, 415 (34.4%) reported global CRF of clinical importance at 

year-2. High pre-treatment levels of IL-6 (Quartile 4 vs.1) were associated with global CRF at 

year-2 (adjusted Odds Ratio [aOR]: 2.06 [95% Confidence Interval 1.40-3.03]; p=0.0002; 

AUC=0.74). Patients with high pre-treatment IL-6 had unhealthier behaviors, including being 

frequently either overweight or obese (62.4%; mean BMI 28.0 [SD 6.3] Kg/m2) and physically 

inactive (53.5% did not meet WHO recommendations). Clinical and behavioral associations 

with CRF at year-2 included pre-treatment CRF (aOR vs no: 3.99 [2.81-5.66]), younger age 

(per 1-year decrement: 1.02 [1.01-1.03]), current smoking (vs never: 1.81 [1.26-2.58]), and 

worse insomnia or pain (per 10-unit increment: 1.08 [1.04-1.13], and 1.12 [1.04-1.21], 

respectively). Secondary analyses indicated additional associations of IL-2 (aOR per log-unit 

increment:1.32 [CI 1.03-1.70]) and IL-10 (0.73 [0.57-0.93]) with global CRF and of C-reactive 

protein (1.42 [1.13-1.78]) with cognitive CRF at year-2. Emotional distress was consistently 

associated with physical, emotional, and cognitive CRF. 

Conclusions: This study proposes a bio-behavioral framework linking pre-treatment systemic 

inflammation with CRF of clinical importance two years later among a large prospective 

sample of survivors of breast cancer.  
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KEYWORDS: breast cancer, cancer-related fatigue, inflammatory markers, health behaviors, 

symptom management, survivorship 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jo
urn

al 
Pre-

pro
of



 6 

MANUSCRIPT 

Introduction 

 Cancer-related fatigue (CRF) is almost universal during primary treatment for breast 

cancer, however long-term CRF can be prevalent up to several years after treatment 

completion.1–3 CRF is usually defined as more disabling than fatigue due to sleep deprivation 

or overexertion, with a substantial proportion of patients (30-60%) describing this symptom as 

moderate to severe, causing great detriment to quality of life (QOL).4–6 

Extensive work has studied clinical, psychological, behavioral, environmental, socio-

demographic, tumor-, and treatment-related correlates of CRF.1,7–11 Dissecting its 

multidimensional characteristics, several studies have also suggested that the physical, 

emotional, and cognitive manifestations of CRF may have distinct etiology, courses, and 

determinants, including different pathophysiology, and a “subtype-specific” approach to better 

tailor the management of CRF was proposed.12–14 Joining this effort to improve assessment 

and management of CRF, our group previously developed and validated predictive models 

building on clinical and behavioral characteristics15 and generated an online screening tool to 

estimate individual risk of long-term CRF after breast cancer.16 

 Nevertheless, CRF remains a complex and multifactorial syndrome, and most of its 

mechanisms and biological underpinnings are still elusive.1,9 Multiple pathways have been 

studied in relation to CRF. Inflammation, dysregulation of the hypothalamic–pituitary–adrenal 

axis, and/or activation of the autonomic nervous system have traditionally been advocated as 

potential mechanisms of CRF, being able to influence each other and to activate additional 

systems such as oxidative stress cascades, endocannabinoids, and gut microbiota.1,17 Over 

the past few years, the link between cancer-related inflammation and CRF received the 

greatest empirical attention. It has been suggested that CRF and other “sickness behaviors”, 

including emotional distress, cognitive dysfunction, pain, and insomnia, may stem from central 

stimulation resulting from peripheral activation of the inflammatory axis and the production of 

pro-inflammatory cytokines.18–20 Carrol and colleagues also suggested that variation in 
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individual susceptibility to symptoms including CRF may be substantially driven by cellular 

senescence and accelerated ageing resulting from tumor-host-treatment interactions.21 Pre-

existing factors including psychosocial and lifestyle traits, with mediation exerted by cancer 

treatment, may influence inflammatory pathways, and facilitate the accumulation of cells 

enriched with an inflammation-biased secretome.22–26 Particularly, several interleukins (IL; 

such as IL-1 and IL-6), C-reactive protein, and tumor necrosis factor-alpha (TNF-) seemed 

to have implications in orchestrating local and systemic effects leading to a wide spectrum of 

host defense responses on energy levels.1,17 By signaling across the blood-brain interface, 

increased inflammation can then impair several bodily systems, being a shared biological 

substrate across oncologic, cardiovascular, and metabolic comorbidities.21 It is also plausible 

that the effect of initial systemic inflammation keeps manifesting on CRF for years after cancer 

diagnosis, as a combined result of physiological and accelerated aging, accumulation of 

greater comorbidity, disrupted compensatory capacities, long-term treatment burden, and 

perpetuating factors such as poor diet, physical inactivity and sleep disturbance.4,27–29 

Taken together, previous research has generated evidence about inflammation, 

neuroimmune interactions, and immune mechanisms for CRF. However, this evidence is not 

always consistent and often limited by the cross-sectional nature and small sample size of 

studies that are therefore sensitive to a number of biases.17,30 In the present analysis, we 

evaluated the contribution of pre-treatment markers of systemic inflammation or inflammatory 

axis activation (i.e., assessed at breast cancer diagnosis, before any treatment for breast 

cancer) to models of CRF considered of clinical importance31,32 two years later, using a large, 

prospective cohort of survivors of early-stage breast cancer. Our study builds on previous 

knowledge suggesting an inflammatory basis for CRF and on existing evidence of the interplay 

between health behaviors and CRF, also aiming to find potential interventional targets 

 

PATIENTS AND METHODS 

Study design 
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We used CANTO (CANcer TOxicity; ClinicalTrials.gov identifier: NCT01993498), a 

large, prospective cohort of survivors of stage I-III breast cancer. Briefly, clinical, socio-

economic, behavioral, tumor and treatment characteristics, and patient-reported outcome data 

are collected at diagnosis of breast cancer (pre-treatment, i.e., before any primary breast 

cancer treatment including surgery, chemo-, or radiotherapy, as appropriate), then 

longitudinally reassessed at approximately one, two, four, and six years after diagnosis. 

Endocrine therapy and targeted therapies are allowed to be ongoing during the follow-up time 

points. Patients experiencing disease recurrence, metastatic relapse, or death, exit the study 

and do not contribute to the analyses from the event date forward. All patients provided written 

informed consent. The study design was previously described (Ethics committee approval: ID-

RCB:2011-A01095-36,11-039).33 

 

Cohort definition 

 This analysis included patients with hormone-receptor (HR)-positive, human epidermal 

growth factor receptor (HER) 2-negative breast cancer diagnosed from 2012-2013, who had 

a pre-treatment blood sample available for quantification of inflammatory markers. The final 

analytic cohort included patients providing data on CRF at the year-2 time point (N= 1208 for 

the primary outcome; the full study flowchart is presented in Supplementary Figure 1). 

 

Outcome assessment 

Our primary outcome of interest was global CRF at year-2 after diagnosis, assessed 

using the three-item scale of the European Organisation for Research and Treatment of 

Cancer (EORTC) Quality of Life Questionnaire (QLQ)-C30. A higher score on this scale 

indicates a higher level of symptomatology.  Scores were dichotomized using a threshold of 

≥40/100, typically defining clinically important CRF.31,32 

In addition, we assessed the physical, emotional, and cognitive dimensions of CRF at 

year-2 after diagnosis as secondary outcomes, using the EORTC module measuring CRF 
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(EORTC QLQ-FA12), a multidimensional instrument to be used in conjunction with the core 

EORTC QLQ-C30.34 The questionnaire includes five items for physical (Item 1-5), three for 

emotional (Item 6-8), and two for cognitive CRF (Item 9-10). While there is no threshold for 

clinical importance for the QLQ-FA12 scores, a cut-off value of 40/100 was used to identify 

CRF dimensional symptoms of clinical relevance, consistent with a previous study.15 

 Additional information on the outcome assessment instruments and score calculation 

is available in the Supplementary Methods.   

 

Clinical and behavioral variables of interest 

Based on clinical expertise and prior evidence of association with CRF1,7–11, we 

included clinical, socio-demographic, behavioral, tumor- and treatment-related factors, and 

symptoms (including pre-treatment fatigue) in our analyses. Variables were defined and 

categorized as described in Table 1. These variables were collected at study entry (breast 

cancer diagnosis, equivalent to pre-treatment in the CANTO study) during dedicated visits with 

trained study nurses as per study protocol, and included the following: age at diagnosis of 

breast cancer, Body Mass Index (BMI; objectively assessed during clinical study visits), 

menopausal status, comorbidities (Charlson comorbidity index), previous mental health 

problems, marital status, education, and income (ad hoc socio-economic questionnaire), 

alcohol consumption, tobacco use, physical activity (Global Physical Activity Questionnaire-

16)35, breast cancer stage, axillary and breast surgery, receipt of chemotherapy, radiotherapy, 

hormonal therapy, anxiety and depression (Hospital Anxiety and Depression Scale [HADS; 

non-case, score 0-7; doubtful case, score 8-10; case, score 11-21])36, CRF, insomnia, pain 

(EORTC QLQ-C30)37, and menopausal symptoms (i.e., hot flashes; Common Terminology 

Criteria for Adverse Events [CTCAE v 4.0, Yes= any grade]).38 

 

Biological variables of interest: serum inflammatory markers 
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 Fasting blood samples were obtained pre-treatment, kept at room temperature for 30-

60 minutes, then centrifuged for 15 minutes at 1800g to obtain 200 to 400 uL of serum, which 

was stored in two aliquots at -180°C for long-term preservation until analyzed.  

 The High Sensitivity Cytokine Custom array (CTK CST X, EV3881/EV3623), the 

Metabolic Syndrome array I (METS I, EV3755), and the Metabolic Syndrome array II (METS 

II, EV3759/A) were used for the quantification of the following serum inflammatory markers: 

IL-1, IL-1, IL-2, IL-4, IL-8, IL-10, interferon gamma (IFN), IL-1 receptor antagonist (IL-1Ra) 

(CTK), IL-6, TNF- (METS I), and C-reactive protein (METS II) (RANDOX Laboratories 

Limited, UK). Previous studies suggested the implication of these markers in inflammatory 

responses linked with CRF and other behavioral symptoms.1,13,17 All samples from a single 

subject were assayed together on the same ELISA plate to minimize effects of inter-assay 

variation, with internal quality controls applied twice, once at the beginning and once at the 

end of each run, using the RANDOX Evidence Investigator™ Biochip Array technology.39 

For the primary analysis focused on global CRF at year-2 (EORTC QLQ-C30), 

concentrations were dichotomized as “low” vs “high” according to the lower limit of 

quantification for the individual assay (sensitivity threshold). If the sensitivity threshold was 

sufficiently low (i.e., ≤15th percentile), categories were defined according to the quartile (Q) 

distribution as “low” (Q1), “middle low” (Q2), “middle high” (Q3), and “high” (Q4), to allow for a 

more granular quantification. Similar approaches were previously used.40 C-reactive protein 

values were categorized according to levels with clinical meaning (Normal/low [<1 mg/L], 

moderately elevated [1 to <3 mg/L], and high [≥3mg/L]).41 Categorization is shown in Table 2.  

Secondary analyses were performed using continuous log-transformed values of the 

markers and including the ratio IL1Ra/IL-6, both for the primary outcome of global CRF 

(EORTC QLQ-C30) and for outcomes of dimensions of CRF (EORTC QLQ-FA12). 

Continuous values of the markers are available in Supplementary Table 1 and 2. 

 

Statistical analysis 
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Cohort and outcome description. Descriptive statistics summarized distribution of 

clinical and behavioral characteristics, and serum concentrations of inflammatory markers at 

breast cancer diagnosis, as well as outcome distribution at year-2 after diagnosis. 

Selection of factors to be included in the multivariable model. To assess clinical, 

behavioral, and biological factors that could explain the variability in CRF of clinical importance 

at year-2, we used multivariable logistic regression implementing automatic backward variable 

selection under multiple imputation (MI), combined with bootstrapping, as described by 

Heymans MW et al, to account both for variation linked to missing data and sampling.42 Missing 

covariate data were handled generating 15 complete data replicates by MICE (Multivariate 

Imputation by Chained Equations).43 The imputation model included (a) all variables that would 

be part of the subsequent analytic model (as listed in Table 1, 2, and 3); (b) the outcome 

variables (of note, missing outcome variables were not imputed, outcome data was used to 

impute missing values in other covariates); and (c)  auxiliary variables, included to help 

minimize bias and improve precision of the estimates. These variables were identified using 

domain knowledge or through association with incomplete variables, and included 

menopausal status, health behaviors (BMI, physical activity, smoke, alcohol), presence of 

concomitant medical conditions (i.e., history of previous cardio-circulatory, respiratory, 

gastrointestinal, renal, hepatic, endocrine, muscle-articular, urologic, hematologic, 

dermatologic, neurologic, allergic, gynecological disease), socioeconomic variables (marital 

status, professional status, level of education), household income, and patient-reported health 

(EORTC QLQ-C30 domains, continuous scores). For each replicate, we constructed 100 

bootstrap sets by randomly drawing with replacement, therefore the total number of data sets 

equaled 1500 (15-MI*100-bootstrap). For the primary analysis focused on global CRF 

(EORTC QLQ-C30), we used strict selection criteria to define factors for the final multivariable 

model, including categorical inflammatory markers. First, the automatic stepwise method used 

a p-value cut-off of ≥0.05 to remove variables. Then, we calculated the proportion of times 

each variable appeared in the models (i.e., the inclusion frequency) and retained in the final 
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multivariable model only variables for which the inclusion frequency exceeded 70%. These 

criteria allow to exploit the wealth of data from the CANTO study without overfitting the models 

and minimize the risk of including noise variables.42 Results obtained across imputed data sets 

were combined using Rubin’s rules to produce Odds Ratio (OR) estimates and Confidence 

Intervals (CIs) that incorporate uncertainty of imputed values.44  

For secondary analyses, focused both on global CRF (EORTC QLQ-C30) and 

dimensions of CRF (EORTC QLQ-FA12), we incorporated continuous log-transformed values 

of the markers using a more lenient inclusion frequency of 50%,  while keeping the probability 

to remove variables strictly set at ≥0.05 in the stepwise procedure. This strategy would allow 

us to obtain a less parsimonious model while limiting the inclusion of an excessive number of 

non-informative variables.42,45 

Model performance and bootstrap validation. The discriminative ability of the model 

was assessed by c-index, equal to the Area Under the Receiver Operating Characteristic 

Curve (AUC). Calibration was visually explored by plotting the observed and estimated 

probabilities of clinically important CRF. The optimism-corrected AUC and calibration were 

obtained by bootstrap.46  

Sensitivity analyses. We aimed at testing whether different definitions, categorizations, 

and selection criteria for variables of interest would impact modelling findings. Therefore, 

several sets of sensitivity analysis were conducted for the primary outcome and additional 

models were fit i) using pain and insomnia as categorical variables (i.e., dichotomizing 

according to thresholds of clinical importance: a cut-off of 50/100 and 25/100 defined clinically 

important insomnia and pain, respectively31,32; and ii) irrespective of statistical variable 

selection (to correct for the potential confounding effect of age, health behaviors such as BMI, 

tobacco smoke, and physical activity, and anxiety and depression). Finally, acknowledging the 

importance of emotional distress in relation with CRF, iii) we fit models not including pre-

treatment CRF of clinical importance and including anxiety and depression either as (a) 

categorical (HADS standard cut-off definitions) or (b) continuous variables. 
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 Power considerations. With a binary outcome prevalence of approximately 35%, a 

minimal sample size of 1022 patients was needed to minimize overfitting (expected shrinkage 

of 10% or lower) and to ensure precise estimation of key parameters in a model with 15 

variables (including an absolute difference of 0.05 in the model apparent and adjusted R-

squared value).47 

Statistical analysis was performed using SAS statistical software Version 9.4.  

Statistical significance was defined with a two-sided p-value<0.05.  

 

RESULTS 

Cohort characteristics 

 In the overall cohort, mean age was 57.9 years (Standard Deviation [SD] 11.1), 191 

patients (16.3%) had a history of previous mental health problems (i.e., mostly anxiety–

depressive disorders), 253 (21.2%) reported pre-treatment CRF of clinical importance, 425 

(35.6%) and 82 (6.9%) had clinically suggestive symptoms of anxiety and depression at 

diagnosis (cases), respectively. In addition, mean BMI was 25.9 Kg/m2 (SD 5.2), 204 patients 

(17.3%) reported current smoking at diagnosis, and median total physical activity level was 

14.0 Metabolic-equivalent of task-hour (MET-h)/week; Q1-Q3 0.0-40.0). Five hundred and 

thirty three patients (44.1%) received (neo)adjuvant chemotherapy and 1109 (91.8%) were 

treated with adjuvant hormonal therapy (Table 1). 

  

Bio-behavioral model of global CRF at year-2 

Four hundred fifteen patients (34.4%) reported CRF of clinical importance at year-2 

post diagnosis of breast cancer.  

The main model of CRF included a combination of clinical, behavioral, and biological 

characteristics (inclusion frequencies are presented in Supplementary Table 3).  IL-6 was 

the only inflammatory marker selected with strict inclusion frequency >70% and therefore 

tested in the main multivariable model of CRF at year-2. A larger proportion of patients among 

those that reported CRF of clinical importance at year-2 had high levels of pre-treatment IL-6 
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compared to those that did not (30.8% and 21.9% respectively; Table 2), and this difference 

was consistent across age groups and menopausal status (not shown). After correction for 

clinical and behavioral characteristics, high pre-treatment IL-6 levels were associated with 

CRF of clinical importance at year-2 (adjusted OR vs low IL-6: 2.06 [95% CI 1.40-3.03]; 

p=0.0002). The model AUC was 0.75 (95% CI 0.72-0.78; Optimism-corrected AUC=0.74; 

Table 3; Supplementary Figure 2). Patients with high pre-treatment levels of IL-6 had 

unhealthier behaviors compared to those with lower levels, including that they were frequently 

either overweight or obese (62.4%; mean BMI 28.0 [SD 6.3] Kg/m2), did not meet WHO 

physical activity recommendations (53.5% reported <10 MET-hours/week; median time: total 

activity 8.0 [Q1-Q3 0.0 to 28.0] MET-hours/week, transport and leisure-time activity 4.0 [0.0 to 

18.3]), and several among them (20.1%) were current smokers (Supplementary Figure 3, 

additional clinical characteristics are presented in Supplementary Table 4). 

Pre-treatment clinical and behavioral factors that were associated with CRF of clinical 

importance at year-2 in the main model included reporting pre-treatment fatigue of clinical 

importance (OR vs no: 3.99 [95% CI 2.81-5.66]), younger age (per 1-year decrement: 1.02 

[1.01-1.03]), being a current smoker (vs never: 1.81 [1.26-2.58]), and CRF-associated 

symptom burden at diagnosis including worse insomnia (per 10-unit increment: 1.08 [1.04-

1.13]) and pain (per 10-unit increment: 1.12 [1.04-1.21]). Treatment-related factors and pre-

treatment physical activity were not retained in the model of global CRF. 

Models using inflammatory markers as log-transformed continuous variables identified 

several associations of CRF of clinical importance at year-2, including with pre-treatment IL-6 

(OR per log-unit increment: 1.33 [1.11-1.60]), IL-2 (1.32 [95% CI 1.03-1.70]), and IL-10 (0.73 

[95% CI 0.57-0.93]). Additional associations with clinical and behavioral factors were 

consistent with the main model. Inclusion frequencies for this model are presented in 

Supplementary Table 5, the full model is presented in Supplementary Table 6. 

 

Models of CRF dimensions at year-2: physical, emotional, and cognitive CRF 
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At year-2 after diagnosis, 426 (35.1%), 268 (22.1%), and 165 patients (13.6%) reported 

physical, emotional, and cognitive CRF of clinical importance, respectively. A descriptive 

summary of clinical, behavioral and biological characteristics is provided in Supplementary 

Table 7 and 8. 

Focusing on the contribution of inflammatory markers to models of CRF dimensions, 

significant associations were observed between increasing levels of C-reactive protein and 

cognitive CRF (OR per log-unit increment in C-reactive protein 1.42 [95%CI 1.13-1.78]), 

whereas there were no specific associations with physical or emotional CRF. Additional 

relevant clinical and behavioral factors emerged from these models. Among these, pre-

treatment, clinically suggestive symptoms of depression were significantly associated with the 

three dimensions of physical (OR case vs. normal 2.19 [95% CI 1.25-3.84]), emotional (OR 

case vs. normal 1.97 [95% CI 1.13-3.42]), and cognitive CRF of clinical importance (OR case 

vs. normal 1.92 [95% CI 1.05-3.49]), after multivariable correction that also included pre-

treatment CRF.  In addition, pre-treatment, clinically suggestive symptoms of anxiety were 

significantly associated with emotional CRF (OR case vs. normal 1.91 [95% CI 1.26-2.90]). 

Finally, previous mental health problems were associated with physical (OR vs. no 1.72 [95% 

CI 1.22-2.43]) and cognitive (OR vs. no 1.66 [95% CI 1.07-2.57]) CRF. Mastectomy was 

associated with physical CRF (OR vs. conservative surgery 1.38 [95%CI 1.03-1.85). Full 

models are presented in Supplementary Table 9. 

 

Sensitivity analyses 

Models indicated consistent associations between higher pre-treatment levels of IL-6 

and CRF of clinical importance at year-2 across all sensitivity analyses, namely i) using 

insomnia and pain as categorical variables (Supplementary Table 10); and ii) fitting a model 

by including age, health behaviors, and emotional distress without variable selection 

(Supplementary Table 11).  Finally, iii) in a last set of sensitivity models not including pre-

treatment CRF, associations emerged also between pre-treatment depression and global CRF 

of clinical importance at year-2 (OR for clinically suggestive case vs. non-case 2.06 [95% CI 
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1.24-3.43]; OR per unit increment in continuous depression score 1.07 [95% CI 1.03-1.11]; 

full models not shown). 

 

DISCUSSION 

 This large, prospective study of women with HR+/HER2- breast cancer adds a 

biological dimension focused on pre-treatment inflammation to clinical and behavioral models 

of CRF. We found consistently increased likelihood of reporting global CRF of clinical 

importance two years after breast cancer diagnosis among women with high pre-treatment 

levels of IL-6, compared to those with low levels. Capitalizing on the role of behavioral factors, 

we also report that pre-treatment excess weight and physical inactivity were prevalent among 

women with high circulating levels of inflammatory marker. Additional biological associations 

emerging from this study included those of pre-treatment IL-2 and IL-10 with global CRF as 

well as of C-reactive protein with cognitive CRF. Clinical and behavioral factors associated 

with global CRF included pre-treatment fatigue, younger age, current smoking, and worse 

insomnia or pain. Models of physical, emotional, and cognitive dimensions of CRF were 

significantly informed by metrics of pre-treatment emotional distress.  

There is convergence between our findings and those from previous studies supporting 

an inflammatory basis for CRF and other behavioral symptoms among cancer patients and 

suggesting that perturbation of immune system homeostasis may help structure elevations in 

circulating inflammatory markers in survivors with persistent CRF.1,20,48 Such alterations may 

manifest in multiple ways, including reactivation of latent infections, deregulation of 

glucocorticoid signaling and alterations in lymphocyte subsets.1,17 Several authors reported, at 

various points across the survivorship trajectory, associations between pro-inflammatory 

cytokine activity with CRF, especially in the post-treatment period. Our study validates and 

extends the findings of many smaller samples. Noteworthy, high levels of IL-6 across the 

distribution were associated with CRF in our main models, and additional identified markers 

included C-reactive protein, IL-10, and IL-2. While previous studies usually assessed panels 
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of inflammatory markers17, several reported associations between IL-649–52 and/or C-reactive 

protein30,53–55 with CRF. IL-6 is a pleiotropic cytokine produced by a variety of cell types, 

involved in antigen-specific immune responses and inflammatory responses, mediation of 

acute phase reactions, and in host-defense mechanisms56–58, whereas C-reactive protein is a 

sensitive downstream indicator of inflammation, and its concentrations have clinical meaning 

in several settings.59,60 Some evidence also indicated associations of CRF with IL-1061, 

suggested to increase in response to pro-inflammatory cytokines and to exert an anti-

inflammatory effect by modulating their levels.62 This is consistent with our findings indicating 

a reverse relationship between higher levels of IL-10 and lower likelihood of CRF. Finally, the 

association between the pro-inflammatory cytokine IL-2 and CRF was observed less 

frequently in previous studies, and its increase in fatigued survivors could be put in relation 

with elevation of multiple cytokines involved in the inflammatory process rather than of a single 

marker.17,63 Previous literature has also examined the IL-6 gene single nucleotide 

polymorphisms (SNPs) and CRF. Associations with CRF were described before, during, and 

after cancer treatment, extending also to SNPs in genes encoding IL-1, IL-10, and TNF-a, and 

expression of Type I interferon genes.64–68 Furthermore, evidence is available linking 

circulating levels of IL-6 and its genetic polymorphisms with other behavioral symptoms such 

as depression and memory problems, which are common in severely fatigued survivors.69  

While inflammation is among the most discussed mechanisms of fatigue, including in 

the non-cancer realm (e.g., for fatigue associated with autoimmune, neurological, and 

musculoskeletal diseases)70, scenarios have been proposed where its contribution is less 

clear. Results of several studies, either with longitudinal or cross-sectional designs, were 

controversial or failed to demonstrate a relationship between inflammatory markers and CRF 

independently of other clinical, behavioral or socio-demographic risk factors.71,72 Of note, these 

studies are heterogeneous in terms of design, analytic methods, and CRF outcomes, 

assessment instruments, and time-points.17 Cluster analyses may help further dissect 

subgroups of CRF driven by concomitant clinical conditions (e.g., psychological disturbance, 

Jo
urn

al 
Pre-

pro
of



 18 

sleep dysregulation and pain, obesity), from those associated with inflammatory or different 

biological patterns. By looking at a post-diagnosis survivors population, Schmidt et al.13 

delineated different subgroups of CRF, including one occurring along a history of depression, 

a second associated with inflammation (i.e., with high levels of inflammatory markers including 

IL-6, but also TNF-, IL-1, resistin, VEGF-A and GM-CSF), and a third characterized by 

metabolic markers such as leptin. The inflammation-associated cluster also expressed high 

levels of pain and high BMI, findings that echo the associations with other symptoms (e.g., 

insomnia, pain) and bio-behavioral factors (e.g. increased BMI, inactivity) observed in our 

cohort. These authors have therefore proposed targeting fatigue phenotypes that are driven 

by different mechanisms with specific interventions, modeling fatigue management upon 

patient features and biological hallmarks of CRF subtypes.8,13 Nevertheless, the contributing 

mechanisms and biological substrates of the different CRF dimensions still need further 

elucidation.70 For example, there were higher manifestations of physical CRF in the cluster 

associated with inflammation13, consistent with other studies.53,73,74 Conversely, in our cohort 

with a different design, the only dimension that seemed associated with inflammation was 

cognitive CRF, for which a relationship with pre-treatment C-reactive protein was evident. In 

the CANTO-Cog sub-study focused on cognition, we also reported associations between high 

levels of C-reactive protein assessed at diagnosis of breast cancer and overall cancer-related 

cognitive impairment, processing speed and episodic memory impairments two years later.75 

Others recently suggested longitudinal relationships between C-reactive protein and cognitive 

complaints in older breast cancer survivors.76 Such findings can help contextualize the 

associations between C-reactive protein and the feelings of “having trouble thinking clearly” 

and “confusion”34 reported by survivors with elevated  cognitive CRF in our cohort.  

  Development and validation of a model of clinical and behavioral risk factors for CRF 

and related discussion was the focus of a previous manuscript15, however the associations 

between emotional distress and CRF reported herein merit further discussion. Clustering of 

emotional distress with fatigue was reported by numerous previous studies7,8,13,77–80, including 
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ours6,15, and CRF characterized by depressive symptoms/anxiety was suggested to manifest 

with more severe and persisting physical, emotional, and cognitive symptoms compared to 

CRF not linked with depression. In our main model, emotional distress variables were not 

retained in association with global CRF two years later. This association might have been 

masked by the inclusion of pre-treatment CRF of clinical importance in the models, as also 

suggested by sensitivity analyses. However, pre-treatment CRF is one of the strongest and 

most consistent predictors of post-treatment CRF and may set the stage for elevated CRF 

years after treatment completion, therefore including this metric in a pre-treatment model is 

particularly relevant. Some authors also suggested that most studies looking at predictors of 

CRF did not control for pre-treatment CRF and therefore the independent contribution of 

depression (and other clinical factors) above pre-existing CRF might be not entirely clear.1  In 

general, models including a baseline measurement of the outcome yield better performance 

and more accurate estimates.81–84 As opposed to models of global CRF, our models of the 

physical, emotional, and cognitive dimensions of CRF had very consistent associations with 

symptoms suggestive of anxiety or depression at the moment of diagnosis or with mental 

health problems that pre-existed breast cancer diagnosis. These disorders may determine 

poorer psychological adjustment to cancer and increase vulnerability to long-term CRF.8 

Beyond impairing coping capacity, emotional vulnerability was also linked to increased 

inflammatory responses to stress.19,85,86 Confirming what previously suggested, our findings 

underpin the role of emotional distress in defining a CRF phenotype with multidimensional 

manifestations (e.g., slowing down, having trouble getting things started, helplessness, 

frustration, impaired thinking ability) rather than just general feelings of weakness and need to 

rest.8  

In terms of other clinical and behavioral factors, receipt of more extensive breast 

surgery was previously associated with CRF87, a finding that we also report. It is important to 

highlight that the timing of outcome assessment in our study may be responsible for the lack 

of observed associations between CRF and other treatment-related factors. CRF was 

Jo
urn

al 
Pre-

pro
of



 20 

assessed at least one year after primary treatment completion in our cohort. We previously 

reported an early association of chemotherapy with global and physical CRF at approximately 

3-6 months after treatment.15 Consistently, previous studies had pointed at chemotherapy as 

a precipitating factor for CRF (i.e. arising during treatment), with weaker effects on long-term, 

persistent CRF.7 On the contrary, several studies, including ours, had identified hormonal 

therapy as a factor perpetuating CRF later during follow-up.15,27 Associations with hormonal 

therapy might not be evident in the present HR+/HER2-cohort, as the overwhelming majority 

received adjuvant hormonal therapy. Further research should look at interactions between 

cancer treatment and inflammation on long-term symptoms, as these may not be manifested 

until several years after initial treatment, including until longer term exposures to hormonal 

therapy. In addition, we did not find associations between pre-treatment levels of physical 

activity and CRF, which might partly be explained by the observational nature of the cohort 

with self-reported activity and subject to over-reporting, and by the time elapsed between 

exercise exposure and outcome assessment. 

A relevant question is whether we can implement our -or similar- models to improve 

patient stratification, targeted provision of behavioral interventions, and monitoring strategies 

to prevent CRF deterioration in clinical practice. In addition to actionable clinical factors such 

as baseline symptom burden,  excess adiposity and inactivity were common among individuals 

with increased markers of inflammation in our analysis, suggesting potential modifiable targets 

for interventions. As previously indicated, an expanded, reprogrammed, and metabolically 

active adipose tissue may alter systemic physiology of individuals with obesity, by enhancing 

secretion of cytokines, including IL-6, and adipokines, and activate key pathways that trigger 

or precipitate the CRF cascade.1,88 Analogously, dysregulation in systemic inflammation is 

observed in sedentary individuals.1 The link between inflammation, behaviors, and CRF 

symptoms is further reinforced by data from interventional research. Although there is still 

uncertainty about whether a shared inflammatory substrate is consistently present or not, 

several behavioral interventions, including those focused on exercise, psychological support, 
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mindfulness, and yoga, have shown a positive impact on CRF and the associated spectrum 

of behavioral symptoms that include cognitive disturbance, emotional distress, social 

withdrawal, and sleep troubles, suggesting a common biological basis.24–26,48,89–95 By acting on 

modifiable host-specific factors such as sedentary behavior, but also on poor sleep, 

psychosocial stress and catastrophizing, behavioral interventions can target inflammation, 

disrupt its feed-forward pathways, and mitigate symptoms.96 It is evident that one-size-fits-all 

approaches may not be sufficient facing the complexity and multidimensionality of CRF 

subtypes and its entanglement with other behavioral symptoms. Our models are not intended 

to point at a single (or few) diagnostic biomarker(s) of CRF. They rather provide a bio-

behavioral framework for thorough evaluation of potential risk factors for CRF since diagnosis, 

including screening for the presence of pre-treatment CRF and past medical history with a 

focus on previous mental health problems, and addressing acute emotional vulnerability and 

additional symptoms such as insomnia and pain. Behavioral factors should also be thoroughly 

assessed and options to improve an unhealthy lifestyle (e.g., excess weight, inactivity, tobacco 

smoking) offered as appropriate. When moderate-to-severe pre-treatment CRF is present, it 

should be treated. These recommendations are reflected in current CRF guidelines for 

patients and survivors across the disease spectrum96–99 and many of them represent 

cornerstones of optimal survivorship care beyond the management of CRF.100 There is still no 

evidence demonstrating that “intercepting the risk” of post-treatment symptoms early along 

the cancer trajectory and correcting modifiable factors may alter the course of CRF. However, 

refined knowledge of symptom science, including leveraging bio-behavioral models of CRF, 

paves the way and sets out the rationale for prospective studies testing these hypotheses.101 

Examples of such studies, assessing feasibility, acceptability, and effectiveness of risk 

stratification and personalized supportive care pathways are ongoing or in the pipeline at our 

institution102, and similar efforts are in place elsewhere, aiming at implementing CRF screening 

in routine care to provide early treatment options.103 
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We acknowledge that the model we propose is only “a” bio-behavioral model that may 

explain CRF. It focuses on pre-treatment factors and on outcomes reported two years later. 

Some factors such as childhood trauma, or biochemical parameters such as cortisol and 

hormonal levels could not be investigated. We included a relatively homogeneous population 

of breast cancer survivors from the CANTO study without a healthy control group that could 

have allowed comparisons with individuals that did not receive cancer treatment. We also 

acknowledge a potential impact of variability linked to stability of the analyte in the samples 

and measurement error that is intrinsically linked to the evaluation methods implemented in 

any biological analysis. However, all analytic procedures underwent strict quality control at a 

reference center (Gustave Roussy, Villejuif, France), ensuring collection, storage, and profiling 

standards are met104, and that quantifications are consistent with studies using similar 

assays.39,105 Despite measures taken to optimize variable selection, some may have not been 

retained due to inclusion thresholds.  Nevertheless, we used an established methodology42 

and results are strengthened by several sensitivity analyses. Additional specific strengths 

include a prospective and longitudinal design, and the wealth of available data, including a 

baseline, pre-treatment evaluation of serum inflammatory markers and of the outcome.  

In conclusion, we generated a bio-behavioral model of CRF incorporating pre-

treatment clinical, behavioral, and biological factors. While our results build and strengthen an 

evidence base about the inflammatory biology involved in CRF, future studies should be 

encouraged to unveil additional mechanisms underlying symptom onset and evolution. Novel 

technologies such as wearable biosensors could be exploited to test the clinical utility of 

devices allowing for a continuous monitoring of systemic inflammation and behaviors, 

providing data regarding potential “dynamic markers”.106–108 An agnostic approach, delving into 

multi-omics, may also unlock a more comprehensive understanding of alternative biological 

pathways and substrates that extend beyond cancer-related inflammation, providing further 

actionable mechanistic targets.101 
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TABLES 

Table 1. Descriptive statistics on the distribution of clinical and behavioral characteristics of the cohort 
at breast cancer diagnosis. 

Variable  
(all assessed at diagnosis  
of breast cancer) 

Whole cohort  
(N=1208) 

Reporting fatigue of clinical importance at 
year-2 (EORTC QLQC-30) 

Yes  
(N=415; 34.4%) 

No  
(N=793; 65.6%) 

Age, years 
 

  

      Mean (SD) 57.9 (11.1) 56.2 (11.4) 58.9 (10.8) 

      Min-Max 22.3–88.2 28.6–88.2 22.3–85.5 

      Missing - - - 

BMI, Kg/m2    

      Mean (SD) 25.9 (5.2) 26.1 (5.5) 25.8 (5.1) 

      Missing 3 2 1 

Menopausal status, N (%) 
 

  

      Premenopausal 413 (34.4) 163 (39.6) 250 (31.7) 

      Postmenopausal 788 (65.6) 249 (60.4) 539 (68.3) 

      Missing 7 3 4 

Charlson comorbidity index, N (%) 
 

  

      0 867 (78.6) 283 (77.1) 584 (79.3) 

      >=1 236 (21.4) 84 (22.9) 152 (20.7) 

      Missing 105 48 57 

Previous mental health problems, N (%)    

      No 983 (83.7) 321 (79.3) 662 (86.1) 

      Yes 191 (16.3) 84 (20.7) 107 (13.9) 

      Missing 34 10 24 

Marital Status, N (%) 
 

  

      Not partnered 275 (23.8) 109 (27.5) 166 (21.9) 

      Partnered 880 (76.2) 287 (72.5) 593 (78.1) 

      Missing 53 19 34 

Education level, N (%) 
 

  

      Primary school 192 (16.6) 67 (16.8) 125 (16.5) 

      High school 532 (46.0) 185 (46.5) 347 (45.8) 

      College or higher 432 (37.4) 146 (36.7) 286 (37.7) 

      Missing 52 17 35 

Household income, N (%) 
 

  

      <1500 166 (15.2) 73 (19.5) 93 (12.9) 

      >=1500 and <3000 442 (40.4) 156 (41.6) 286 (39.8) 

      >=3000 486 (44.4) 146 (38.9) 340 (47.3) 

      Missing 114 40 74 

Alcohol consumption behavior, N (%) 
 

  

      Less than daily consumption 970 (84.3) 332 (84.7) 638 (84.2) 

      Daily consumption 180 (15.7) 60 (15.3) 120 (15.8) 

      Missing 58 23 35 

Tobacco use behavior, N (%) 
 

  

      Current smoker  204 (17.3) 108 (26.9) 96 (12.4) 

      Former smoker 240 (20.4) 76 (18.9) 164 (21.2) 

      Never smoker 733 (62.3) 218 (54.2) 515 (66.5) 

      Missing 31 13 18 

Physical activity (MET-h/week) 
 

  

      Median (Q1-Q3) 14.0 (0.0–40.0) 12.0 (0.0–40.0) 16.0 (0.7–38.0) 

      Missing 31 7 24 

Breast cancer stage, N (%) 
 

  

      Stage I 651 (54.1) 201 (48.8) 450 (56.8) 

      Stage II 439 (36.5) 166 (40.3) 273 (34.5) 

      Stage III 114 (9.5) 45 (10.9) 69 (8.7) 
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      Missing 4 3 1 

Axillary surgery, N (%) 
 

  

      None or sentinel node biopsy 733 (60.7) 243 (58.6) 490 (61.8) 

      Dissection 475 (39.3) 172 (41.4) 303 (38.2) 

      Missing - - - 

Breast cancer surgery, N (%) 
 

  

      Conservative 898 (74.3) 294 (70.8) 604 (76.2) 

      Mastectomy 310 (25.7) 121 (29.2) 189 (23.8) 

      Missing - - - 

Chemotherapy, N (%) 
 

  

      No 675 (55.9) 214 (51.6) 461 (58.1) 

      Yes 533 (44.1) 201 (48.4) 332 (41.9) 

      Missing - - - 

Radiotherapy, N (%) 
 

  

      No 111 (9.2) 37 (8.9) 74 (9.3) 

      Yes 1097 (90.8) 378 (91.1) 719 (90.7) 

      Missing - - - 

Hormonal therapy, N (%) 
 

  

      No 99 (8.2) 30 (7.2) 69 (8.7) 

      Yes 1109 (91.8) 385 (92.8) 724 (91.3) 

      Missing - - - 

Anxiety, N (%) 
 

  

      Non-case 445 (37.3) 119 (28.8) 326 (41.7) 

      Doubtful case 324 (27.1) 107 (25.9) 217 (27.8) 

      Case 425 (35.6) 187 (45.3) 238 (30.5) 

      Missing 14 2 12 

Depression, N (%) 
 

  

      Non-case 990 (83.0) 309 (74.8) 681 (87.3) 

      Doubtful case 121 (10.1) 51 (12.3) 70 (9.0) 

      Case 82 (6.9) 53 (12.8) 29 (3.7) 

      Missing 15 2 13 

Fatigue 
 

  

      Mean (SD) 25.8 (23.9) 38.8 (25.9) 18.9 (19.5) 

      Missing 17 3 14 

Fatigue of clinical importance, N (%) 
 

  

      No 938 (78.8) 236 (57.3) 702 (90.1) 

      Yes 253 (21.2) 176 (42.7) 77 (9.9) 

      Missing 17 3 14 

Insomnia 
 

  

      Mean (SD) 40.7 (33.1) 51.0 (34.4) 35.2 (31.0) 

      Missing 19 3 16 

Pain 
 

  

      Mean (SD) 14.1 (20.6) 21.7 (24.3) 10.1 (17.1) 

      Missing 13 3 10 

Hot flashes, N (%) 
 

  

      No 859 (74.5) 274 (70.1) 585 (76.8) 

      Yes 294 (25.5) 117 (29.9) 177 (23.2) 

      Missing 55 24 31 
SD: Standard Deviation; Q: Quartile; BMI: Body Mass Index; MET-h: Metabolic-equivalent of task-hour; HR: hormone receptor, HER2: Human 
epidermal growth factor receptor 2. Total physical activity scored as a continuous variable according to the Global Physical Activity 
Questionnaire (GPAQ)-16. Anxiety and Depression scored according to the Hospital Anxiety and Depression Scale: non-case (score 0-7), 
Doubtful case case (8-10), case (11-21). Fatigue, insomnia, and pain scored using the EORTC QLQ-C30; Hot flashes assessed by the 
Common Terminology Criteria for Adverse Events –CTCAE- v 4.0 (Yes= any grade).  
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Table 2.  Descriptive statistics on the distribution of inflammatory markers at breast cancer diagnosis. 

Variable (all assessed at 
diagnosis of breast cancer) Whole cohort  

(N=1208) 

Reporting fatigue of clinical importance 
at year-2 (EORTC QLQ-C30) 

Yes  
(N=415; 34.4%) 

No 
(N=793; 65.6%) 

IL-1a, N (%) 
 

  

      Low 928 (77.3) 307 (74.3) 621 (78.9) 

      High 272 (22.7) 106 (25.7) 166 (21.1) 

      Missing 8 2 6 

IL-1b, N (%) 
 

  

      Low 300 (25.0) 94 (22.8) 206 (26.2) 

      Middle low 305 (25.4) 113 (27.4) 192 (24.4) 

      Middle high 296 (24.7) 107 (25.9) 189 (24.0) 

      High 299 (24.9) 99 (24.0) 200 (25.4) 

      Missing 8 2 6 

IL-2, N (%) 
 

  

      Low 1057 (89.5) 354 (86.8) 703 (90.9) 

      High 124 (10.5) 54 (13.2) 70 (9.1) 

      Missing 27 7 20 

IL-4, N (%) 
 

  

      Low 1131 (95.8) 389 (95.3) 742 (96.0) 

      High 50 (4.2) 19 (4.7) 31 (4.0) 

      Missing 27 7 20 

IL-6, N (%) 
 

  

      Low 304 (25.3) 93 (22.5) 211 (26.7) 

      Middle low 300 (24.9) 96 (23.2) 204 (25.8) 

      Middle high 299 (24.9) 97 (23.5) 202 (25.6) 

      High 300 (24.9) 127 (30.8) 173 (21.9) 

      Missing 5 2 3 

IL-8, N (%) 
 

  

      Low 296 (25.1) 108 (26.5) 188 (24.3) 

      Middle low 296 (25.1) 103 (25.2) 193 (25.0) 

      Middle high 294 (24.9) 96 (23.5) 198 (25.6) 

      High 295 (25.0) 101 (24.8) 194 (25.1) 

      Missing 27 7 20 

IL-10, N (%) 
 

  

      Low 915 (76.3) 310 (75.1) 605 (76.9) 

      High 285 (23.8) 103 (24.9) 182 (23.1) 

      Missing 8 2 6 

IFNg, N (%) 
 

  

      Low 850 (82.6) 287 (81.1) 563 (83.4) 

      High 179 (17.4) 67 (18.9) 112 (16.6) 

      Missing 179 61 118 

IL-1Ra* 
 

  

      Low 579 (50.1) 184 (46.0) 395 (52.2) 

      High 577 (49.9) 216 (54.0) 361 (47.8) 

      Missing 52 15 37 

TNF-a, N (%) 
 

  

      Low 303 (25.1) 102 (24.6) 201 (25.3) 

      Middle low 305 (25.3) 103 (24.9) 202 (25.5) 

      Middle high 298 (24.7) 97 (23.4) 201 (25.3) 

      High 301 (24.9) 112 (27.1) 189 (23.8) 

      Missing 1 1 0 
C-reactive protein, N (%)    
      Normal/low 462 (38.2) 149 (35.9) 313 (39.5) 
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      Moderately elevated 571 (47.3) 199 (48.0) 372 (46.9) 
      High 175 (14.5) 67 (16.1) 108 (13.6) 
      Missing - - - 
IL: Interleukin ; IFNg ; Interferon gamma ; IL1Ra : IL1 receptor antagonist ; TNF-a: tumor necrosis factor-alpha. The Cytokine Custom array 
HS  (CTK CST X, EV3881/EV3623), the Metabolic Syndrome array I (METS I, EV3755) and Metabolic Syndrome array II (METS II, EV3759/A) 
were used for quantification of IL-1a, IL-1b, IL-4, IL-8, IL-10, IFNg, IL-1Ra (CTK), IL-6, TNFa (METSI), and CRP (METSII). If a significant 
proportion of marker values across the cohort distribution fell below the sensitivity threshold for the respective assay, continuous values were 
dichotomized as low vs high according to whether they were below vs above the sensitivity threshold, respectively. If the sensitivity threshold 
for an individual assay was relatively low respective to the distribution, continuous values were categorized according to the quartile (Q) 
distribution of the cohort as “low” (Q1), “middle low” (Q2), “middle high” (Q3), and “high” (Q4). *Sensitivity threshold not available, continuous 
values dichotomized according to median (i.e., “high” vs “low” according to whether they were above vs below median, respectively). Ranges 
and units for each category and variable are available in Supplementary Table 2. 
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Table 3. Clinical and bio-behavioral model of global fatigue of clinical importance 2 years after diagnosis. 

Variable (all assessed at diagnosis of breast cancer) Odds 
Ratio 

95% CI p  

 Lower Upper 

Fatigue of clinical importance at diagnosis*, Yes vs. No 3.99 2.81 5.66 <.0001 

Age, continuous (per 1-year decrement) 1.02 1.01 1.03 0.0021 

Tobacco use behavior, Former vs. Never 0.96 0.68 1.35 0.7991 

Tobacco use behavior, Current vs. Never 1.81 1.26 2.58 0.0012 

Insomnia*, continuous (per 10-unit increment) 1.08 1.04 1.13 0.0002 

Pain*, continuous (per 10-unit increment) 1.12 1.04 1.21 0.0023 

IL-6, middle low vs. low 1.27 0.87 1.86 0.2234 

IL-6, middle high vs. low 1.15 0.78 1.69 0.4957 

IL-6, high vs. low 2.06 1.40 3.03 0.0002 

Intercept 0.49 0.22 1.05 0.0672 

Naïve AUC (95% CI) 
Optimism-corrected AUC 

0.75 (0.72-0.78)  
0.74 

CI: Confidence Interval; AUC: Area Under the Curve. *Scored according to the European Organisation for Research and Treatment of Cancer 
(EORTC) Quality of Life Questionnaire (QLQ)-C30 (a score of ≥40/100 indicates fatigue of clinical importance). 
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