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Jean-Marie Boher,2 Josée Hébert,8 Guy Sauvageau,5 Norbert Vey,1 Jürg Schwaller,9 Marie-Anne Hospital,10 Cyril Fauriat,1 and
Michel Aurrand-Lions1

1Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe Labellisée Ligue 2020, Marseille, France; 2Département de la Recherche Clinique et de
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Key Points

• The AP-1/TNF-α
transcriptional program
is upregulated in MLL-
AF9–driven leukemic
cells originating from
JAM-C deleted mouse.

• Stratification of
patients with AML
using LSC score
(LSC-17) is improved
by the score
associated with AP-1/
TNF-α gene signature.
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The leukemic stem cell (LSC) score LSC-17 based on a stemness–related gene expression

signature is an indicator of poor disease outcome in acute myeloid leukemia (AML).

However, it is not known whether “niche anchoring” of LSC affects disease evolution. To

address this issue, we conditionally inactivated the adhesion molecule JAM-C (Junctional

Adhesion Molecule-C) expressed by hematopoietic stem cells (HSCs) and LSCs in an

inducible mixed-lineage leukemia (iMLL)-AF9–driven AML mouse model. Deletion of Jam3

(encoding JAM-C) before induction of the leukemia–initiating iMLL-AF9 fusion resulted in a

shift from long-term to short-term HSC expansion, without affecting disease initiation and

progression. In vitro experiments showed that JAM-C controlled leukemic cell nesting

irrespective of the bone marrow stromal cells used. RNA sequencing performed on

leukemic HSCs isolated from diseased mice revealed that genes upregulated in Jam3-

deficient animals belonged to activation protein-1 (AP-1) and tumor necrosis factor α
(TNF-α)/NF-κB pathways. Human orthologs of dysregulated genes allowed to identify a score

that was distinct from, and complementary to, the LSC-17 score. Substratification of patients

with AML using LSC-17 and AP-1/TNF-α genes signature defined 4 groups with median

survival ranging from <1 year to a median of “not reached” after 8 years. Finally, coculture

experiments showed that AP-1 activation in leukemic cells was dependent on the nature of

stromal cells. Altogether, our results identify the AP-1/TNF-α gene signature as a proxy of

LSC anchoring in bone marrow niches, which improves the prognostic value of the LSC-17

score. This trial was registered at www.ClinicalTrials.gov as #NCT02320656.
r 2024
19 June 2024; prepublished online on
inal version published online 30 August
s.2023011747.

xpression Omnibus database (accession

request from the corresponding author,
inserm.fr).

The full-text version of this article contains a data supplement.
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Introduction

Acute myeloid leukemia (AML) is a heterogeneous disease that
originates from genetic alterations and clonal expansion of
hematopoietic stem and progenitor cells (HSPCs). The organiza-
tion of leukemic cells in AML is similar to normal hematopoiesis with
leukemic stem cells (LSCs) at the apex that can reconstitute the
clonal heterogeneity of AML disease in xenograft experiments.1

LSCs are thought to be involved in AML relapse and enriched
within, but not restricted to the CD34+/CD38− phenotypic
compartment.2,3 Additional LSCs markers have thus been
described including CD123, CD44, CLL1, CD96, CD47, TIM-3,
CD32, CD25, IL1RAP, CD33, CD93, CD98, CD99, CD117,
GPR56/ADGRG1, and JAM-C.3-18 However, none of them, used
alone or in combination, is necessary or sufficient to identify pure
population of cells with leukemic initiating activity within or across
patient samples, merely reflecting the heterogeneity of LSC in
AML.19,20 This prompted several teams to search for proxies
reflecting the abundance of cells with leukemia-initiating activity
that may predict disease outcome. Several gene expression sig-
natures have been associated with poor prognosis21-23 and some
of them relied on increased frequencies of primitive quiescent
LSCs in AML.12,24-26 Among them, the leukemic stemness LSC-17
score represents 1 of the most robust LSC gene expression sig-
natures, showing that the cellular hierarchy influences the overall
characteristics of AML.27 Other experimental approaches to iden-
tify hallmarks of LSCs comprised deciphering cellular heteroge-
neity of AML disease using single-cell RNA sequencing.28-30 This
allowed for the identification of differentially expressed genes
(DEGs) in hematopoietic stem cell (HSC)–like cells as compared
with more mature leukemic cells, some of which (MMRN1, CD34,
SOCS2, SMIM24, FAM30A, and CDK6) are also included in the
leukemic stemness LSC-17 score. Finally, modeling AML disease
in mice identified features of leukemia-initiating cells.31 Expression
of the mixed-lineage leukemia (MLL)-AF9 gene fusion induced
transformation of HSPCs, which were able to reconstitute the
disease.32 Further studies using Mll-AF9 heterozygous knockin
mice33 demonstrated that the most aggressive leukemia originated
in HSCs rather than in more mature granulocyte/monocyte
progenitors (GMPs).34-36 More recently, study of the inducible
MLL-AF9 (iMLL-AF9) model revealed that aggressiveness was
correlated with high HSC expression of genes related to epithelial
mesenchymal transition or cell adhesion.37 This was consistent
with our finding showing that human LSC (CD45dimCD34+C-
D38lowCD123+) expressing the adhesion molecule JAM-C (Junc-
tional Adhesion Molecule-C, encoded by JAM3) also expressed
high levels of ALCAM or ITGA6, and that high frequency of JAM-
C–expressing cells at diagnosis was associated with poor disease
outcome.4 These results suggest, but do not prove, that LSC
adhesion to the surrounding bone marrow stromal cells (BMSCs)
plays a role in AML disease initiation and outcome.

To model loss of LSC adhesion anchoring to BMSCs, we crossed
conditional Jam3-deficient mice with the iMLL-AF9 leukemia
model. Although Jam3 deficiency did not delay disease evolution,
we found upregulation of genes belonging to activation protein-1
(AP-1) and tumor necrosis factor α (TNF-α) pathways in Jam3-
deleted LSCs as compared with control leukemic animals. Trans-
position of the results to the human disease allowed to define a
10 SEPTEMBER 2024 • VOLUME 8, NUMBER 17
new prognosis score called ATIC (AP-1/TNF-α initiating cells) that
is complementary and distinct from the LSC-17 score.

Methods

Human samples

Human peripheral blood samples were collected with informed
consent in the frame of NCT02320656 clinical trial according to
the procedure approved by the institutional review board of Institut
Paoli-Calmettes as sponsor of the study. Vials were thawed in, and
thereafter washed in, RPMI 1640 containing 30% fetal calf serum
(FCS), 1% penicillin/streptomycin, 100 U/mL DNase, and 10 U/mL
of heparin. Dead cells were removed by layering 1 mL of cell
suspension onto 2 mL of Ficoll followed by centrifugation for
20 minutes at 2000 RPM, after which cells were washed and
maintained in RPMI 1640 containing 10% FCS and 1% penicillin/
streptomycin until further use.

Mice experiments

iMLL-AF9 mice were crossed with Mx1-Cre Jam3fl/fl mice. Jam3fl/fl

mice have been described previously.38 All experiments were
performed in compliance with the laws and protocols approved by
animal ethics committees. Baseline white blood cell count (WBC)
was assessed on day 0 in iMLL Jam3fl/fl mice, and Jam3 gene
deletion was induced by 3 intraperitoneal injections of 200 μg poly
(I:C) (polyinosinic-polycytidylic acid; InvivoGen) on day 1, 3, and 5.
Doxycycline (DOX; 400 μg/mL; Sigma) was provided in drinking
water supplemented with 5% sucrose, 9 days after the last poly
(I:C) injection. Leukemic burden was monitored weekly after WBC
(ProCyte Dx Hematology Analyzer, IDEXX Laboratories).

Flow cytometry and cell sorting

Human samples were stained with antibodies described in
supplemental Table 1 in phosphate-buffered saline containing
0.5 mM EDTA and 2% FCS (30 minutes at 4◦C), washed, and
processed for analysis. Mouse samples recovered from the femur
and tibia were treated with 1× red blood cell lysing buffer (eBio-
science) and stained with antibodies described in supplemental
Table 1. Fluorescence-activated cell sorting analysis was per-
formed on LSRII (BD Biosciences) or Aurora (Cytek). Cell sorting
was performed using FACSAria III (BD Biosciences). Data were
analyzed using DIVA version 8.01 (BD Biosciences) or OMIQ
(OMIQ Inc).

RNA sequencing

HSCs and GMPs were directly sorted in RLT buffer from a
messenger RNA (mRNA) purification kit using the RNeasy micro kit
(QIAGEN). Samples were sent to the GenomEast platform (Illkirch,
France). Libraries were paired-end sequenced (2 × 100 base
pairs) on a Hiseq4000 system (Illumina).

Nanostring assay

Total mRNA from patient samples extracted using the RNeasy mini
kit (QIAGEN) were hybridized with our custom nCounter Nano-
string Code Set (supplemental Table 2) according to manufacturer
instructions. Results were normalized using nSolver software
(version 4.0), and log2 transformed values were used for LSC-17
score calculation.
JAM-C–DEPENDENT SCORE FOR AML STRATIFICATION 4663
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Figure 1. Expression of LSC markers in AML. (A) Pearson correlation analysis of genes encoding known AML LSC markers in 3 independent cohorts. Color and size

represent the direction and the magnitude of the correlation, respectively. Only correlations with P < .05 are shown. (B) Scatter plots showing the relationship between JAM3 and

GPR56 mRNA expression for individual samples of the indicated cohort. Pearson correlation and P value are shown. (C) Uniform manifold approximation and projection (UMAP)
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Statistical analysis

Statistical analysis was performed using GraphPad 6 software and
error bars represent the mean ± standard error of the mean.
Normality was assayed using D’Agostino and Pearson omnibus
normality test and samples were compared with a Mann-Whitney U
test when normality was not reached. *P < .05; **P < .01; and
***P < .001.

Publicly available data sets used for model training

and validation

Publicly available mRNA sequencing data sets from the TCGA and
OHSU cohort (also known as BEAT AML cohort39) were retrieved
from cBioPortal using the CGDS-R package. The Leucegene data
set was retrieved from Gene Expression Omnibus data repository
(accession number GSE67040) and merged with clinical annota-
tions. The 3 cohorts were assembled in a single matrix of gene
expression, scaled, centered and half-split in training and validation
cohorts. The ATIC score was established as the weighted sum of
14 gene expression as follow: ATIC score = (−0.02537109 ×
JAM3) + (−0.03654864 × DUSP1) + (−0.007206288 ×
RGS1) + (0.008025696 × H2BC8) + (−0.01143364 ×
NFKBID) + (−0.00423489 × ZFP36) + (−0.05511406 ×
SLFN12) + (−0.3608987 × GAS5) + (0.1012163 × RPP25L) +
(0.05303331 × HEY1) + (−0.01449147 × GIMAP4) +
(0.09348158 × EFCAB11) + (−0.03832157 × CCL4) +
(−0.01028905 × MYCN). The gene expression data set from the
HOVON/SAKK cohort (662 adult AML cases) was retrieved from
the ArrayExpress database (accession number E-MTAB-3444) and
gcrma maxVar expression values were used to calculate LSC-17
and ATIC scores.

Coculture experiments

For coculture experiments, 1 × 106 HS-5 or 8 × 105 HS-27
stromal cells were plated in 6-wells plates. Two days later,
SKM1JAM-C+ or SKM1JAM-C− cells were respectively labeled with
calcein AM (C3100MP, ThermoFisher) and calcein red orange AM
(C34851, ThermoFisher) for 30 minutes in phosphate-buffered
saline, washed, mixed 1:1, and overlayed (2 × 106 cells) onto the
stromal monolayers. After 7 hours of coculture, nonadherent,
adherent, and nested cells were respectively collected by gentle
aspiration, flushing, and trypsin digestion before analysis by flow
cytometry. Leukemic cells were gated using CD45 staining (cata-
log no. 564357, BD) and results were expressed as ratios of cal-
cein AM (SKM1JAM-C+) and calcein red orange (SKM1JAM-C−) cells.

Cell transduction

Lentiviral particles containing mock or AP-1–green fluorescent
protein (GFP) reporter (TR411VA-P and TR452VA-P, respectively;
System Biosciences) were transduced in SKM1JAM-C+ or
SKM1JAM-C−. Cells were mixed with viral vectors at the multiplicity
of infection of 10 (MOI 10) and 8 μg/mL of Polybrene before spi-
noculation at 1500g over 45 minutes. After 48 hours, transduced
cells were selected with 0.6 μg/mL of puromycin for 7 days. AP-1
Figure 1 (continued) plots of flow cytometry results showing expression of the indicated

cells are shown. (D) Histogram showing the frequency of cells expressing JAM-C (left pan

CD34 and CD38 expression. (E) Histogram showing the frequency of JAM-C–expressing c

and CD34 expression as described in Pabst et al.17 Data are represented with mean ± sta
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reporter expression was confirmed by stimulation with 20 ng/mL
phorbol myristate acetate (PMA) for 24 hours, and analyzed by flow
cytometry.

Results

JAM-C identifies a subset of LSCs

To address the phenotypic heterogeneity of LSCs, we conducted a
correlation study of “LSC marker” gene expression across 3
cohorts of patients with AML (OHSU, TCGA, Leucegene).39-41

Correlated expression between GPR56 and JAM-C or CD93
and CD32 were systematically found, whereas correlation between
other “LSC markers” varied from cohort to cohort (Figure 1A). We
thus focused on GPR56 and JAM-C markers, which were highly
significantly correlated (Figure 1B). Both markers were tested by
flow cytometry in combination with live-dead, CD34, CD38, CD41,
CD123, CD33, and CD45 in 62 blood samples from patients with
AML (Table 1). Uniform manifold approximation and projection42

analysis of JAM-C–expressing cells showed that most of the cells
belonged to the CD34+/GPR56+/CD38−/low compartment
(Figure 1C). Conversely, GPR56+ cells expressed various levels of
CD34, CD38, and JAM-C (supplemental Figure 1A), and higher
frequencies of JAM-C+/GPR56+ cells were found in the
CD34+CD38−/low most-immature compartment (Figure 1D). JAM-
C–expressing cells represented <1% of GPR56+ cells and were
almost absent from the most-mature CD34−GPR56− compartment
(Figure 1E). Because GPR56 gene expression is contributing to
the LSC-17 score, we tested whether JAM3 expression was
associated with the LSC-17 score. Results showed that JAM3
(encoding JAM-C) and GPR56 expression were significantly higher
in samples belonging to the LSC-17High group (supplemental
Figure 1B).

Genetic deletion of JAM-C before leukemic

onset alters HSPC expansion driven by iMLL-AF9

expression

To test whether JAM-C plays a role in the LSC transcriptional
program, we established a mouse model in which conditional
knock out of Jam3 can be achieved before leukemic initiation.
iMLL-AF9 mice were crossed with Mx1-Cre/Jam3fl/fl mice resulting
in iMLL-AF9/Mx1-Cre/Jam3fl/fl mice (called iMLL Jam3fl/fl here-
after). Deletion of Jam3 in hematopoietic cells was induced upon
poly (I:C) injection, and AML was initiated by DOX-induced MLL-
AF9.37 Leukemia burden was measured by WBC and experiments
were stopped when a value of 30 x 103 cells per μL was reached
(Figure 2A; supplemental Figure 2A). JAM-C expression was not
altered by leukemic transformation and efficient deletion of JAM-C
in leukemic long-term (LT) HSCs (L-LT-HSCs), leukemic short-term
(ST) HSCs (L-ST-HSC), and leukemic multipotent progenitors-3
(L-MPP-3) was observed upon poly (I:C) treatment (Figure 2B).
Jam3 deletion and loss of JAM-C protein expression were already
achieved at the time of DOX induction, as shown by quantitative
reverse transcription polymerase chain reaction and flow cytometry
markers by JAM-C–expressing cells obtained from 62 concatenated samples; 7258

el) or GPR56 (right panel) within the indicated phenotypic compartment defined by

ells within the indicated phenotypic compartment defined by combination of GPR56

ndard error of the mean (SEM); ns, not significant; *P < .05; **P < .01; ***P < .001.
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Table 1. Flow cytometry sample characteristics

ID Diagnosis FAB Karyotype WBC (x109/L)

Patient no. 1 De novo M4 47,XX,+8[20] 9.6

Patient no. 2 De novo M2 46,XX,T(8;21)(Q22;Q22)[6]/
46,IDEM,DEL(7)(Q21Q36)[13]/46,XX[1]

1.9

Patient no. 3 sAML (after MDS) M1 Complex monosomal 15.1

Patient no. 4 De novo Relapse M1 46,XX[20] 176.5

Patient no. 5 De novo M2 47,XX,+11[4]/46,XX[16] 2.3

Patient no. 6 De novo M1 46,XX[20] 86.3

Patient no. 7 De novo M4 45,X,-Y,T(8;21)(Q22;Q22)[20] 44.9

Patient no. 8 De novo M0 47,XY,+13[32]/46,XY[4] 1.4

Patient no. 9 sAML (after MDS) M2 46,XY,DEL(5)(31Q35)[15]/47,IDEM,+14[3]/46,XY[7] ND

Patient no. 10 De novo M1 46,XX[20] 8.7

Patient no. 11 De novo M2 46,XY[20] 1.5

Patient no. 12 De novo M2 Complex monosomal 17.4

Patient no. 13 De novo M4 46,XY[20] 7.3

Patient no. 14 De novo M4 Complex monosomal 11.2

Patient no. 15 De novo M2 46,XX,T(8;21)(Q22;Q22),T(11;17)(Q14;Q11-12)[20] 4.4

Patient no. 16 De novo M2 47,XX,+8[4]/46,XX[20] 2.9

Patient no. 17 sAML (after MPN) M0 46,XX,DEL(20)(Q11Q13)[2]/
46,IDEM,DEL(7)(Q22Q32)[15]/46,XX[3]

23.8

Patient no. 18 De novo NK Complex monosomal 11.4

Patient no. 19 sAML (after MDS) M1 46,XY[20] 59

Patient no. 20 De novo NK 47,XY,+8[21]/46,XY[1] 1.3

Patient no. 21 De novo M1 46,XY[20] 8.1

Patient no. 22 De novo M0 NK 1

Patient no. 23 De novo CMML 46,XY[20] 47.1

Patient no. 24 De novo M1 46,XX,DEL(7)(Q22Q36)[20] 8.6

Patient no. 25 De novo M4 Complex monosomal 10

Patient no. 26 De novo M5 46,XY,ADD(17)(P1?3)[14]/46,XY[8] 35

Patient no. 27 De novo NK 46,XY[20] 5.5

Patient no. 28 De novo NK 46,XX[20] 0.5

Patient no. 29 De novo M1 Complex 2.4

Patient no. 30 De novo M1 47,XX,+10[37]/46,IDEM,DEL(9)(Q12Q32)[3] 136.9

Patient no. 31 De novo M4 46,XY[20] 18.8

Patient no. 32 De novo M0 46,XY[40] 185

Patient no. 33 De novo M6 46,XY,INV(3)(Q21Q26)[20] 17.6

Patient no. 34 De novo M5 Complex 80.2

Patient no. 35 De novo M1 47,XX,+21[10]/46,XX[11] 6.7

Patient no. 36 De novo M0 46,XY,?T(3;7;5)(P24;Q36;Q14)[20] 66

Patient no. 37 De novo M0 46,XX[30] 2

Patient no. 38 De novo M4 46,XY,INV(16)(P13Q22)[20] 29.7

Patient no. 39 sAML (after MDS) M2 46,XY[20] 5.6

Patient no. 40 De novo M2 46,XX[20] 3.2

Patient no. 41 De novo M1 Complex monosomal 1

Patient no. 42 De novo M0 45,XX,-7,DER(21)T(7;21)(P11;P11)[20] 2.8

Patient no. 43 De novo M1 46,XX[20] 51.6

Patient no. 44 De novo M4 Complex monosomal 23.4

Patient no. 45 De novo M0 Complex monosomal 2.5

FAB, French-American-British classification; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; NK, Not Known; ND, Not Determined; sAML, secondary AML.
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Table 1 (continued)

ID Diagnosis FAB Karyotype WBC (x109/L)

Patient no. 46 De novo M5 46,XY,T(9;11)(P21-22;Q23)[20] 169.9

Patient no. 47 sAML (after MPN) M0 46,XY,DEL(7)(Q22Q36)[21]/46,IDEM,I(21)(Q10)[2] 5.2

Patient no. 48 De novo M5 46,XY,T(6;9)(P22;Q34)[20] 41.8

Patient no. 49 De novo M1 46,XX[20] 21.8

Patient no. 50 De novo M5 46,XX,T(11;17)(Q23;Q12-21)[2]/47,IDEM,?
DEL(11)(Q23 OR Q22Q24-)+21[20]

54.1

Patient no. 51 De novo M2 46,XY[20] 3.32

Patient no. 52 De novo M4 46,XX[20] 19.1

Patient no. 53 De novo M2 46,XX[20] 3.9

Patient no. 54 De novo M2 46,XY[20] 48.9

Patient no. 55 De novo M2 46,XX[20] 6.9

Patient no. 56 De novo NK Complex monosomal 17.5

Patient no. 57 De novo M5 47,XY,+21[21]/46,XY[1] 29

Patient no. 58 De novo M2 45,XY,-7[3]/46,XY[17] 146

Patient no. 59 De novo M4 Complex monosomal 2.5

Patient no. 60 Patient no. 14 relapse

Patient no. 61 Patient no. 31 relapse

Patient no. 62 Patient no. 40 relapse

FAB, French-American-British classification; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm; NK, Not Known; ND, Not Determined; sAML, secondary AML.
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(Figure 2C; supplemental Figure 2B). Similar WBC increase was
observed in iMLL Jam3ko/ko or iMLL Jam3fl/fl leukemic mice as
compared with nonleukemic animals (Figure 2D). Increase in red
blood cells distribution width values, which preceded that of WBC
as described in humans,43 confirmed similar leukemia progression
in Jam3–proficient and –deficient leukemic mice (Figure 2E).

Previous reports have shown that MLL-AF9–driven leukemia-
initiating cells are found in the L-LT-HSC and leukemic GMP
(L-GMP) compartments.32,37,44 Early hematopoietic changes in
nonleukemic and leukemic iMLL Jam3fl/fl and iMLL Jam3ko/ko mice
was thus analyzed by flow cytometry using the gating strategy
described in supplemental Figure 2C.45 As previously reported,37

we found a twofold reduction in the frequency of Lin–Sca+Kit+

cells (LSK) in leukemic mice as compared with healthy animals
regardless of JAM-C expression (Figure 2F). Within the LSK
compartment, expansion of the L-LT-HSC compartment in
diseased mice as compared with healthy controls was JAM-C
dependent (Figure 2G). In contrast, expansion of the L-ST-HSC
compartment observed in diseased animals was even further
increased in Jam3–deficient leukemic mice, reaching >60% of the
LSK compartment (Figure 2H). This was at the expense of L-MPP-
2, -3 and -4 (supplemental Figure 2D). The twofold expansion of
the L-GMP compartment observed in Jam3–proficient leukemic
mice as compared with healthy animals was abolished in Jam3–
deficient leukemic mice (Figure 2I). Uniform manifold approximation
and projection analysis confirmed that expansion of L-LT-HSCs, L-
ST-HSCs, and L-GMPs observed in iMLL-AF9 Jam3fl/fl mice was
replaced by expansion of a common myeloid progenitor–like
compartment in Jam3–deficient leukemic mice (Figure 2J;
supplemental Figure 2E).

To avoid interindividual variability of leukemic onset (supplemental
Figure 2A), we performed adoptive transfer experiments. Lethally
10 SEPTEMBER 2024 • VOLUME 8, NUMBER 17
irradiated recipients received transplantation with 106 bone marrow
(BM) cells from noninduced naive iMLL-AF9 mice, and Jam3 dele-
tion was induced before or after DOX exposure. The first group
received poly (I:C) 1 day after grafting and rested for 2 weeks before
DOX induction, group: poly (I:C) -> DOX; whereas the second
group was continuously treated with DOX starting on day 1 and
received poly (I:C) after 2 weeks, group: DOX -> poly (I:C). We
observed a trend toward faster progression of the disease in the
group poly (I:C) -> DOX than in the DOX -> poly(I:C), with 3 of 4
mice reaching the end point after 7 weeks of DOX treatment. In
contrast, the 3 mice from DOX -> poly (I:C) progressed after
10 weeks (supplemental Figure 3A-B). At end point, the nature of
circulating blasts and infiltration of leukemic cells in the liver or
spleen were similar between the groups (supplemental Figure 3C-F).
In contrast, nonsupervized flow cytometry analysis of Lin–Kit+ (LK)
HSPCs highlighted differences in BM content between the groups
at end point. Nonleukemic, nonirradiated BM samples were included
in the analysis as control. Unsupervised clustering revealed 6 clus-
ters, with the clusters 1 to 5 being underrepresented in the DOX ->
poly (I:C) group (Figure 3A). Clusters 1 to 5 contained LSKs
whereas cluster 6 corresponded to LK cells lacking Sca-1 expres-
sion. L-LT-HSCs and L-ST-HSCs were respectively enriched in
cluster 1 and 2, as illustrated by the expression profiles of Sca-1,
CD150, CD135, CD48, and CD34 in these 2 clusters
(Figure 3B). Clusters 3, 4, and 5 corresponded to MPP-2, MPP-3,
and MPP-4, respectively. The proportion of cells in cluster 2, 3, and
4 was greatly increased in the poly (I:C) -> DOX group compared
with DOX -> poly (I:C) indicating that deletion of JAM-C before
leukemic induction has a profound effect on early steps of hema-
topoiesis. Finally, LK cells in the poly (I:C) -> DOX group showed a
trend toward increased CD117 expression and reduced CD16/32
as compared with the DOX -> poly (I:C) group consistent with
increased leukemic common myeloid progenitor–like expansion.
JAM-C–DEPENDENT SCORE FOR AML STRATIFICATION 4667
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Figure 2. Conditional deletion of Jam3 in HSPCs before leukemic onset exacerbates imbalanced hematopoiesis in an iMLL-AF9 mouse model. (A) Scheme

illustrating the experimental procedure used for generation and analysis of conditional Jam3–deficient leukemic mice (iMLL Jam3ko/ko), wild-type leukemic mice (iMLL Jam3fl/fl), or

nonleukemic control wild-type mice. (B) Graph showing the mean of fluorescence intensity (MFI) of JAM-C on indicated hematopoietic subsets isolated from the BM at end point.

Results are shown for nonleukemic (filled circles), leukemic Jam3-proficient (empty squares), and Jam3-deficient animals (filled squares). (C) Graph showing the fold change in

transcriptional expression of actin (Actb) and Jam3, 9 days after the last poly (I:C) injection at the time of leukemia induction with DOX. (D) Graph showing evolution of WBC in

indicated group of animals. Time scale is normalized to end point. (E) Graph showing evolution of red cell distribution width (RDW) in indicated group of animals. (F-I) Graphs
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Figure 3. Jam3 conditional deletion before or after leukemic onset changes proportions of leukemic stem and progenitor cells. (A) UMAP projection of Lin−/c-Kit+

cells isolated from nonleukemic engrafted mice (nonleukemic) and from grafted mice treated sequentially with poly (I:C) followed by DOX (poly (I:C) -> DOX group); or treated
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Jam3 deletion rewires the AP-1/TNF-α/NF-κB
transcriptional network

To identify molecular mechanisms by which JAM-C regulates L-
ST-HSC expansion, we performed bulk mRNA sequencing on L-
HSCs (L-HSPC/CD48–) and L-GMPs isolated from the BM of
Jam3–proficient and Jam3–deficient diseased mice. All animals
were treated with poly (I:C) before leukemia initiation by DOX. A
total of 53 genes were upregulated in L-HSCs isolated from
Jam3–deficient leukemic mice, whereas only 11 genes, including
Jam3, were significantly downregulated (Figure 4A; supplemental
Table 3). In L-GMPs isolated from Jam3–deficient leukemic mice,
Figure 2 (continued) showing the relative frequencies of LSKs (F), LT-HSCs (G), ST-HS

Jam3-proficient (empty squares), and Jam3-deficient animals (filled squares). (J) UMAP pr

Jam3fl/fl (middle panel), or iMLL Jam3ko/ko mice (right panel). Cell populations are color co

adjusted to 2907 cells in all panels. Data are represented with mean ± SEM; ns, not sign

megakaryocyte-erythrocyte progenitor; MPP, multipotent progenitor.

10 SEPTEMBER 2024 • VOLUME 8, NUMBER 17
we also observed upregulated genes although the cells did not
express JAM-C (Figure 4B).46,47 Gene set enrichment analysis
revealed enrichment of pathways related to cell-cell adhesion,
TNF-α signaling via NF-κB and AP-1 transcription factor in
L-HSCs isolated from leukemic Jam3-deficient mice (Figure 4C).
The comparison of DEGs between Jam3–deficient and –proficient
leukemic mice highlighted upregulation of several AP-1 family
transcription factors including Jun, Fos, Junb, and Jund in
leukemic L-HSCs and L-GMPs isolated from Jam3-deficient mice
(Figure 4D; supplemental Figure 4). We then questioned whether
genes affected by JAM-C deletion allow identification of specific
LSC compartments in human AML. Notably, none of the DEGs
Cs (H), and GMPs (I) isolated from the BM of nonleukemic (filled circles), leukemic

ojection of Lin−/c-Kit+/Sca-1+/− cells isolated from nonleukemic (left panel), iMLL

ded according to fluorescence-activated cell sorting gating and downsampling is

ificant; *P < .05; **P < .01; ***P < .001. CMP, common myeloid progenitor; MEP,
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Figure 4. Jam3 deficiency before leukemic onset upregulates AP-1/TNF-α transcriptional network in HSPCs. (A) Volcano plot displaying DEGs between L-HSCs
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identified in L-HSC and L-GMP iMLL-AF9 AML were present in
the LSC-17 gene list (supplemental Table 4). In contrast, 25 of 56
DEGs found in our study were overexpressed by CD34+ AP-1High

leukemic blasts previously identified by single-cell transcriptomic
analysis of samples from patients with AML (Figure 4E).28 Our
observations suggest that JAM-C expression represses tran-
scription of genes from AP-1 and TNF-α pathways that have been
implicated in the transition between the preleukemic and leukemic
stage.48-50
4670 GRENIER et al
The AP-1/TNF-α signature substratifies patients with

LSC-17 scores and identifies patients with AML with

poor prognosis

To test whether the JAM-C–related differential AP-1/TNF-α signa-
ture may reflect a different cell of origin than those proposed by the
LSC-17 or the Epithelial-Mesenchymal-Transition (EMT)-related
gene expression signature of LT-HSC–derived iMLL-AF9 AML,
gene expression correlation was carried out with 3 independent
10 SEPTEMBER 2024 • VOLUME 8, NUMBER 17
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AML cohorts (TCGA, Leucegene, and OHSU). Irrespective of the
cohort, 2 major clusters of coregulated genes were identified and
named cluster I and cluster II, respectively (Figure 5A; supplemental
Figure 5). Cluster I contained JAM3, ZEB1, ITGA6, ERG, and genes
from the LSC-17 score including GPR56, DNMT3B, and NYNRIN
whereas genes belonging to the AP-1/TNF-α signature were mostly
found in cluster II. Gene expression data sets from the 3 cohorts
were thus assembled in a single mixed data set representing 871
patient samples to perform unsupervised clustering according to
expression of genes from the LSC-17 score and AP-1/TNF-α DEG
signature. Four groups of patients expressing inverse, high, or
intermediate levels of the 2 gene expression signatures were iden-
tified (Figure 5B). This raised the question whether patients stratified
by the LSC-17 score may be substratified by the AP-1/TNF-α DEG
signature. To address this, the mixed data set was equally split in
training and validation cohorts in order to define an ATIC score for
LSC-17 substratification. We used the least absolute shrinkage and
selection operator (LASSO) algorithm to relate expression of genes
from the AP-1/TNF-α signature to patient survival in the training
cohort using age and LSC-17 scores as offsets. LASSO was run on
2000 drawings of the training cohort. A weighted sum of gene
expression obtained from the LASSO algorithm was fed into a Cox
model to define a threshold for the ATIC score using either the
maximally selected rank and statistics (Max-Stat) method or the
10 SEPTEMBER 2024 • VOLUME 8, NUMBER 17
median value of the ATIC score. Quality of the different models was
then assessed according to the area under the curve, and accu-
racy of the 10 best models was tested with respect to median or
Max-Stat thresholding. We found that most of the patients were
classified as ATICHigh or ATICLow irrespective of the model
(supplemental Figure 6; classification occurrence = 10). Only few
patients were not repeatedly classified as high or low and had
classification occurrence different from 10. Using median thresh-
olding, 2 patients were classified 5 times as high and 5 times
as low, resulting in a classification occurrence value of
0 (supplemental Figure 6A), whereas 4 patients belonged to the
classification occurrence class 0 using Max-Stat thresholding
(supplemental Figure 6B). We therefore chose median thresh-
olding as the most robust method to calculate the ATIC score.
Among the selected models, the model with the highest area under
the curve and using genes detectable across all platforms (RNA
sequencing, nCounter Nanostring, and Affymetrix) allowed us to
define the ATIC score as the weighted sum of 14 genes (JAM3,
DUSP1, RGS1, H2BC8, NFKBID, ZFP36, SLFN12, GAS5,
RPP25L, HEY1, GIMAP4, EFCAB11, CCL4, and MYCN).

Combination of ATIC and LSC-17 scores identified patients with
a median survival not reached after 8 years of follow-up in the
ATICLow/LSC-17Low arm (Figure 6A; supplemental Figure 6C),
JAM-C–DEPENDENT SCORE FOR AML STRATIFICATION 4671
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whereas patients belonging to the ATICHigh/LSC-17High had a
median survival of <1 year. To confirm these results, we tested an
independent cohort of 662 adult AML cases for which gene
expression was measured using Affymetrix (HOVON cohort). ATIC
and LSC-17 scores were significantly associated with disease
outcome and respective median survival of 12.3 months for LSC-
17High, 132 months for LSC-17Low, 17.1 months for ATICHigh, and
31.1 months for ATICLow (supplemental Figure 6D-E). Despite the
excellent predictive value of the LSC-17 score in this cohort,
combination of the ATIC score with LSC-17 allowed us to
reclassify 139 cases with ATICHigh score in each of the LSC-17
groups (Figure 6B). ATICHigh/LSC-17High and ATICLow/LSC-
17Low scores were strongly associated with disease outcome with
respective median survival values of 10.6 months and not reached
4672 GRENIER et al
after 200 months. The fact that the ATIC score was obtained from
genes regulated upon JAM-C deletion in a mouse MLL-rearranged
(MLLr) model called into question whether the ATIC score was
specifically associated with known genetic classifiers of AML
outcome such as MLLr, TP53 mutation, or other. In the OHSU
cohort, patients with MLLr were enriched in the ATICHigh/
LSC17Low subgroup and associated with low expression of several
stemness genes such as KIAA0125, C19orf77, CPXM1,
AKR1C3, CD34, JAM3, or GPR56 (Figure 6C). CEBPA mutations
were exclusively found in the LSC17Low group. TP53-mutated AML
with myeloid-related changes were enriched in the LSC17High

group irrespective of ATIC score. Other AML with myeloid-related
changes distributed across all 4 groups, similar to AML with FLT3
and NPM1 mutations.
10 SEPTEMBER 2024 • VOLUME 8, NUMBER 17
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BMSCs control AP-1 activation whereas JAM-C

regulates leukemic cell nesting

Because the ATIC signature has been found after Jam3 deletion in
preleukemic cells and substratifies patients with different molecular
alterations, our data suggest that the ATIC score reveals stromal
cell–dependent disease heterogeneity. To test the functional
consequences of JAM-C expression by leukemic cells, we isolated
2 isogenic variants from the parental SKM-1 AML cell line, which
expressed JAM-C in a bimodal manner (supplemental Figure 7A).
Adhesion of the 2 variant cell lines to the BM stromal cell lines HS-
5 or HS-27 was tested upon coculture for 7 hours (supplemental
Figure 7B). SKM-1JAM-C+ cells were enriched in the nested frac-
tion irrespective of the stromal cell line, indicating that JAM-C
promotes leukemic cell retention under stromal cells (Figure 7A-
B). To further explore whether JAM-C controls AP-1 activation,
SKM-1 variant cell lines were transduced with AP-1 GFP reporter.
Activation of AP-1 reporter cell lines with phorbol myristate acetate
10 SEPTEMBER 2024 • VOLUME 8, NUMBER 17
induced GFP expression irrespective of JAM-C expression
(Figure 7C). Induction of the AP-1 GFP reporter was also observed
upon coculture of reporter cells with the HS-5 stromal cell line
irrespective of JAM-C expression (Figure 7D; supplemental
Figure 7C). In contrast, the AP-1 GFP reporter was not induced
upon coculture with the HS-27 cell line (Figure 7E; supplemental
Figure 7C), indicating that AP-1 activation depends on the nature
of the stromal cells.

Discussion

In this study, we explored the functional significance of JAM-C
expression by leukemic subsets in AML. We found that JAM-C
expression correlated with GPR56 and was enriched in the
group of samples belonging to the LSC-17High arm. This is
consistent with previous findings showing that JAM-C and
GPR56 identify human AML cells with high engraftment
capacity.4,17,51
JAM-C–DEPENDENT SCORE FOR AML STRATIFICATION 4673
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Enforced GPR56 expression has been shown to accelerate
leukemogenesis of HOXA9-transduced hematopoietic cells,
whereas silencing GPR56 expression delayed HOXA9/MEIS1-
induced AML development.52 However, this was independent of
GPR56 binding to collagen III,53 raising the question whether LSC
adhesion to BM microenvironment was involved in LSC mainte-
nance. Similarly, the function of JAM-C in leukemogenesis has
been addressed through MLL-AF9 retroviral transduction of Jam3–
proficient and Jam3–deficient progenitor cells.54 Results showed
that survival was slightly reduced in primary recipient mice receiving
Jam3–deficient leukemic cells, whereas it was increased in serial
transplants suggesting that JAM-C contributes to maintenance of
LSC self-renewal. This was attributed to cell intrinsic signaling
properties of JAM-C through its direct cis interaction with LRP5
because no defect in homing or adhesion to BMSCs was
observed. However, these 2 studies required adoptive transfer and
10 SEPTEMBER 2024 • VOLUME 8, NUMBER 17
did not address the role of in situ adhesive properties of GPR56 or
JAM-C at the time of leukemic transformation.

JAM-C is physiologically downregulated during normal hemato-
poiesis.47,55,56 Therefore, we thought that JAM-C deletion before
leukemic initiation may reveal changes in disease development or
gene expression occurring when the first hit takes place in non-
primitive HSC. Jam3 deletion before MLL-AF9 expression in situ
results in accumulation of L-ST-HSCs instead of L-LT-HSCs and L-
GMPs.37 Such phenotypic alterations are correlated with
increased expression of AP-1/TNF-α genes, which has already
been reported in CD34+ AML blasts as compared with healthy
HSPCs.28,49 This suggests that the ATIC gene signature repre-
sents a proxy of the loss of preleukemic cell nesting in specific
microanatomical sites and is consistent with the involvement of
BMSCs in AP-1 activation in vitro. However, a major limitation of
JAM-C–DEPENDENT SCORE FOR AML STRATIFICATION 4675
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our study is the lack of demonstration that preleukemic cell nesting
is altered after JAM-C deletion at the time of leukemic initiation.
Future studies using single-cell resolved spatial transcriptomics or
proteomics should address this point.

A major finding of our study is the demonstration that the ATIC
score allows substratification of patients classified with the LSC-17
score. Although the ATIC score was established based on an MLLr
model in which we mimicked loosening of preleukemic cell adhe-
sion to the niche, it allows substratification of patients with different
mutational background. This raises the question whether the con-
tinuum between myeloproliferative neoplasm, myelodysplastic
syndrome, and AML diseases relies on differential niche anchoring
of preleukemic cells in specific microanatomical sites that can be
detected by LSC-17 and ATIC scores.
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