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R E S E A R C H  L E T T E R

Combination of heterozygous APOB gene mutation with 
PNPLA3 and TM6SF2 variants promotes steatotic liver disease, 
cirrhosis and HCC development

Metabolic dysfunction- associated steatotic liver disease (MASLD) is 
the most common liver disease worldwide. In recent years, several 
single nucleotide polymorphisms (SNPs) in genes involved in hepatic 
lipid metabolism (PNPLA3, TM6SF2, GCKR, MBOAT7 and HSD17B13) 
have been shown to significantly contribute to the emergence of 
the disease in association with environmental factors.1–3 Monogenic 
disorders leading to a decreased VLDL secretion such as bi- allelic 
rare inactivating variants in the gene encoding for Apolipoprotein 
B (ApoB) leading to familial hypobetaliproteinemia (FHBL- SD2) can 
also result in steatohepatitis.4 Additionally, heterozygous APOB 
mutations (Hz- FHBL- SD2) confer a sixfold higher risk of steatosis 
in subjects from the UK Biobank.5 An enrichment in pathogenic 
APOB variants has also been detected in MASLD- HCC patients.6 
Here, we report how a heterozygous mutation of APOB, combined 
with two frequent MASLD- related SNPs (PNPLA3 and TM6SF2), co- 
segregates with a steatotic liver disease (SLD) phenotype evolving 
towards cirrhosis and HCC in a pedigree of 11 members.

The proband was a 55- year- old man referred to our liver trans-
plantation centre for HCC developed on cryptogenic cirrhosis. The 
patient had no previous medical records or history of alcohol abuse. 
All the following values were normal: ceruloplasmin, serum and 
24- h urine copper; lysosomal acid lipase. At the time of diagnosis, 

his body mass index (BMI) was 23.9 kg/m2. He was tested negative 
for all viral hepatitis, iron overload and autoimmunity. Low- density 
lipoprotein cholesterol serum concentration was below the 5th per-
centile for age and sex. Liver histology revealed liver cirrhosis with 
mild micro-  and macro- vesicular steatosis in 10% of hepatocytes 
with a moderate parenchymal lymphoplasmacytic inflammatory 
infiltrate.

The brother of the proband was transplanted 2 years earlier at 
the age of 57 for a multifocal HCC developed on cryptogenic cirrho-
sis. He had no features of metabolic syndrome except overweight 
(BMI 27.1 kg/m2) and no excessive alcohol consumption. Liver ex-
plant analysis showed four HCCS developed in a macronodular cir-
rhosis with hepatocellular ballooning but no steatosis.

The patient was suspected of heterozygous familial hypobetalip-
roteinemia (Hz- FHBL- SD2). The family pedigree includes one sister, 
one half- brother and eight children from this sibling (Figure 1). The 
patients were recruited in Lyon (GENELIP/ASAP cohort study; clini-
cal trial registration number: NCT03939039). Written informed con-
sent from the proband and family members was obtained, according 
to French bioethical laws. The study was carried out according to 
the Code of Ethics of the World Medical Association (Declaration 
of Helsinki) and obtained the agreement of the Ethics Committee of 

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2024 The Authors. Liver International published by John Wiley & Sons Ltd.

Abbreviations: BMI, body mass index; FHBL- SD2, familial hypobetaliproteinemia; HBL, hypobetaliproteinemia; HCC, hepatocellular carcinoma; HDL, high- density lipoprotein 
cholesterol; Hz- FHBL- SD2, heterozygous familial hypobetaliproteinemia; LDL- C, low- density lipoprotein cholesterol; LSM, liver stiffness measurement; MASLD, metabolic dysfunction- 
associated steatotic liver disease; SLD, steatotic liver disease; SNP, single nucleotide polymorphism; TC, total cholesterol; TG, triglycerides.

F I G U R E  1  Family pedigree with 
clinical and biochemical data. Arrow: 
index case. Members carrying the APOB 
mutation are represented with a green- 
filled symbol. The grey- filled symbol 
represents the I148M PNPLA3 carriers (at 
the heterozygous or homozygous state) 
and the blue- filled symbol indicates the 
presence of the minor allele of TM6SF2 
(E167K).
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the ‘Commission Nationale de l'Informatique et des Libertés’ (CNIL) 
(N° 920 434).

Venous blood samples were collected after an overnight fast. 
Serum total cholesterol (TC), high- density lipoprotein cholesterol 
(HDL) cholesterol triglyceride, and ApoB concentrations were mea-
sured using commercial kits. Low- density lipoprotein cholesterol was 
calculated with the Friedewald equation. Imaging (ultrasound and tran-
sient elastography using Fibroscan®) was performed systematically for 
all offspring. Histological analysis (liver biopsy and/or explant analysis) 
was available in the proband and his older brother only. Fibrosis grade 
was assessed by Masson trichrome and Sirius red staining. Genomic 
DNA was isolated from 5 mL of EDTA- anticoagulated blood of all 
family members. Exons and intron–exon junctions of APOB, PCSK9 
and ANGPTL3 were sequenced using the DysliSEQ custom NGS 
panel. Rare variants were confirmed by Sanger sequencing. Previously 
reported SNPs of PNPLA3 (rs738409, NM_025225.3:c.444C>G 
p.[Ile148Met]), TM6SF2 (rs58542926, NM_001001524.3:c.499G>A 
p.[Glu167Lys]), GCKR (rs1260326, P446L), MBOAT7 (rs641738, C>T) 
and HSD17B13 (rs72613567) were sequenced. PRS- HFC and PRS- 5 
were calculated using the previously published formulas.7,8

The diagnosis of Hz- FHBL- SD2 was confirmed in the proband, 
revealing a heterozygous pathogenic nonsense mutation of APOB 
(c.7600C>T, p.[Arg2534*]) with a 55.5% truncated protein. This mu-
tation, previously associated with FHBL- SD2 and liver steatosis,9 ex-
plained the low LDL- cholesterol concentrations. No mutation was 
identified in the PCSK9 and ANGPTL3 genes. PNPLA3 sequencing 
revealed the presence of four SNPs on exon 3, including the p.Ile-
148Met in a homozygous state. TM6SF2 sequencing revealed the 
minor allele for p.Glu167Lys at the heterozygous state. Robust poly-
genic risk scores indicated a high risk of HCC in case of MASLD (PRS- 
HFC and PRS- 5 both at .934).7 A complete lipid profile and genotypic 
analysis were performed on all family members (one sister, one 
brother and eight children from this sibling). Hz- FHBL- SD2 was di-
agnosed in the brother, two of his daughters and his nephew. All the 
children and the brother of the proband carried the PNPLA3 poly-
morphism, but only one of his daughters (II- 2) displayed the TM6SF2 
variant (Figure 1). The APOB mutation segregated with low TC and 
LDL- cholesterol levels, <5th percentile for age and sex (Table 1).

The proband underwent liver transplantation, and the graft was 
functional with no HCC or steatosis recurrence on imaging follow- up 
5 years after liver transplantation, as for his brother. Low- density li-
poprotein cholesterol and ApoB levels normalized after liver trans-
plantation in both (Table 1).

Regarding the other family members, the three carrying the 
APOB mutation were all aged <30 years. Two had steatosis based on 
controlled attenuation parameter (CAP), including one with elevated 
liver stiffness measurement (LSM) and abnormal liver function tests. 
The 69- year- old sister, carrying only the I148M PNPLA3 variant, 
showed isolated steatosis with normal LSM (Table 1). In the absence 
of detailed recommendations, in the patients carrying the APOB 
mutation a monitoring of plasma vitamin E concentration and a fol-
low- up with LSM and US was proposed with a frequency adjusted 
according to the APOB and the PNPLA3 and TM6SF2 genotype.

FHBL represents a clinically complex and heterogeneous group 
of disorders characterized by a decrease of LDL- cholesterol and 
ApoB concentrations below the 5th age-  and sex- specific percentile.9 
Among monogenic inherited FHBLs, the most frequent is FHBL- SD2, 
caused by pathogenic variants in the APOB gene. Apolipoprotein B 
encodes the principal protein responsible for the assembly and se-
cretion of very low- density lipoproteins (VLDL) and chylomicrons. 
A loss- of- function mutation of APOB results in liver steatosis and 
may lead to impaired intestinal absorption of fatty acids and antiox-
idant lipophilic vitamins when the size of truncated APOB is below 
48%.4 Homozygous or compound heterozygous mutations of APOB 
(bi- allelic FHBL- SD2) lead to a severe phenotype, present from birth, 
associating steatorrhea, failure to thrive with hepatomegaly and ste-
atosis.9 However, depending on the size of the truncated protein, 
FHBL- SD2 is sometimes diagnosed later and liver abnormalities can 
be isolated, even in bi- allelic FHBL- SD2.4 Conversely, Hz- FHBL- SD2 
patients are often asymptomatic, identified in the setting of routine 
lipid profiling. However, an increased incidence liver steatosis and 
the occurrence of cryptogenic cirrhosis have been described in Hz- 
FHBL- SD2 adults with short truncated ApoB.8,10

The risk of MASLD attributable to genetics is estimated at around 
50% and is involved at all stages of the natural history of the disease, 
particularly fibrosis progression and HCC development (reviewed in 
11). The PNPLA3 I148M variant is the principal contributor to genetic 
susceptibility in MASLD onset and progression.11 Other genes such as 
TM6SF2, MBOAT7, GCKR or HSD17B137,11 have also been reported. 
While the molecular mechanisms underlying the association of APOB 
heterozygous mutation with cirrhosis and HCC are unclear, PNPLA3 
and TM6SF2 have been demonstrated to promote fibrogenesis and 
carcinogenesis in MASLD patients.11 Since our patients had none 
of the classical components of the metabolic syndrome, the combi-
nation of heterozygous APOB mutation with PNPLA3 and TM6SF2 
pathological variants has likely promoted steatosis, cirrhosis and HCC. 
If the genetic screening of common SNPs involved in MASLD is still 
not recommended, a complete lipid profile including ApoB dosage 
seems mandatory in cryptogenic SLD. Indeed, since the frequency of 
pathogenic APOB mutations has been estimated between 1:700 and 
1:3000, FHBL- SD2 may be underdiagnosed and participate in SLD de-
velopment and progression notably in patients without metabolic syn-
drome components as recently suggested by others.12,13 Lipid profiles 
need to be evaluated with caution in cirrhotic patients knowing that 
low LDLc and HDLc serum levels may be related to liver failure.

In conclusion, we show how a heterozygous nonsense muta-
tion of the APOB gene may result in the development of steatosis, 
cirrhosis and HCC when associated with common genetic variants 
(PNPLA3 and TM6SF2). We also describe one of the few reported 
cases of liver transplantation for FHBL- SD2 and confirm the feasi-
bility and efficacy of this treatment to cure both the underlying liver 
disease and the dyslipidaemia. Finally, our study highlights the bene-
fits of genetic analysis in cryptogenic cirrhosis and atypical cases of 
MASLD. The identification of SLD related to APOB deleterious vari-
ants must lead to family screening and careful monitoring of these 
patients at high risk of fibrosis progression.
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