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A B S T R A C T

In medicine, an important objective is predicting patients’ survival based on their molecular and clinical
characteristics. In this context, neural networks have recently been used for their ability to capture complex
interactions in the data. Measuring the uncertainty associated with survival estimates obtained by neural
networks is essential to enhance predictions’ reliability. We compared four methods adapted to multilayer
perceptrons (MLPs) for building confidence intervals at the patient level. The methods were based either on
bootstrap with Boot (Efron, 1979), ensembling with DeepEns (Lakshminarayanan et al., 2016), or Monte-Carlo
Dropout with MCDrop and BMask (Gal and Ghahramani, 2016; Mancini et al., 2020). A comparison was
made through MLP-based survival models: CoxCC and CoxTime (Kvamme et al., 2019) in a continuous time
framework, DeepHit (Lee et al., 2018) and PLANN (Biganzoli et al., 1998) in a discrete time framework. We
applied the methods to a simulation study, enabling us to estimate a coverage rate of the estimated confidence
intervals. We also applied them to real-world datasets, and predicted the survival probability for patients with
breast cancer and patients with lung cancer.

In the simulation study, CoxCC and CoxTime obtained the mean C-indices numerically closest to those from
the Oracle model (mean C-index of 0.723 for CoxCC, 0.726 for CoxTime, versus 0.743 for the Oracle model).
Regarding the confidence intervals of survival probabilities, Boot with CoxCC obtained a coverage rate of
96.5%, the closest to the nominal value of 95%. MCDrop was slightly anticonservative and obtained a coverage
rate of 89.8% with CoxTime. This method may represent a reasonable compromise in terms of coverage with
regards of computational time. In the breast cancer cohort, MLPs had difficulty capturing additional prognostic
information from the molecular data. In contrast, in the lung cancer cohort, the models led to substantially
stronger discrimination values when adding molecular data to the clinical variables. In conclusion, we were
able to represent uncertainty in the survival estimates at particular time points at the patient level using MLPs
in the form of 95% confidence intervals. We recommend using CoxTime with either Boot or, for a less intensive
computation time, MCDrop.
1. Introduction

In recent years, machine learning models have been increasingly
used in various domains, particularly in medical research. Indeed, in
a framework of high dimensional data, these models can discover and
identify patterns and relationships between biomarkers for complex
datasets and effectively predict future outcomes. Among them are
Multi-Layer Perceptrons (MLPs), a type of model developed by Rosen-
blatt [1] that can learn non-linear and complex relationships in pa-
tients’ data. While neural networks are well-suited for complex datasets,
they cannot be directly applied to survival or time-to-event analysis.

∗ Corresponding author at: Oncostat U1018, Inserm, Paris-Saclay University, labeled Ligue Contre le Cancer, Villejuif, France.
E-mail address: elvire.roblin@centralesupelec.fr (E. Roblin).

Survival analysis consists of analyzing the time until an event
occurs. When an event of interest is unknown because of the patient’s
withdrawal from the study or the end of the study follow-up, the data is
said to be censored. Common events studied are death, disease, clinical
relapse or progression, and recovery. MLPs were not applied to survival
analysis until the work of Faraggi and Simon [2], as they were not
originally designed to handle time-to-event data. Since then, multiple
applications of MLPs have been developed [3–6].

MLP models should only be deployed in clinical settings with an
associated measure of uncertainty [7]. Indeed, this measure is what
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makes the model interpretable and trustworthy. For instance, the in-
clusion of this measure can help identify complex diagnostic cases for
further evaluation [8]. Such measure has been developed in other con-
texts: for classification problems under dataset shift [9], for image clas-
sification using Bayesian deep neural networks [10,11], or for regres-
sion or classification tasks using other machine learning frameworks
such as random forests [12]. Yet few machine learning models have
addressed the assessment of predictive uncertainty for time-to-event
output.

In predictive models, multiple sources of uncertainty exist [13].
One source comes from the noise in the data, which stems from tech-
nical issues involved with data collection and measurement. Another
source comes from adversarial examples or dataset shifts that force
deep learning models to extrapolate predictions vastly different from
the observed data. Together, these two sources are called aleatoric
uncertainty and caused by irreducible structural relationships within
the data. A second type of uncertainty is epistemic uncertainty, which
depends on the model’s parameters, hyperparameters, or even the
chosen model’s underlying structure. It is linked to the estimator.

MLPs are estimators that only return point predictions and do not
provide a direct measure of uncertainty. Indeed, the weights of an
MLP characterizing the predictions are usually fixed, implying that
the output is deterministic. In a frequentist framework, one way to
overcome this issue is to construct a predictive model by combining
multiple learners. In this context, we applied different existing methods
to generate multiple functions from an MLP model, enabling us to
associate point predictions with uncertainty estimation in the form
of 95% confidence intervals. The first method we applied consists
of manipulating the training samples using bootstrap [14]. Another
strategy includes training multiple neural networks with ensembling.
With Deep Ensembles [15], multiple neural networks are trained by
randomly initializing the neural network’s weights. A third strategy
is based on Monte-Carlo Dropout. MCDrop [16] is a combination of
models obtained by randomly applying dropout at test time, while
BMask [17] is an extension of MCDrop that uses a fixed mask of units
being dropped out.

In the present work, these 4 methods are implemented. Each method
is applied to different strategies of time-to-event MLPs, and compared
for uncertainty quantification. For each method considered, we derive
interval forecasts from approximate predictive distributions and thus
assess the uncertainty about these MLP models’ expected survival pre-
dictions. A simulation study is set up to evaluate the performance of
the proposed measures of uncertainty on synthetic data with known
survival probabilities. We compare the deep learning models with an
oracle model in terms of prediction accuracy. We also develop expected
survival predictions with uncertainty quantification and evaluate the
added value of gene expression data to clinical covariates, using two
real patient cohorts in oncology: the METABRIC cohort [18] in early
breast cancer and the Lung Cancer Explorer [19] data sets.

2. Related work

In survival analysis, different methods have been proposed to as-
sociate an uncertainty measure with survival predictions. The classic
approach is to build confidence intervals using the Cox Proportional
Hazards (CoxPH) model [20]. Another consists of defining a model in
a Bayesian framework and building credible intervals.

2.1. Notations

Let 𝑋 = {𝑥1,… , 𝑥𝑝} be a vector of covariates. Let the random
variable 𝑇 denote the survival time and 𝐶, the censoring time. 𝑇𝑖 is
the survival time for individual 𝑖, 1 ≤ 𝑖 ≤ 𝑁 , with 𝑁 the total number
f individuals. Let us assume that survival times and censoring times
re independent, and let 𝑆(𝑡) = 𝑃 (𝑇 > 𝑡) and 𝐺(𝑡) = 𝑃 (𝐶 > 𝑡) be

the survival function at time 𝑡 for 𝑇 and 𝐶, respectively. �̂�(𝑡) is the
2

Kaplan–Meier estimate of 𝑆(𝑡), and �̂�(𝑡) is the Kaplan–Meier estimate
or the censoring distribution. Let 𝐷 be the censoring indicator: if 𝑇𝑖 is
bserved, 𝐷𝑖 = 𝐈(𝑇𝑖 ≤ 𝐶𝑖) = 1, with 𝐈(.) the indicator function, while if
he corresponding data is censored, 𝐷𝑖 = 0. The observed time, denoted
y �̃� , is such that �̃�𝑖 = 𝑇𝑖 if 𝐷𝑖 = 1 and �̃�𝑖 = 𝐶𝑖, if 𝐷𝑖 = 0. Thus, we have
̃𝑖 = 𝑚𝑖𝑛(𝑇𝑖, 𝐶𝑖).

.2. CoxPH model and confidence intervals

The most commonly used model in survival analysis and medical
esearch is the CoxPH model. It is a regression method that simultane-
usly evaluates the effect of all variables on survival and can be written
s:

(𝑡|𝑋𝑖) = ℎ0(𝑡) exp(𝜙(𝑋𝑖)) with 𝜙(𝑋𝑖) = 𝛽𝑇𝑋𝑖, (1)

here ℎ denotes the hazard function at time 𝑡 for the individual 𝑖,
nd ℎ0 represents the baseline hazard. The CoxPH is based on a linear
redictor 𝜙(𝑋𝑖), with 𝛽 the vector of regression coefficients. This semi-
arametric model relies strongly on two assumptions: that the hazard
atio for any two patients is constant over time, and that a linear
elationship exists between the log hazard and the covariates.

With high-dimensional data, a penalization term can be added to
he CoxPH partial likelihood to determine the most relevant variables
mong all the variables. This penalization is based on the regres-
ion coefficients and generally depends on a single parameter, either
ositive or null, denoted 𝜆. One of the main objectives of penalized
egressions is to force the regression coefficients to tend toward the null
alue. The most used one is the Least Absolute Shrinkage and Selection
perator (LASSO) penalty because it allows convex optimization and

s interpretable in terms of variable selection. First introduced in the
ontext of linear regression by Tibshirani [21] and then adapted to
urvival analysis [22], the LASSO penalty corresponds to the 𝐿1 norm
f the regression coefficients.

From the estimated CoxPH model, the expected survival probability
f each patient 𝑖 = (1,… , 𝑛) at time 𝑡 can be obtained by inserting the
stimated parameters into the survival function:

̂𝑖(𝑡|𝑋𝑖) = 𝑒𝑥𝑝(−�̂�0(𝑡) exp(𝛽𝑇𝑋𝑖)), (2)

here �̂�0(𝑡) is the cumulative baseline hazard at time 𝑡.
Expected survival probabilities can be associated with confidence

ntervals at level 1 − 𝜃 by applying a non-parametric bootstrap (Boot)
pproach [14]. With this approach, 𝑀 bootstrap sets are sampled from
he original data, and 𝑀 models are trained. It allows for the estimation
f 𝑀 survival probabilities at time 𝑡 for a given patient 𝑖 of the test set,
oted as �̂�𝑖(𝑏𝑜𝑜𝑡)(𝑡) = {�̂�𝑖(1)(𝑡),… , �̂�𝑖(𝑀)(𝑡)}. The percentile method is then
sed to obtain confidence intervals at level 1 − 𝜃 for �̂�𝑖(𝑡) based on the
istribution of �̂�𝑖(𝑎𝑙𝑙)(𝑡):

𝐶1−𝜃
(

�̂�𝑖(𝑡)
)

=
[

𝑞 𝜃
2

(

�̂�𝑖(𝑎𝑙𝑙)(𝑡)
)

; 𝑞1− 𝜃
2

(

�̂�𝑖(𝑎𝑙𝑙)(𝑡)
)

]

, (3)

where 𝑞 𝜃
2

and 𝑞1− 𝜃
2

are percentiles computed using the empirical distri-
bution of the 𝑀 survival probabilities. Ternès et al. [23] implemented
Eq. (3) by using a penalized high-dimensional CoxPH model. They were
able to estimate the expected survival probability of future patients at
a given time point and the associated confidence intervals.

2.3. Bayesian framework and credible intervals

Bayesian inference is a learning procedure combining explicit prior
knowledge with observed data to obtain a predictive model. The prior
knowledge is defined by a probability distribution over possible models.
Then, based on Baye’s rule, the prior distribution is combined with the
observations, resulting in the posterior distribution. A set of models
can be sampled from the posterior distribution and used to make
predictions.
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The posterior distribution can be summarized using measures of
uncertainty. For instance, a credible interval contains a specific per-
centage of the posterior distribution’s probable values. In survival
analysis, 95% credible intervals are obtained from the quantiles of
the posterior survival distribution using Bayesian models adapted to
time-to-event data. One example is the Bayesian additive regression
trees model (BART), a flexible Bayesian non-linear regression approach
set in a hierarchical modeling framework [24]. Another example is
BDNNSurv [25], a Bayesian hierarchical deep neural network combined
with pseudo observations to handle censoring.

In a Bayesian framework, the posterior distribution is a natural
quantification of uncertainty and allows for the construction of credible
intervals. However, the choice of a prior distribution is not straightfor-
ward. In a context of frequentist framework, an MLP only returns point
predictions and does not provide a direct measure of uncertainty. To
overcome this issue, multiple learners must be trained independently
in a non-bayesian way to obtain uncertainty measures.

3. Methods

In the present work, we apply 4 MLP models designed to handle
censored time-to-event data. After describing them, we present the
methods that enabled us to obtain multiple MLP learners for each
MLP models and thus build confidence intervals. Then, we define the
evaluation metrics used to compare these methods. Finally, we present
the training procedure for searching for the MLP hyperparameters.

3.1. Survival predictions with MLPs

In this work, the linear predictor of the CoxPH model is replaced by
an MLP adapted to survival data. More precisely, we compare 4 existing
MLP models. Each is defined either in a continuous or discrete time
framework and uses a specific loss function to handle time-to-event
data.

3.1.1. Continuous time models
We apply 2 MLP models set in a continuous time framework and

introduced by Kvamme et al. [4].
CoxCC is a neural network that uses a loss based on a case-control

approximation: control samples are not fixed, and a new set of controls
is randomly sampled at each iteration. The loss is written as:

CoxCC = 1
𝑁

∑

𝑖∶𝐷𝑖=1
log

(

∑

𝑗∈�̃�𝑖

exp[𝜙(𝑋𝑗 ) − 𝜙(𝑋𝑖)]
)

, (4)

with �̃�𝑖 a subset of the risk set 𝑅𝑖 at time 𝑡 including individual 𝑖. With
this loss (Eq. (4)), the neural network can be fitted using a mini-batch
gradient descent algorithm.

A second version of this model, named CoxTime, is introduced. It is
not constrained by the proportionality assumption, as the time variable
is added as input variable. The loss function can be rewritten as:

Cox-Time = 1
𝑁

∑

𝑖∶𝐷𝑖=1
log(

∑

𝑗∈�̃�𝑖

exp[𝜙(𝑡𝑖, 𝑋𝑗 ) − 𝜙(𝑡𝑖, 𝑋𝑖)]). (5)

3.1.2. Discrete time models
Commonly used survival models can also be extended using MLPs in

a discrete-time framework, which enables overcoming the proportional
hazards assumption.

With the Partial Logistic Artificial Neural Network (PLANN) model
[3], the time is divided into 𝐿 time intervals 𝐴𝑙 =]𝑡𝑙−1, 𝑡𝑙], 𝑙 = 1,… , 𝐿,
with midpoint 𝑎𝑙. The input of the model is composed of the variables
and the time variable 𝑎𝑙, while the output corresponds to the discrete
instantaneous hazard, written as:

ℎ̂𝑖𝑙 = ℎ̂𝑙(𝑋𝑖, 𝑎𝑙)

= 𝑃 (𝑇𝑖 ∈ 𝐴𝑙|𝑇𝑖 > 𝑡𝑙−1|𝑋𝑖),
3

with 𝑇𝑖 the survival time for individual 𝑖 at time 𝑎𝑙. With the inclusion
of the time variable as input of the model, the 𝑝 variables of each 𝑖
are repeated for each time interval. More precisely, each patient of
the training set is repeated for the number of intervals being observed,
whereas, on the test set, each subject is repeated for all time intervals.
As the index of the time interval is used as an explanatory variable,
smooth estimates of the hazard rate can be obtained, and interactions
between time and variables are considered.

The cost function corresponds to the binary cross-entropy :

PLANN = −
𝑛
∑

𝑖=1

𝑙𝑖
∑

𝑙=1
{(𝑑𝑖𝑙 log ℎ̂𝑖𝑙) + (1 − 𝑑𝑖𝑙)[1 − log ℎ̂𝑖𝑙]}, (6)

where ℎ̂𝑖𝑙(𝑥𝑖) is estimated as output value of the MLP. 𝑑𝑖𝑙 is the event
indicator: if the patient died in the interval 𝐴𝑙, then 𝑑𝑖𝑙 = 1; if the
patient is censored, then 𝑑𝑖𝑙 = 0. 𝑙𝑖 corresponds to the number of
intervals for which the individual 𝑖 is observed. Thus we have 𝑙𝑖 ≤ 𝐿
and 𝑑𝑖0,… , 𝑑𝑖(𝑙𝑖−1) = 0.

DeepHit [5] is an adaptation of PLANN, with a loss function that
combines the log-likelihood with a ranking loss. We define the time
as: 0 = 𝑙0 < ⋯ < 𝑙𝑚 and the output of the neural network as 𝑦(𝑥) =
[𝑦0(𝑥),… , 𝑦𝑚(𝑥)]𝑇 . Given a patient 𝑖 with covariates 𝑋𝑖, 𝑦𝑘(𝑋𝑖), 𝑘 ∈
[0, 𝑚], is the probability that the patient will experience the event at
time 𝑘. Thus we have:

�̂�(𝑙𝑗 |𝑋𝑗 ) = 1 −
𝑗
∑

𝑘=1
𝑦𝑘(𝑋). (7)

The first term of the loss function is then written:

DeepHit 1 = − 1
𝑁

𝑁
∑

𝑖=1

(

(𝐷𝑖 log(𝑦𝜅𝑖 ))
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Patients with event

+ (1 −𝐷𝑖) log(�̂�(�̃� |𝑋𝑖))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Censored patients

)

.
(8)

𝜅𝑖 is the index of the event time for individual 𝑖.
A loss enforcing the discrimination capacity of the model is added

to the loss term in Eq. (8). It is an extension of the concordance index:

DeepHit 2 =
∑

𝑖,𝑗
𝐷𝑖I{𝑇𝑖 < 𝑇𝑗} exp

( �̂�(𝑇𝑖|𝑋𝑖) − �̂�(𝑇𝑖|𝑋𝑗 )
𝜎

)

. (9)

DeepHit 2 (Eq. (9)) aims at improving the discrimination of the model
by forcing the model to focus on times when there are many events.
To apply DeepHit, we discretize the survival times using an equidistant
time grid. We use the following convex combination of DeepHit 1 and
DeepHit 2 [4]:

DeepHit = 𝛼DeepHit 1 + (1 − 𝛼)DeepHit 2, 𝛼 ∈ [0, 1]. (10)

3.2. Building confidence intervals

We present different approaches that induce diversity in the MLP
models introduced in the previous section. Thus, we can obtain a set
of MLPs and output a range of values to build confidence intervals.
Indeed, it is not possible to evaluate the accuracy of predictions if we
only output point estimates, whereas it is if we associate intervals with
these forecasts.

The first method applied to train multiple MLP learners is the boot-
strap method. With this method, each model is trained on a different
subset of the original training set. However, if the underlying base
learner has multiple local optima, as is the case typically with MLPs,
the bootstrap can sometimes hurt performances since the base learner
is not trained using all data points. The 3 other methods introduced
here are based on randomization approaches, either using ensembling
or by applying Monte-Carlo Dropout. The resulting predictions differ as
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the model is applied to the same data at each iteration but with other
parameters.

We introduce the 4 methods we implemented to build confidence
intervals with MLPs. Each method enables to output 𝑀 (𝑀 = 500 times)
survival probabilities for individual 𝑖 for a given time 𝑡. We then have:
̂𝑆(𝑡)𝑖(𝑎𝑙𝑙) = {�̂�𝑖(1)(𝑡),… , �̂�𝑖(𝑀)(𝑡)}.

3.2.1. Bootstrap method
The first approach we use to build confidence intervals with MLPs

is bootstrap, introduced in Section 2.2.
In this approach, 𝑀 subsets of the training set are generated by

random sampling with replacement from the training set. Each observa-
tion of the training set has the same probability of being extracted. The
bootstrapped training sets are drawn with the same size as the original
training set, and thus, several training examples appear multiple times
in the set. Due to the number of bootstrapped training sets, the neural
network model is estimated several times. As a result, there are exactly
𝑀 models. Each bootstrapped replicate of the original training set
contains, on average, 63.2% of the initial training set.

We also implement the bootstrap-t (Boot-t) method [26], a nested
version of the bootstrap algorithm that enables higher coverage for
smaller sample sizes. First, we train the model on the entire training
set, and then we compute the survival probability at time 𝑡 �̂�𝑖(𝑡) for

given patient 𝑖 of the test set. Next, the training set is randomly
ampled 𝑀 times, and we obtain the survival probabilities of patient
using these outer samples: �̂�𝑖(𝑜𝑢𝑡𝑒𝑟 𝑏𝑜𝑜𝑡)(𝑡) = {�̂�𝑖(1)(𝑡),… , �̂�𝑖(𝑀)(𝑡)}. For

each 𝑚 ∈ {1,… ,𝑀}, the bootstrap sample is then resampled 𝐾 times
(𝐾 = 50), and each inner sample set is used to fit the model. For sample
𝑚, the survival probabilities for patient 𝑖 computed with the inner
samples are noted as �̂�𝑖(𝑚,𝑖𝑛𝑛𝑒𝑟 𝑏𝑜𝑜𝑡)(𝑡) = {�̂�𝑖(𝑚,1)(𝑡),… , �̂�𝑖(𝑚,𝐾)(𝑡)}. Using
the 𝐾 inner sample replicates �̂�𝑖(𝑚,𝑖𝑛𝑛𝑒𝑟 𝑏𝑜𝑜𝑡)(𝑡), we obtain the standard
error of each �̂�𝑖(𝑚)(𝑡). Thus we can compute the t-statistic as 𝑡𝑠𝑡𝑢𝑑(𝑚) =
�̂�𝑖(𝑚)(𝑡)−�̂�𝑖(𝑡)
𝑆𝐸(�̂�𝑖(𝑚)(𝑡))

, with 𝑆𝐸 the standard error of �̂�𝑖(𝑚) on the 𝐾 inner samples,
and build studentized confidence intervals as described in 3.2.4. The
major drawback of this algorithm is that it is computationally more
intensive than Boot.

3.2.2. Ensembling method
The Boot methods are compared to Deep Ensembles (DeepEns). Lak-

shminarayanan et al. [15] introduced this method of ensembling. Here,
unlike with Boot, the entire training set is used for training each model.
The randomness is introduced from within the algorithm as the network
parameters are randomly set. Thus, an ensemble of 𝑀 deterministic
MLPs is trained by varying the random seed of the previously tuned
set of hyperparameters. Indeed, simply changing the random seed is
enough for MLPs to vary in their individual predicted probabilities.
Another source of randomness is added by randomly shuffling all
the data points of the training set, applying a permutation at each
initialization of the model. For each iteration, the model is trained on
a random set of parameters and outputs a probability on the test set.
The model outputs a different probability per patient of the test set for
each initialization. Let 𝑀 denote the number of MLPs in the ensemble.
The method outputs predictions over 𝑀 models to obtain a predictive
distribution.

3.2.3. Monte-Carlo dropout based methods
Typically, dropout is a technique that has been used to prevent

overfitting. It randomly excludes units before each neural network
layer during training with a chosen probability 𝑝. At each iteration,
we obtain a different neural network. With the MCDrop method, Gal
and Ghahramani [16] suggested activating dropout during test time
to output model uncertainty. They placed their work in a Bayesian
framework to show that activating dropout with neural networks is
equivalent to using variational inference with Gaussian processes. It fol-
lows that averaging forward passes through the network with dropout
4

s

is similar to a Monte Carlo integration over a Gaussian process posterior
approximation. Using MCDrop, the output of the model is not a single
point estimate but rather a distribution of probabilities sampled from
an approximate posterior distribution.

We implement the MCDrop by randomly activating dropout during
training and test time. After 𝑀 iterations on the test set, we obtain an
ensemble of 𝑀 survival predictions at time 𝑡 for all test set patients.

As an alternative to MCDrop, Mancini et al. [17] introduced the
fixed Bernoulli mask (BMask). 𝑀 fixed Bernoulli masks are defined
beforehand, where 𝑀 sets of vectors are sampled from the Bernoulli
distribution before training. Then, each BMask is applied to the neu-
ral network architecture for each model during the training and test
phases. In these two phases, weights are randomly initialized, and the
mask is kept constant.

3.2.4. Percentile confidence intervals
Using the 𝑀 survival probabilities outputted by a given method, we

onstruct confidence intervals at level 1 − 𝜃 by applying the percentile
method introduced in Section 2.2. A confidence interval represents a
range of values likely to contain a future individual observation from
the values of the input predictors that are considered in the model.
Here, 𝜃 = 5% and the 2.5th and 97.5th percentiles are computed using
he empirical distribution of the 𝑀 survival probabilities.

For the Boot-t method, the confidence intervals are studentized. It
s supposed to improve the coverage of percentile bootstrap confidence
ntervals, especially for smaller sample sizes. It is computed as:

𝐶1−𝜃
(

�̂�𝑖(𝑡)
)

=
[

�̂�𝑖(𝑡) − �̂�𝑞1− 𝜃
2
(𝑡𝑠𝑡𝑢𝑑 ), �̂�𝑖(𝑡) − �̂�𝑞 𝜃

2
(𝑡𝑠𝑡𝑢𝑑 )

]

. (11)

̂ is the standard error of �̂�𝑖(𝑡). It is computed with the 𝑀 Boot esti-
ates: �̂�𝑖(𝑜𝑢𝑡𝑒𝑟 𝑏𝑜𝑜𝑡)(𝑡) = {�̂�𝑖(1)(𝑡),… , �̂�𝑖(𝑀)(𝑡)}. The limit of this method is

hat it can produce estimates outside of the range of plausible values.

.3. Evaluation metrics

We compare the MLP models using the concordance index and the
rier score, which measures both the discrimination capacity and the
alibration of the model. For the simulation study, we evaluate the
uality of our survival predictions using bias. We also compute the
overage rate to compare the quality of confidence intervals built using
he ensemble of survival predictions.

.3.1. Concordance index
The concordance index, or C-index, measures the discrimination

bility of a model, that is, its ability to distinguish high-risk and low-
isk patients. Specifically, it estimates the probability of agreement,
.e., the probability that two randomly selected patients are ordered
imilarly in terms of survival prediction and their observed survival
ata. We use here a concordance measure [27] that accounts for the
ensored data using the inverse probability of censoring weighting. The
oncordance index for time 𝑡 is then:

̂ (𝑡) =

∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝐷𝑖�̂�(�̃�𝑖)−2I{�̃�𝑖 < �̃�𝑗 , �̃�𝑖 < 𝑡}I{�̂�(𝑡|𝑋𝑖) < �̂�(𝑡|𝑋𝑗 )}

∑𝑁
𝑖=1

∑𝑁
𝑗=1 𝐷𝑖�̂�(�̃�𝑖)−2I{�̃�𝑖 < �̃�𝑗 , �̃�𝑖 < 𝑡}

. (12)

he value of the C-index lies between 0.5 and 1, with 0.5 equivalent to
random prediction and 1 corresponding to a perfect ability to rank.

.4. The brier score

The Brier Score (BS) is used to evaluate the accuracy of the pre-
icted survival function at a given time t. It is based on the root
ean square error and focuses on the difference between the observed
urvival status and the predicted probability of survival. It lies between
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0 (best possible value) and 0.25. The BS for uncensored data is written
as :

𝐵𝑆(𝑡) = 1
𝑛

𝑛
∑

𝑖=1

[

I{𝑇𝑖 > 𝑡} − �̂�(𝑡|𝑋𝑖)

]2

= 1
𝑛

𝑛
∑

𝑖=1

[

�̂�(𝑡|𝑋𝑖)2I{𝑇𝑖 ≤ 𝑡}

+ (1 − �̂�(𝑡|𝑋𝑖))2I{𝑇𝑖 > 𝑡}

]

.

(13)

With censored data, only a subset of the event times is observed.
weighting of the BS based on the inverse probability of censoring

IPCW) can be introduced [28]. It can be rewritten as:

�̂�(𝑡)𝐼𝑃𝐶𝑊 =1
𝑛

𝑛
∑

𝑖=1

[

�̂�(𝑡|𝑋𝑖)2
I{�̃�𝑖 ≤ 𝑡, 𝐷𝑖 = 1}

�̂�(�̃�𝑖)

+ (1 − �̂�(𝑡|𝑋𝑖))2
I{�̃�𝑖 > 𝑡}
�̂�(�̃�𝑖)

]

.

(14)

.4.1. Coverage rate
To evaluate the quality of the confidence intervals, the empirical

overage rate is calculated:

𝑅 = 1
𝑁

𝑁
∑

𝑖=1
𝐼
(

𝑞 𝜃
2

(

�̂�𝑖(𝑎𝑙𝑙)(𝑡)
)

≤ 𝑆𝑖(𝑡) ≤ 𝑞1− 𝜃
2

(

�̂�𝑖(𝑎𝑙𝑙)(𝑡)
)

)

. (15)

he coverage rate is compared to the nominal value of 95%. For the
oot-t method, we compute the coverage rate using the studentized
onfidence intervals.

.4.2. Bias
The quality of survival predictions is estimated through the bias, or

he mean difference between the predicted (�̂�𝑘(𝑡)) and the theoretical
𝑆𝑘(𝑡)) survival probabilities for each individual:

ean Bias = 1
𝑁

𝑁
∑

𝑘=1

(

�̂�𝑘(𝑡) − 𝑆𝑘(𝑡)
)

. (16)

The best model should have a bias close to zero.

3.5. Training procedure of the MLP

To evaluate the performances of the different MLPs, we perform a
hyperparameter search in the context of a 5-fold cross-validation (CV).

More precisely, the dataset is split into a training and a test set for
each model. For the simulation study, 2,000 samples were drawn for
the train and the test sets. Regarding applications, the two datasets are
divided into 80% for the training set and 20% for the test set. A 5-
fold CV is performed on the train set to search for hyperparameters.
Moreover, we use the Tree-Parzen algorithm [29] with the package Op-
tuna in Python, which allows us to select hyperparameters iteratively
in an informed manner. It is based on a sequential optimization that
is more efficient than a simple random search or an exhaustive grid
search. We define a search space for each hyperparameter with specific
distribution and boundary values. A set of hyperparameters is randomly
sampled, and the model is scored on each of the five validation folds.
These five validation scores are averaged. A new set of hyperparameters
is sampled based on the value of the average score. We repeat the
sampling of hyperparameter sets 200 times.

Several hyperparameters are tuned: the number of hidden layers
(1 to 4), the number of neurons per layer (between 4 and 128 nodes
per layer), the dropout rate (from 0.1 to 0.5), the 𝐿2 regularization
penalty (from 0 to 0.1). We try three activation functions (𝑡𝑎𝑛ℎ, 𝑟𝑒𝑙𝑢,
or 𝑒𝑙𝑢). We also compare two optimization algorithms (the Adaptive
Moment Estimation optimizer and the RMSProp optimizer) with dif-
ferent learning rates (from 0.001 to 0.01) and batch sizes (between 8
5

and 128). For DeepHit, we also investigate the number of discretization a
points for the survival times (testing between 10 and 200 points from
the smallest to the largest duration in the training set) and the two
parameters of the loss function (𝛼 between 0 and 1, 𝜎 between 0 and
00). A balance has to be found between a coarse discretization grid
hat may lose information and a dense grid that increases the number of
arameters in the neural network. The application of an interpolation
cheme enables us to use a coarser discretization grid.

On a given simulation set, an example of a selected set of hyperpa-
ameters for the CoxTime model is one hidden layer with 35 neurons
er hidden layer, a dropout rate of 0.08, an 𝐿2 penalty of 0.005, the 𝑟𝑒𝑙𝑢
ctivation function, RMSProp optimizer with a learning rate of 0.003
nd a batch size of 64.

Finally, the entire training set (or its bootstrap replicate) is used
to train each network with the previously selected set of hyperparam-
eters. The results are outputted on the test set. Each model of the
ensemble is tuned separately, applying this method. All the models are
implemented in Python with PyTorch backend.

4. Simulation study

The performance of the different methods was further evaluated and
compared using a simulation study. The advantage of simulated data is
that we know its true characteristics and underlying assumptions. Here,
we simulated data with non-linearity and interactions.

4.1. Data generation

Survival times were simulated according to the CoxPH model, with
a log–logistic basis risk distribution [30]. It enables modeling non-
monotonic risk rates. Based on the inverse cumulative distribution
method [31], survival times are related to covariates as follows:

𝑇 = 1
𝜆
{exp[− log(𝑢) exp(𝛽𝑓 (𝑋))] − 1}(

1
𝛾 ). (17)

First, we simulated the variable 𝑈 according to a uniform distribu-
tion  (0, 1). Then, 𝑝 + 1 variables are drawn independently: 𝑥1,… , 𝑥𝑝
ollowing a normal distribution and 𝑧1 that is generated according

to a Bernoulli law (0.5). 𝑋 is a sub-sample of 3 variables: 𝑋 =
(𝑥1, 𝑥2, 𝑥3). These 3 variables are linked to the survival time with 𝑓 (𝑋) =

exp(𝑋𝑇 𝑉 𝑋) and 𝑉 = 0.05×
⎛

⎜

⎜

⎝

1 𝜌 𝜌2

𝜌 1 𝜌
𝜌2 𝜌 1

⎞

⎟

⎟

⎠

. It introduces non-linearity and

interactions. The remaining covariates are noise variables and do not
contribute to the survival times. Here, 𝛽 = 0.5, 𝜌 = 0.95, 𝜆 = 1.25 and
𝛾 = 0.9.

Censoring times are generated with an exponential distribution to
obtain around 20% of censoring among the data set. Survival times
longer than 15 years are censored.

100 simulation data sets are generated, composed of 4,000 individ-
uals each. Each data set is split into a train set (2,000 individuals)
and a test set (2,000 individuals). The parameters are estimated on the
training data, and the survival prediction and confidence intervals are
computed on the test set.

4.2. Oracle survival probabilities

Theoretical survival probabilities for each 𝑖 at a given time 𝑡 are
obtained using the true value of the log–logistic basis risk function at
time 𝑡. It is estimated with:

ℎ0(𝑡) = 𝜆𝛾(𝑡)𝛾−1(1 + (𝜆𝑡)𝛾 )−1. (18)

sing the baseline hazard (Eq. (18)), the baseline cumulative hazard is
btained with the relation 𝐻0(𝑡) = ∫ 𝑡

0 ℎ0(𝑠)𝑑𝑠 = log
(

1+ (𝜆𝑡)𝛾
)

. Then the
urvival function can be retrieved through 𝐻0(𝑡):

(𝑡|𝑋) = exp
[

−𝐻0(𝑡) exp
(

𝛽𝑇 𝑓 (𝑋𝑖)
)]

(19)

hese probabilities are used to obtain an oracle C-index and the cover-

ge rate of confidence intervals.
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Table 1
Mean of the 𝑀 C-indices and BS obtained on the 100 simulation test sets at a fixed time (𝑡 = 0.5).

C-index Brier score

Boot DeepEns MCDrop BMask Boot DeepEns MCDrop BMask

Oracle 0.743
(±0.07)

0.743
(±0.07)

0.743
(±0.07)

0.743
(±0.07)

0.149
(±0.004)

0.149
(±0.004)

0.149
(±0.004)

0.149
(±0.004)

CoxCC 𝟎.𝟕𝟏𝟐
(±𝟎.𝟎𝟏)

0.723
(±0.012)

0.718
(±0.017)

0.723
(±0.014)

𝟎.𝟏𝟔𝟐
(±𝟎.𝟎𝟎𝟕)

𝟎.𝟏𝟓𝟕
(±𝟎.𝟎𝟎𝟔)

0.157
(±0.005)

𝟎.𝟏𝟓𝟓
(±𝟎.𝟎𝟎𝟓)

CoxTime 0.709
(±0.015)

𝟎.𝟕𝟐𝟏
(±𝟎.𝟎𝟏𝟓)

𝟎.𝟕𝟐𝟐
(±𝟎.𝟎𝟎𝟗)

𝟎.𝟕𝟐𝟔
(±𝟎.𝟎𝟎𝟗)

0.164
(±0.008)

0.158
(±0.007)

𝟎.𝟏𝟓𝟔
(±𝟎.𝟎𝟎𝟓)

𝟎.𝟏𝟓𝟓
(±𝟎.𝟎𝟎𝟔)

DeepHit 0.649
(±0.049)

0.707
(±0.022)

0.720
(±0.008)

0.711
(±0.016)

0.208
(±0.045)

0.191
(±0.061)

0.183
(±0.023)

0.183
(±0.017)

PLANN 0.577
(±0.091)

0.711
(±0.021)

0.701
(±0.033)

0.717
(±0.016)

0.203
(±0.028)

0.162
(±0.01)

0.163
(±0.008)

0.158
(±0.006)

Note: The number in brackets is the standard deviation of the 𝑀 values. The highest value for the C-index and the lowest value for the BS per
combination method is in bold.
4.3. Results

In this section, the findings of the simulation study are presented.
All measures were computed using a fixed survival time as the horizon
(𝑡 = 0.5).

We first compared the different MLPs in terms of discrimination
and calibration. The C-index was estimated 𝑀 times for each data
set, and the mean of the 𝑀 values was computed. Then, the mean of
the 100 C-indices was calculated using all simulation data sets and is
reported in Table 1. Regardless of the combination method, both CoxCC
and CoxTime obtained the mean C-indices numerically closest to those
from the oracle model. The standard deviation of the bootstrap values
was much larger for the discrete-time models, DeepHit and PLANN,
as compared to CoxCC and CoxTime. Concerning the BS, the results
obtained from the comparison were close to those for the C-index.

Next, we compared Boot, DeepEns, MCDrop and BMask applied on
MLPs in terms of coverage rate. Table 2 shows the coverage rate of
confidence intervals for survival probabilities for all patients in the test
set. More precisely, this is the mean value of the coverage rates on
all simulation test sets, and the value in brackets corresponds to the
standard deviation. The CoxTime model and the Boot method achieved
the closest value to 95%, slightly above this pre-defined nominal value.
On average, the Boot method with the CoxTime model yielded 95%
confidence intervals that contained the true survival probability 96.4%
of the time. Overall, the Boot method for the continuous-time frame-
work models and the Boot-t method for the discrete-time framework
models achieved the highest coverage rates. The average length of
confidence intervals for Boot was larger than for the other combina-
tion methods (Table B.13), indicating that the method could be too
conservative. The studentized correction increased the coverage rate
of the Boot method. On the anti-conservative side, DeepEns, MCDrop,
and BMask had similar results with relatively good coverage. MCDrop
with CoxTime achieved the closest value to the nominal value of 95%.
Note that Table 2 also shows that in a comparison of MLP models,
DeepHit and PLANN obtained lower average coverage rates for all the
methods considered and much more variability across the 𝑀 bootstrap
resamples. In fact, researchers [32] have demonstrated that DeepHit
can reach good discrimination capacities, but at the cost of poorly
calibrated survival estimates.

As a benchmark method, we applied the Boot method to a CoxPH
model with a LASSO penalization on linear effects. LASSO obtained a
low average coverage rate, a low average C-index, and a high average
BS, as shown in Table B.8. These results are consistent when we
consider that the LASSO model with linear effects is not well suited
to a complex dataset that includes multiple interactions and non-linear
effects in the data generation process.

Then, we investigated the behavior of the methods in terms of bias.
In Fig. 1, we estimated the bias for the MCDrop method. Note that the
results are near zero, with the boxplots close to the red dashed line.
MCDrop, BMask, and DeepEns obtained results which were close to
each other. CoxCC and CoxTime had a negative bias, while DeepHit had
6

the lowest bias. The bias was more variable with the methods applied
Table 2
Mean of the 𝑀 95% Coverage Rates obtained on the 100 simulation test sets at a fixed
time (𝑡 = 0.5).

Coverage rate

CoxCC CoxTime DeepHit PLANN

Boot 𝟎.𝟗𝟔𝟓
(±𝟎.𝟎𝟑𝟑)

𝟎.𝟗𝟔𝟒
(±𝟎.𝟎𝟔𝟔)

0.711
(±0.177)

0.702
(±0.169)

Boot-t 0.976
(±0.027)

0.974
(±0.035)

𝟎.𝟖𝟕𝟒
(±𝟎.𝟏𝟔𝟖)

𝟎.𝟖𝟓𝟔
(±𝟎.𝟎𝟗𝟔)

DeepEns 0.884
(±0.07)

0.882
(±0.091)

0.706
(±0.081)

0.793
(±0.138)

MCDrop 0.895
(±0.044)

0.898
(±0.041)

0.788
(±0.072)

0.681
(±0.128)

BMask 0.879
(±0.068)

0.895
(±0.07)

0.703
(±0.076)

0.761
(±0.102)

Note: The number in brackets is the standard deviation of the 𝑀 values. The closest
value to 95% per model is in bold.

to PLANN. Finally, we compared the computation times of the methods
and MLP models trained in Python. For each method, the 𝑀 models
were trained on a CPU with 2.1 GHz and 4 GB RAM for each simulation
set. Fig. 2 displays the running times of the different methods. Boot
was the slowest method in terms of computational time. For instance,
the median computing time for Boot with CoxCC was twelve times
longer than for BMask with the same model. For a given method (here,
MCDrop), we did not observe substantial differences between the MLP
models.

5. Application on real patients cohorts

The methods were applied to 2 high-dimensional cancer cohorts: the
METABRIC cohort for patients with breast cancer and the Lung Cancer
Explorer cohort for patients with lung cancer.

5.1. Cancer cohorts

The first example data set we used is the METABRIC (Molecular
Taxonomy of Breast Cancer International Consortium) cohort, which
can be extracted from the MetaGxBreast R package [18]. It comprises
clinical features and large-scale gene expression data of breast cancer
patients obtained at surgery. We used a nonspecific filter independent
from the outcome based on standard deviation to increase the statistical
power [33]. We removed genes with an overall standard deviation
below the quantile of 95% and retained the 863 genes with the highest
standard deviations. The quantile was chosen to obtain approximately
1,000 genes. We selected the probe with the highest variance if multiple
probes corresponded to the same gene. 6 clinical covariates were used:
age at diagnosis, tumor grade, tumor size, the number of invaded
lymph nodes, hormonal therapy, and chemotherapy use. We removed
individuals with missing values for the survival time. Since one or more
covariate values were missing for 106 patients, we imputed them using
predictive mean matching for numerical features and a multinomial
logit model for categorical covariates [34]. Then, we standardized the

numerical covariates using Z-score normalization and applied one-hot
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Fig. 1. Boxplot of the 𝑀 bias values estimated at fixed time points for all synthetic data sets. Each boxplot shows the results for one neural network model applied to all simulation
data sets with the MCDrop method. The red horizontal line corresponds to the null value. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 2. On the left side, computational time in seconds (logarithmic scale) for CoxCC, using the different methods. On the right side, computational time in seconds of all the
MLP models for MCDrop.
encoding to categorical covariates. The final data set represents 1,960
patients and 869 features, with a median survival time of 88 months
and a censoring rate of 54.6.

We applied our methods to a second data set: the Lung Cancer
Explorer (LCE). It is an online tool created by UT Southwestern Medical
Center’s Quantitative Biomedical Research Center, which is composed
of more than 6,700 patients over 56 data sets, including the Cancer
Genomics Atlas (TCGA) and various Gene Expression Omnibus (GEO)
data sets. All the data sets provide gene expression and clinical data
from lung cancer patients. The expression data stems from 23 genome-
wide platforms and is predominantly composed of microarrays. It is
reprocessed, normalized, and converted from probe to gene levels.
In our work, we selected 2 clinical covariates: cancer stage and the
patient’s age. Only the genes with less than 5% of missing values were
kept for the gene expression data. Then, the 1,000 genes with the
highest standard deviations among the patients were conserved. The
missing values were replaced with the multiple imputation method
using chained equations. We used Bayesian polytomous regression for
the stage categories and predictive mean matching for continuous
covariates. We standardized the numerical covariates using Z-score nor-
malization and applied one-hot encoding to the categorical covariates.
The final dataset includes 4,120 patients and 1,002 features, with a
median survival time of 45 months and a censoring rate of 49.0.

5.2. Results

Here, we present the results obtained on the two cancer cohorts.
First, the performances of the different methods are compared. Then,
examples of confidence intervals computed at the patient level are
presented.

On the METABRIC cohort, we compared the results obtained using
either all the input covariates or only the clinical covariates. In terms of
7

predictive accuracy (Tables 3 and 4), the methods demonstrated higher
mean C-indices and lower BS for neural networks fitted only to the
clinical covariates, as compared to those fitted to clinical plus molecular
data. This highlights that the clinical covariates already contain a large
part of the predictive information for survival.

Tables 5 and 6 report the mean C-indices and mean BS at 2 years
using the LCE. In this cohort, adding the molecular data improved
discrimination and accuracy, regardless of the chosen neural network
architecture or the combination method. Thus, in this lung cancer data
set, there was additional prognostic information in the molecular data,
that was captured by the neural network beyond the clinical covariates.

We further analyzed expected survival probabilities from the per-
spective of advising a clinical practitioner. This was done for two
patients from the test set of the METABRIC data set: Patient 1 had a
survival time of 3 years and 6 months with no censoring; Patient 2
had a survival time of 5 years and 3 months, and his follow-up time
was censored. Fig. 3 represents the density of survival probabilities
obtained with the MCDrop method applied on CoxTime. With this
method, the mean survival probability at 5 years for Patient 1 (orange
line) was 0.674 with a confidence interval of [0.525, 0.849]. Patient 2
had a 0.910 mean survival probability at 5 years, with a confidence
interval of [0.838, 0.954]. Even though the event had already happened,
the estimated mean survival probability was still relatively high for
Patient 1. However, as the graph shows, the corresponding density is
more dispersed, and the confidence interval is wider than for Patient
2.

Two patients were also sampled from the LCE test set: Patient 3 was
followed for 6 years and 11 months without censoring; Patient 4 had
a survival time of 9 years and 4 months before being unavailable for
follow-up. Applying the same previous method, we obtained a mean
predicted survival probability at 2 years of 0.781 with a confidence in-
terval of [0.533, 0.956] for Patient 3 (pink line on Fig. 3). The estimated
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Table 3
Mean of the 𝑀 values of C-index at 5 years on the METABRIC test set with molecular and clinical covariates.

All variables Clinical variables

Boot DeepEns MCDrop BMask Boot DeepEns MCDrop BMask

CoxCC 0.638
(±0.03)

0.663
(±0.023)

0.654
(±0.025)

0.639
(±0.042)

0.655
(±0.027)

0.700
(±0.011)

0.702
(±0.011)

0.606
(±0.045)

CoxTime 0.643
(±0.032)

0.652
(±0.045)

0.657
(±0.026)

0.662
(±0.023)

0.695
(±0.026)

0.736
(±0.01)

0.734
(±0.013)

0.703
(±0.031)

DeepHit 𝟎.𝟔𝟓𝟓
(±𝟎.𝟎𝟐𝟔)

𝟎.𝟔𝟕𝟎
(±𝟎.𝟎𝟐𝟏)

𝟎.𝟔𝟔𝟎
(±𝟎.𝟎𝟐𝟏)

𝟎.𝟔𝟗𝟔
(±𝟎.𝟎𝟏𝟑)

𝟎.𝟕𝟏𝟕
(±𝟎.𝟎𝟏𝟑)

0.731
(±0.03)

0.735
(±0.007)

𝟎.𝟕𝟏𝟖
(±𝟎.𝟎𝟏𝟐)

PLANN 0.654
(±0.025)

0.666
(±0.036)

0.658
(±0.03)

0.633
(±0.058)

0.688
(±0.038)

𝟎.𝟕𝟑𝟗
(±𝟎.𝟎𝟎𝟗)

𝟎.𝟕𝟒𝟐
(±𝟎.𝟎𝟎𝟒)

0.704
(±0.009)

Note: The number in brackets is the standard deviation of the 𝑀 values.
Table 4
Mean of the 𝑀 values of BS at 5 years on the METABRIC test set with molecular and clinical covariates.

All variables Clinical variables

Model Boot DeepEns MCDrop BMask Boot DeepEns MCDrop BMask

CoxCC 0.168
(±0.015)

0.156
(±0.005)

0.158
(±0.006)

0.164
(±0.009)

0.149
(±0.005)

0.141
(±0.002)

0.140
(±0.002)

0.161
(±0.009)

CoxTime 0.165
(±0.008)

𝟎.𝟏𝟓𝟒
(±𝟎.𝟎𝟎𝟖)

𝟎.𝟏𝟓𝟒
(±𝟎.𝟎𝟎𝟒)

0.157
(±0.006)

𝟎.𝟏𝟒𝟑
(±𝟎.𝟎𝟎𝟒)

𝟎.𝟏𝟑𝟓
(±𝟎.𝟎𝟎𝟐)

0.134
(±0.003)

0.147
(±0.005)

DeepHit 𝟎.𝟏𝟓𝟔
(±𝟎.𝟎𝟎𝟐)

𝟎.𝟏𝟓𝟒
(±𝟎.𝟎𝟎𝟐)

𝟎.𝟏𝟓𝟒
(±𝟎.𝟎𝟎𝟑)

𝟎.𝟏𝟓𝟓
(±𝟎.𝟎𝟎𝟏)

0.150
(±0.002)

0.151
(±0.006)

0.149
(±0.001)

0.156
(±0.001)

PLANN 0.176
(±0.011)

0.178
(±0.063)

0.164
(±0.057)

0.180
(±0.065)

0.187
(±0.124)

0.133
(±0.002)

𝟎.𝟏𝟑𝟑
(±𝟎.𝟎𝟎𝟏)

𝟎.𝟏𝟒𝟓
(±𝟎.𝟎𝟎𝟕)

Note: The number in brackets is the standard deviation of the 𝑀 values.
Table 5
Mean of the 𝑀 values of C-index at 2 years on the LCE test set with molecular and clinical covariates.

All variables Clinical variables

Boot DeepEns MCDrop BMask Boot DeepEns MCDrop BMask

CoxCC 0.665
(±0.019)

0.672
(±0.022)

0.699
(±0.01)

0.695
(±0.012)

0.633
(±0.013)

𝟎.𝟔𝟒𝟔
(±𝟎.𝟎𝟎𝟒)

𝟎.𝟔𝟒𝟒
(±𝟎.𝟎𝟎𝟓)

0.578
(±0.034)

CoxTime 0.653
(±0.023)

0.673
(±0.018)

0.683
(±0.019)

0.659
(±0.02)

0.638
(±0.008)

0.645
(±0.005)

0.636
(±0.01)

0.639
(±0.011)

DeepHit 0.673
(±0.017)

0.697
(±0.028)

0.698
(±0.013)

0.647
(±0.007)

𝟎.𝟔𝟓𝟒
(±𝟎.𝟎𝟎𝟐)

0.634
(±0.028)

0.634
(±0.013)

0.638
(±0.018)

PLANN 𝟎.𝟔𝟖𝟖
(±𝟎.𝟎𝟏𝟓)

𝟎.𝟕𝟎𝟑
(±𝟎.𝟎𝟏𝟐)

𝟎.𝟕𝟎𝟎
(±𝟎.𝟎𝟏𝟒)

𝟎.𝟔𝟗𝟏
(±𝟎.𝟎𝟏𝟓)

0.628
(±0.022)

0.643
(±0.018)

𝟎.𝟔𝟒𝟒
(±𝟎.𝟎𝟎𝟔)

0.638
(±0.018)

Note: The number in brackets is the standard deviation of the 𝑀 values.
Table 6
Mean of the 𝑀 values of BS at 2 years on the LCE test set with molecular and clinical covariates.

All variables Clinical variables

Boot DeepEns MCDrop BMask Boot DeepEns MCDrop BMask

CoxCC 0.176
(±0.005)

0.172
(±0.004)

0.169
(±0.004)

0.169
(±0.005)

0.181
(±0.003)

𝟎.𝟏𝟕𝟖
(±𝟎.𝟎𝟎𝟏)

𝟎.𝟏𝟕𝟖
(±𝟎.𝟎𝟎𝟏)

0.187
(±0.006)

CoxTime 0.177
(±0.004)

0.171
(±0.004)

𝟎.𝟏𝟕𝟏
(±𝟎.𝟎𝟎𝟒)

0.178
(±0.008)

𝟎.𝟏𝟖𝟎
(±𝟎.𝟎𝟎𝟑)

0.180
(±0.001)

0.181
(±0.002)

𝟎.𝟏𝟕𝟗
(±𝟎.𝟎𝟎𝟏)

DeepHit 0.185
(±0.004)

0.192
(±0.006)

0.182
(±0.004)

0.176
(±0.001)

0.189
(±0.002)

0.186
(±0.001)

0.193
(±0.004)

0.190
(±0.001)

PLANN 𝟎.𝟏𝟕𝟐
(±𝟎.𝟎𝟎𝟓)

𝟎.𝟏𝟔𝟗
(±𝟎.𝟎𝟎𝟒)

0.172
(±0.005)

𝟎.𝟏𝟕𝟎
(±𝟎.𝟎𝟎𝟑)

0.183
(±0.026)

𝟎.𝟏𝟕𝟖
(±𝟎.𝟎𝟎𝟐)

𝟎.𝟏𝟕𝟖
(±𝟎.𝟎𝟎𝟏)

0.190
(±0.001)

Note: The number in brackets is the standard deviation of the 𝑀 values.
mean survival probability for Patient 4 was 0.960 with a confidence
interval of [0.885, 0.993].

6. Discussion

This paper develops confidence intervals for expected survival prob-
abilities using a combination of artificial neural networks. Our simula-
tion study assessed the performance of different uncertainty measures
by comparing various models’ survival predictions to the oracle value.
These methods were evaluated for two cohorts of cancer patients. We
also described expected survival estimates for two patients of each data
set, representing uncertainty at the patient level.

Regarding survival analysis, the neural network models defined in
a continuous time framework performed the best, with close results
between the two variants, CoxCC and CoxTime. In the simulation
study, the MLP models CoxCC and CoxTime performed similarly. As
the simulated data did not include time-dependent variables, there
was no reason for CoxTime to perform better. CoxTime obtained the
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highest C-indices for the two cohort studies, which confirms results
presented in other studies [32]. The discrete-time methods, DeepHit
and PLANN, had lower performances when compared to CoxCC and
CoxTime. DeepHit and PLANN can reach good discrimination capacities
at the cost of poorly calibrated survival estimates.

A comparison of combination methods shows that the Boot method
obtained encouraging results for the simulation study but was computa-
tionally the most costly; unfortunately, the computational cost could be
a drawback when training deep neural networks. Moreover, coverage
rates above 95% and the larger average length of confidence intervals
for this method indicate that it could be slightly too conservative.
DeepEns, MCDrop, and BMask performed well in terms of empirical
coverage. MCDrop was the second best method after the Bootstrap one,
although it was slightly anti-conservative in the simulations, reaching
a coverage rate slightly under 95%. Finally, MCDrop performed well
in the simulation study and the applications and was less computer-
intensive than Boot. Therefore, MCDrop may represent a reasonable
compromise in terms of coverage with regards of computational time,
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Fig. 3. Density estimate of expected survival probabilities using the MCDrop method with CoxTime, at 5 years for two patients with breast cancer on the left side and at 2 years
for two patients with lung cancer on the right side.
especially for deep neural networks, and we recommend to combine it
with the CoxTime model for survival analysis.

In the METABRIC breast cancer cohort, the neural networks had dif-
ficulty capturing additional prognostic information from the molecular
data, suggesting the clinical variables alone are sufficient. In contrast,
in the LCE cohort, the models led to substantially stronger discrimina-
tion values when adding molecular data to the clinical variables.

One of the limits concerning our combination strategies is that
we did not fully investigate the uncertainty resulting from model
misspecification. We could account for this type of uncertainty by
creating an ensemble of predictions based on different types of models.
This amounts to combining weighted predictions from multiple models.
Also, we could stack the predictions with the help of a meta-model.

Other sources of uncertainty have the potential to be analyzed in
future works. Applying data set shift to a model using adversarial
training [15], for example, can reveal variations in the input or the
output distributions, especially between the training and test sets.

The different combination methods investigated here could also
be applied to other types of neural network architectures, such as
Recurrent Neural Networks (RNN). For instance, Dusenberry et al. [35]
built an ensemble of RNNs using Deep Ensemble.

Software

The code to obtain the results in this article is available at https:
//github.com/Oncostat/Unmeasures_nnet.
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