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Tumor heterogeneity represents a major challenge in breast cancer, being associated with disease progression and
treatment resistance. Precision medicine has been extensively applied to dissect tumor heterogeneity and, through
a deeper molecular understanding of the disease, to personalize therapeutic strategies. In the last years,
technological advances have widely improved the understanding of breast cancer biology and several trials have
been developed to translate these new insights into clinical practice, with the ultimate aim of improving patients’
outcomes. In the era of molecular oncology, genomics analyses and other methodologies are shaping a new
treatment algorithm in breast cancer care. In this manuscript, we review the main steps of precision medicine to
predict drug sensitivity in breast cancer from a translational point of view. Genomic developments and their clinical
implications are discussed, along with technological advancements that could broaden precision medicine
applications. Current achievements are put into perspective to provide an overview of the state-of-art of breast
cancer precision oncology as well as to identify future research directions.
Key words: precision medicine, breast cancer, biomarkers, genomics, targeted therapy
INTRODUCTION

Breast cancer (BC) is the most common cancer among
women, with 2.3 million new cases diagnosed each year.
Despite substantial therapeutic improvements, BC remains
a major health problem and it is the first cause of female
cancer mortality, with 684 996 deaths estimated worldwide
each year.1,2

One of the major challenges in BC management is its
clinical heterogeneity in terms of treatment response and
outcome, which reflects a high molecular and cellular het-
erogeneity.3 To overcome such biological complexity, tech-
nological advances and high-throughput technologies have
been widely applied in cancer research, leading to the
identification of new prognostic and predictive biomarkers.
These efforts have allowed to move forward cancer treat-
ments from an indiscriminate use of cytotoxic agents to a
target-guided strategy. Nowadays, recent technologies are
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rapidly revolutionizing this field with exciting new potential-
ities, opening more advanced levels of molecular character-
ization and leading to new encouraging clinical applications.

Since the development of trastuzumab for the HER2-
positive disease, and more recently in the era of
antibodyedrug conjugates (ADCs), BC has represented a
paradigm of precision medicine in solid tumors and one of
the most studied cancers in this setting.4,5 Several addi-
tional biomarkers are now available, such as PIK3CA, ESR1
mutations, and germline BRCA1/2 mutations, while many
others are being investigated.6-8 Aiming to overcome the
one-size-fits-all approach and to dissect the biological het-
erogeneity of BC with a biomarker-based approach, cancer
precision medicine has opened the way to a new era of
breast oncology. In this rapidly evolving field, new chal-
lenges and future needs must be addressed to further move
precision oncology in clinical practice.

MODELLING CANCER BIOLOGY WITH GENOMICS

The current approach of precision medicine in metastatic
BC (mBC) aims to identify targetable genomic alterations in
each patient and to match them with the right therapy.9,10

This strategy presents a double clinical advantage: on the
one hand, a biomarker-guided approach could increase
https://doi.org/10.1016/j.esmoop.2024.102247 1
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Figure 1. Milestones of genomics in the path of precision medicine for breast cancer.
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treatment efficacy, focusing the therapeutic interventions
on tumors harboring specific alterations; and on the other
hand, selectively hitting these alterations could improve the
safety profile by sparing potential side-effects to patients
who are unlikely to derive some benefits.11 In addition,
precision medicine could reduce the financial burden on
health care systems, allowing a more cost-effective alloca-
tion of resources.12

Thus the workflow of precision medicine requires (i) the
acquisition of tumor specimens, (ii) the determination of a
molecular profile, (iii) data analysis through bioinformatic
tools, (iv) the identification of targetable alterations, and (v)
the administration of targeted therapy.13 In this context, a
genomic approach based on DNA sequencing, namely next-
generation sequencing assays, has been extensively studied
(Figure 1).
Genomic drivers

Characterization of the mechanisms of cancer progression
with genomics in mBC. DNA sequencing technologies have
allowed the identification of multiple mechanisms involved
in cancer development and tumor progression, and geno-
mics has rapidly become a cornerstone of precision
oncology.14 Currently, the identification of oncogenic
‘drivers’, defined as the genomic alterations that lead to
malignant transformation and cancer progression, is one of
the main applications of a genomic-based precision medi-
cine approach and an essential tool for modeling cancer
biology and dissecting BC heterogeneity.10

The rationale to look for oncogenic drivers at an indi-
vidual level derives from large studies on patients with mBC
reporting the ability of high-throughput technologies to
identify genomic alterations leading to cancer progression.
Bertucci et al.15 carried out whole exome sequencing of 617
patients with mBC, identifying recurrent genomic driver
2 https://doi.org/10.1016/j.esmoop.2024.102247
alterations guiding cancer progression in a large number of
patients. Indeed, genomic mutations widely described in
many cancer types, such as TP53 (47%) and PIK3CA (30%),
were confirmed, as well as genomic alterations specifically
enriched in mBC, such as ESR1 (17%) and KMT2C (10%).
Moreover, unexplored targets, such as NF1 (7%), were
identified. Subsequent large-scale genomic analyses
confirmed a similar shift in the mutational profiles of met-
astatic disease, with enrichments in potentially targetable
drivers.16-18

Clinical impact of targeting validated genomic drivers.
Considering the ability to identify recurrent driver muta-
tions in mBC through DNA sequencing technologies, the
clinical impact of a genomic-driven approach was also
evaluated, similar to other tumors such as non-small-cell
lung cancer and melanoma.19,20 For example, PIK3CA mu-
tations can be identified in w40% of hormone receptor
(HR)-positive mBC and are associated with chemoresistance
and poor outcomes.21,22 SOLAR-1 is a randomized phase III
trial that assessed the efficacy of alpelisib, an a-selective
phosphoinositide 3-kinase (PI3K) inhibitor, plus fulvestrant
in postmenopausal patients with HR-positive/HER2-
negative mBC who progressed to aromatase inhibitors.
Interestingly, progression-free survival (PFS) was signifi-
cantly improved by the addition of alpelisib as compared
with placebo in the cohort of patients with PIK3CA-mutated
mBC [11.0 versus 5.7 months; hazard ratio 0.65, 95% con-
fidence interval (CI) 0.50-0.85; P < 0.001], while no benefit
was observed in the subgroup of patients with PIK3CA-wild-
type mBC (7.4 versus 5.6 months; hazard ratio 0.85, 95% CI
0.58-1.25; posterior probability of hazard ratio <1.00,
79.4%).6,23 SOLAR1 has been one of the first studies to
identify a treatment benefit of an oncogene de-addiction
strategy based on the genomic profiling of mBC, demon-
strating the possibility of impacting tumor progression by
Volume 9 - Issue 3 - 2024
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targeting driver alterations.10 Moreover, the lack of efficacy
of the targeted agent in the absence of the specific genomic
mutation represented a further validation of the molecular
driver alteration. These data provided a proof of concept of
the clinical utility of genomics and highlighted the need to
carry out genomic testing in these patients.

As previously cited, other validated genomic biomarkers
are now available based on randomized phase III studies.
The EMERALD trial reported a significant PFS improvement
with elacestrant compared with standard of care among
patients with ESR1-mutated HR-positive/HER2-negative
mBC (hazard ratio 0.55, 95% CI 0.39-0.77; P ¼ 0.0005),
while no benefit was detected in the subgroup of patients
ESR1 wt (hazard ratio 0.86; 95% CI 0.62-1.18; P ¼ 0.3).8 The
OlympiAD and EMBRACA trials assessed the efficacy of
poly(ADP-ribose) polymerase (PARP) inhibitors in patients
with germline BRCA1/2 mutations and HER2-negative mBC,
showing an improvement in patient outcome.7,24 Several
other potential genomic drivers are currently being inves-
tigated in mBC, such as AKT1 mutations, FGFR1/2/3 muta-
tions/fusions, and germline/somatic alterations in
homologous recombination repair-related genes. However,
available results have yielded a mixed picture, with some
drugs matched to the genomic alteration demonstrating
notable efficacy, while others showing a limited impact,
highlighting limitations of the de-addiction strategy.25-27 For
instance, even tissue-agnostic biomarkers such as high-
tumor mutation burden failed to predict immune check-
point blockade response in mBC.28,29

Challenges of oncogene de-addiction. Despite strong bio-
logical rationale and encouraging results, the oncogene de-
addiction strategy must still address important challenges in
some complex scenarios.

One relevant issue is the co-existence of multiple mo-
lecular drivers at the tumor cell level. Indeed, in BC,
comutations have been reported in a large number of pa-
tients, leading to the need for combination therapies.15 As
an illustration, in HER2-positive mBC, the co-existence of
ERBB2 amplifications and PIK3CA alterations represents one
of the most common scenarios. A combined biomarkers
analysis of BOLERO-1 and BOLERO-3 trials showed that the
addition of everolimus, a mammalian target of rapamycin
(mTOR) inhibitor, to the anti-HER2 antibody trastuzumab
plus chemotherapy improved the outcomes of patients with
HER2-positive mBC and PI3K alterations. Therefore, despite
potential challenges in their development and safety, these
data endorse the feasibility and the clinical benefit of
combinations of customized agents.30

In addition, drug toxicity remains a major issue in a pre-
cision medicine approach, with new side-effects emerging.
Indeed, although the primary aim of targeted treatments is
to selectively target cancer cells, they have been linked to
diverse toxicities, often differing from those associated with
cytotoxic chemotherapy. In the SOLAR-1 trial, several pa-
tients treated with alpelisib developed G3-4 toxicities (most
frequently hyperglycemia in 36.6% of cases, rash in 9.9% of
cases, and diarrhea in 6.7% of cases) and 25% permanently
Volume 9 - Issue 3 - 2024
discontinued alpelisib due to adverse events.6 Another point
to highlight is pharmacogenomics, which assesses poly-
morphisms of genes that code for drug-metabolizing en-
zymes, such as tyrosine kinase inhibitors or ADCs, potentially
influencing efficacy and tolerability.31-34 For instance, a safety
analysis from the ASCENT trial reported different rates of
neutropenia in patients receiving sacituzumab govitecan ac-
cording to the UGT1A1 genotype.35 A pharmacogenomic
approach could therefore guide therapeutic choices and dose
modifications, preventing adverse events and improving
treatment compliance.

A further issue is the validation of rare genomic alter-
ations, which often remain an unmet medical need.
Although the genomic characterization of BC has identified
recurrent driver mutations, some oncogenic alterations
occur at a very low frequency.15 Given the challenge of
conducting randomized trials for rare genomic segments, the
development of targeted therapies presents additional dif-
ficulties. Nevertheless, rare genomic alterations may behave
like driver mutations, showing a major response to targeted
therapies. For instance, an outlier sensitivity to capivasertib,
an AKT inhibitor, has been reported in patients with mBC and
Cowden syndrome (germline PTENmutation).36 To overcome
these limitations, a new clinical research framework should
be promoted for rare genomic segments. In the setting of
rare genomic alterations, if a large treatment effect can be
expected on a hard clinical endpoint, single-arm registration
trials should be explored. In this scenario of a single-arm
registration trial, there is a need for historical controls. This
will be achieved through the development of large clinic-
genomics databases such as the American Association for
Cancer Research (AACR) project GENIE.37 Finally, efficacy
data should be confirmed, after initial regulatory approval, in
larger postapproval studies.38

Finally, the necessity of a reorganization of pathways of
care is emerging. To identify rare targetable mutations a wide
screening is required, and therefore a new model based on a
flow from broad access to genomic tests to few reference
centers. Many initiatives have promoted an equitable use of
comprehensive genomic profiling, as highlighted in Europe’s
Beating Cancer Plan and recent guidelines.39 However, the
implementation of precision oncology into routine care still
faces challenges in many health systems in terms of infra-
structure and reimbursements.9

Multigene sequencing and its effect on clinical endpoints.
The ability to identify recurrent genomic alterations and the
benefit observed by a targeted approach provided the
rationale to test multiple genes in individual patients.
Indeed, the heterogeneity of oncogenic alterations involved
in cancer progression, some of them occurring in a small
percentage of patients, requires a molecular selection
through wide genomic profiling.40

The feasibility of molecular screening of mBC based on
comprehensive multigene sequencing and the clinical utility
of targeted agents have been assessed in different clinical
trials.Themain features of prospective clinical trials (PubMed
searching strategy: ‘molecular profiling’ OR ‘molecular
https://doi.org/10.1016/j.esmoop.2024.102247 3
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Table 1. Clinical trials evaluating biomarker-matched treatments for mBC identified with high-throughput technologies

Study NCT registration
number

Randomized
trial

Patients with
BC evaluated, n

Prior lines of
treatment

Molecular analyses Patients with BC with
actionable alteration/
matched therapy, n (%)

Clinical endpoints Main results

Von Hoff et al.41 NCT00530192 No 18a �3 IHC/FISH and microarray
(51 genes)

18 (100) PFS ratio compared with the
previous line

44% of patients with BC with a
PFS ratio of �1.3

Tsimberidou et al.42 NCT00851032 No 143a >3 for 43% of
patients

PCR-based sequencing (10
genes) and IHC/FISH

87 (60.8) ORR and PFS and comparisons
with patients not treated with
matched therapy

ORR of 12% (versus 5%),
median TTF of 3.9 months (95%
CI 3.4-5.0) versus 2.2 (95% CI
2.0-2.8)b

André et al.43 NCT01414933 No 423 Any CGH array and Sanger
sequencing

195 (46) % of patients for whom a
targeted therapy could be
offered

55 (13%) patients received
targeted treatment based on a
genomic alteration

Le Tourneau et al.44 NCT01771458 Yes NAa Between 2 and 5 NGS (45 genes) 40 (NA) PFS in patients treated on
genotype-matched and
genotype-unmatched trials

A median PFS of 2.3 (95% CI
1.7-3.8) versus 2.0 (95% CI 1.8-
2.1) months among matched
and unmatched (P ¼ 0.41)b

trials
Schwaederle et al.45 NCT02478931 No 60a Median of 3 NGS (182 or 236 genes) 45 (75.0) Disease control rate, PFS, and

PFS ratio compared with the
previous line

Disease control rate of 33.3%,
median PFS of 4.0 (95% CI 3.2-
4.8) months, and PFS ratio
>1.3 in 54.3% of patients

Wheler et al.46 NCT02437617 No NAa �3 for 66% of
patients

NGS (236 genes) 317 (93.5)b Disease control rate and TTF in
patients treated on genotype-
matched and genotype-
unmatched trials

Disease control rate of 19%
versus 8% among matched and
unmatched (P ¼ 0.061) trials,
TTF of 2.8 (95% CI 2.1e3.5)
versus 1.9 (95% CI 1.5-2.3)
months (P ¼ 0.001)b

Stockley et al.47 NCT01505400 No 341a Median of 2 Three costumed panels (23,
48, or 50 genes)

130 (41.5) ORR in patients treated on
genotype-matched and
genotype-unmatched trials

ORR of 19% among genotype-
matched versus 9% in
genotype-unmatched trials
(P ¼ 0.026)b

Massard et al.48 NCT01566019 No 135a Median of 4 Targeted sequencing, CGH
array, RNA sequencing, and
whole-exome sequencing

38 (28) PFS ratio compared with the
previous line

36% of patients with BC with a
PFS ratio of >1.3

Mangat et al.49 NCT02693535 No NAa �3 for most
patients

Various NGS platforms 96 (NA) ORR ORR of 0% among 10 BCs with
no KRAS, NRAS, or BRAF
alterations treated with
cetuximab50; ORR of 21%
among 39 BCs with high tumor
mutation burden treated with
pembrolizumab29

Trédan et al.51 NCT01774409 No 275a >1 NGS (69 genes) 138 (50.2) ORR ORR of 13%
Sicklick et al.52 NCT02534675 No NAa Median of 2 NGS (236 or 405 genes),

ctDNA, and PD-L1 IHC
12 (NA) Disease control rate and PFS Disease control rate 50%, PFS

of 3.5 months (95% CI 0.57-
6.43)

Rodon et al.53 NCT01856296 No NAa Median of 3 NGS (264 genes) and
transcriptomics

4 (NA) ORR, PFS, and PFS ratio
compared with the previous
line

ORR 26.2%, PFS of 2.01
months; PFS ratio >1.5 in
22.4%b

Réda et al.54 NCT02840604 No 98a �3 for 60% of
patients

NGS (317 genes) 12 (12.2) PFS and PFS ratio compared
with previous treatment

PFS of 2.5 months (95% CI 2.2-
3.7) versus 2.4 months with
nontargeted therapy (95% CI
2.1-3.3), PFS ratio >1.3 in 26%b
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screening’OR ‘personalizedmedicine’OR ‘genomic profiling’)
are summarized in Table 1.

These studies provided a proof of concept of the feasi-
bility of using high-throughput technologies for extensively
profiling BCs in a timeframe compatible with clinical prac-
tice. In addition, most of them showed that a subset of
patients derives a clinical benefit from high-throughput
genomics. The rate of detection of actionable alterations
among patients with mBC was extremely variable,
depending on the technologies applied and the number of
genes investigated. The benefit showed with target therapy
was also highly variable because, for instance, in the SHIVA
study matched therapy comprised marketed drugs already
approved in other indications. Furthermore, caution should
be applied when comparing these data as these studies
were conducted at different stages of precision medicine
development, during which the availability of target agents
has widely changed.

To elucidate the clinical utility of multigene sequencing
technologies in daily practice in patients with mBC, a dedi-
cated randomized study was designed. SAFIR02 is a phase II
trial that enrolled patients with HER2-negative mBC pre-
treated with a maximum of one line of chemotherapy (and
resistant to endocrine therapy if HR positive). The genomic
profile was assessed by next-generation sequencing and
comparative genomic hybridization array at baseline. Pa-
tients without progressive disease after six to eight cycles of
chemotherapy and presenting a targetable genomic alter-
ation were randomized between targeted therapies and
maintenance chemotherapy. The primary objective of the
study was to evaluate whether targeted therapies improved
PFS as compared with maintenance chemotherapy. Out of
the 1462 patients included, 646 (44%) had a targetable
genomic alteration and 238 (16%) were randomized be-
tween maintenance chemotherapy (n ¼ 81) and targeted
therapy (n ¼ 157). Among the 115 patients with an ESMO
Scale for Clinical Actionability of Molecular Targets (ESCAT) I/
II genomic alteration, the median PFS was 9.1 months (90%
CI 7.1-9.8) and 2.8 months (90% CI 2.1-4.8) in the targeted
therapy and maintenance chemotherapy arms, respectively
(P < 0.001), whereas in the overall population there was no
significant difference in PFS between the two arms (P ¼
0.109).59 These data highlight that results of multigene
sequencing should be interpreted in the context of a
framework of target actionability, such as ESCAT, OncoKB, or
the classification of the Association for Molecular Pathology
(Figure 2).60-62

In this direction, liquid biopsy, through the analysis of
circulating tumor DNA (ctDNA), may represent an additional
tool to personalize treatment decisions in a dynamic and
noninvasive way. In the AURORA trial, Aftimos et al.17 re-
ported the ability of liquid biopsy to identify cancer muta-
tions. In their study, ctDNA successfully detected themajority
of actionable alterations in tissues (60% of cases). In addition,
there was a noteworthy finding in 11% of cases, where ESCAT
I/II mutations were identified in ctDNA but not in tissue
samples. Liquid biopsy may therefore represent a promising
complementary tool in precision oncology.
https://doi.org/10.1016/j.esmoop.2024.102247 5
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Figure 2. Genomic alterations according to ESCAT in metastatic breast cancer. ESCAT, ESMO Scale for Clinical Actionability of Molecular Targets.
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Genome evolution and secondary resistance

Despite our ability to identify recurrent driver mutations
and target them, cancer cells eventually develop secondary
resistance. Cancer evolution is emerging as a complex and
multifactorial process, greatly depending on the acquisition
of additional mutations and the subsequent clonal selection
under the pressure of endogenous and exogenous factors,
such as pharmacological treatments.63 In this context, ge-
nomics has also proven to be able to describe the mecha-
nism of genome evolution and, therefore, to characterize
the development of resistant clones. For instance, ESR1
mutation has been identified as a mechanism of clinically
acquired resistance to previous aromatase inhibitor therapy
in patients with HR-positive BC, being present in w20% of
patients with mBC treated with an aromatase inhibitor.64,65

One of the hot topics in the field of precision medicine is
the early identification of resistance mechanisms. This
question was addressed in the PADA1 trial, where patients
treated with first-line palbociclib plus aromatase inhibitors
were monitored for the development of an ESR1 mutation
in blood and, in case of detection or increase of the mu-
tation, randomized to switch endocrine therapy to fulves-
trant. The trial demonstrated the feasibility and PFS benefit
of monitoring resistance-associated mutations by ctDNA
analysis in patients with mBC.66

Moreover, the genomic approach may allow identifying
the molecular mechanisms behind the mutational processes
that lead to treatment resistance. For instance, APOBEC is a
family of cytidine deaminase involved in the transformation
of cytidine in thymine, therefore acting as a DNA mutator.67

An enrichment in APOBEC mutational signature in HR-pos-
itive/HER2-negative mBC compared with early BC was
6 https://doi.org/10.1016/j.esmoop.2024.102247
observed, raising the hypothesis that this pathway could be
involved in cancer evolution. In the future, the identification
of the processes involved in the acquisition of mutations
could allow us to block them and delay the occurrence of
drug resistance.15
Characterization of the mechanism of immune suppression
by genomics

Beyond the identification of targetable driver mutations,
genomics can also characterize the mechanism of immune
suppression and guide toward the administration of im-
mune checkpoint inhibitors. The SAFIR02-BREAST IMMUNO
trial evaluated the efficacy of immune checkpoint inhibitors
as maintenance treatment in patients with HER2-negative
mBC (n ¼ 199). While a lack of PFS and OS benefit was
observed in the overall population, exploratory analyses
showed an OS benefit in patients with triple-negative BC
(n ¼ 82; hazard ratio 0.54, 95% CI 0.30-0.97; P ¼ 0.04),
which became even more important in the subgroup of
patients with triple-negative BC (TNBC) plus CD274 gain/
amplification, where CD274 is the gene coding for pro-
grammed death-ligand 1 (PD-L1; n ¼ 23; hazard ratio 0.18,
95% CI 0.05-0.71; P ¼ 0.01). No significant improvement
was shown in patients with TNBC and CD274 normal/loss
(n ¼ 32; hazard ratio 1.12, 95% CI 0.42-2.99; P ¼ 0.81).68

CD274 amplification may lead to the overexpression of
PD-L1, which may represent a key mechanism of immune
suppression in these patients, leading to an outlier sensi-
tivity to anti-PD-L1. Genomics could therefore help identify
patients more likely to benefit from immunotherapy and
decrease the likelihood of treatment resistance.
Volume 9 - Issue 3 - 2024
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BEYOND GENOMICS, ASSESSING NEW DIMENSIONS OF
CANCER BIOLOGY

While the sequencing of coding regions of DNA has un-
doubtedly allowed moving forward in the field of precision
medicine, its impact is limited because other components of
cancer biology drive cancer progression and/or because
new drugs target other biological processes. To further
improve the impact of cancer precision medicine, multiple
teams have developed new technologies to carry out
comprehensive portraits of cancer beyond genomics.
� Cancer cell-related proteins and phosphoproteomics: BC
is one of the historical illustrations of the use of protein
expression to select patients for targeted therapies.
Indeed, ER and HER2 expressions have long been used
as criteria for selecting patients for endocrine therapy
and HER2-targeted agents, respectively. Phosphoproteo-
mics enables the assessment of protein activation, help-
ing to determine whether a mutation detected through
genomics results in pathway activation.69 For instance,
the ribosomal protein S6 (pS6) is phosphorylated by
the activation of the mTOR pathway, representing a po-
tential predictive biomarker of sensitivity to mTOR inhib-
itors. In the BOLERO-3 trial, 569 pretreated patients with
HER2-positive mBCs were randomized to receive
vinorelbineetrastuzumab plus everolimus or a placebo.
Despite a modest PFS benefit in the overall population,
a translational analysis suggested how high levels of
phosphorylated pS6 were associated with a high sensi-
tivity to everolimus.70 Assessing phosphoproteins could
be particularly relevant to monitor pharmacodynamics
and identify feedback loops in each patient receiving ki-
nase inhibitors, in order to modulate doses, schedule,
and develop combinations. Assessment of on-
treatment phosphokinome could also be done in circu-
lating tumor cells.71

� Transcriptomics: The study of RNA transcripts and their
functions and can be integrated with genomics to corre-
late DNA alterations with gene expression. Intrinsic sub-
types and further subclassifications have allowed to
better classify BC beyond immunohistochemistry classifi-
cation and to predict chemo-endocrine sensitivity.72-74

For instance, nonluminal subtypes within the HRþ/
HER2e disease have been associated with a poorer
response to endocrine therapy,75,76 while different tran-
scriptomic profiles have been reported among cells resis-
tant to different CdK4/6 inhibitors, which could have
relevant clinical implications.77 Therefore transcriptomics
represents a powerful tool to understand the phenotyp-
ical characteristics of BC and to guide treatment choices.
Intrinsic subtypes are now being used as inclusion
criteria in several prospective trials (e.g. NCT05207709,
NCT04251169, NCT02448420), potentially broadening
the use of transcriptomic signatures in clinical practice
for mBC. In addition, the analysis of ctDNA through liquid
biopsy has been demonstrated to be able to identify a
correlation between ctDNA-based signatures and RNA-
based intrinsic subtypes, overcoming important
Volume 9 - Issue 3 - 2024
limitations in the transcriptomic analysis of mBC.78 The
feasibility of using transcriptomic profiling for treatment
choice was first explored in the WINTHER trial. Patients
were evaluated through a gene expression panel carried
out in tumors and matched normal tissues. Among the
107 patients assessable for therapy, 38 (35.5%) were
selected based on RNA information, proving how tran-
scriptomics substantially increased the number of pa-
tients treated with a target agent.53

� In addition, in the DREAM project gene expression
microarrays were associated with the ability to predict
drug response in human BC cell lines, and drug sensi-
tivity was improved by the integration of DNA
sequencing data.79 In line with these findings, Pradat
et al.80 carried out an integrative pan-cancer genomic
and transcriptomic analysis of refractory metastatic can-
cers, including 98 BCs. The combination of genomic and
RNA-sequencing data allowed to confirm some validated
biomarkers of resistance and sensitivity to treatments, as
well as to identify new hypothetical resistance mecha-
nisms. With a similar aim, transcriptomic approaches
have been explored to identify predictive immune
markers. Paré et al.81 evaluated PD1 messenger RNA
expression across multiple cancer types, including BC;
the expression of PD1 was associated with anti-
programmed cell death protein 1 (PD-1) efficacy both
in The Cancer Genome Atlas and in a prospective valida-
tion series, confirming the possibility of developing clin-
ically applicable assays associated with immunotherapy
response.

� RNA sequencing could be complemented in the near
future by epigenomics. It is now feasible to assess chro-
matin status on a large scale thanks to the ATAC-seq
technology.82 ATAC-seq could improve the accuracy of
RNA-sequencing to identify dysregulated gene expres-
sion. For instance, Corces et al.83 carried out, through
ATAC-seq, a systematic chromatin accessibility profiling
of 23 cancer types, including 74 samples of BC. BC-
specific chromatin patterns were identified, as well as
different subgroups of BC according to transposase-
accessible DNA elements. Interestingly, it has been
shown by several teams that genes coding for methyl-
transferase (e.g. KMT2C, KMT2D) are altered in patients
who are resistant to endocrine therapy15,84 and epige-
nomic reprogramming has now been established as a
hallmark of cancer.85 Drugs targeting epigenetics are be-
ing tested in clinical trials, and developing ATAC-seq for
clinical use could help drive the development of new
drug families.

� Microenvironment: The tumor microenvironment repre-
sents a key component of cancer biology and, since the
development of immune checkpoint blockade therapy,
different immunological factors, such as immune check-
point molecules, cytokines, and immune cell composi-
tion, have been extensively studied through different
approaches.86 PD-L1, interacting with PD-1 on immune
cells and leading to tumor immune evasion, is the
most studied immune checkpoint and a biomarker for
https://doi.org/10.1016/j.esmoop.2024.102247 7
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immunotherapy in mBC.87 In addition, a better under-
standing of the crosstalk between tumoral cells and tu-
mor microenvironment allowed to identify other
targetable mechanisms of immune evasion, and other
immune checkpoint inhibitors are currently under inves-
tigation in clinical trials as potential therapeutic targets
to improve antitumoral response, such as lymphocyte
activation gene-3 (LAG-3), T-cell immunoglobulin and
mucin domain-containing protein 3 (TIM-3), T-cell immu-
noglobulin and ITIM domain (TIGIT).88 In the future,
technological breakthroughs such as single-cell-based
technologies and imaging mass cytometry could enable
further characterization of immunological features and
the identification of new targetable biomarkers, espe-
cially in patients deriving less benefit from current im-
mune checkpoint inhibitors.89 Wang et al. showed that
multicellular spatial organization assessed by imaging
mass cytometry is a determinant of resistance to im-
mune checkpoint inhibitors in patients with localized
https://doi.org/10.1016/j.esmoop.2024.102247
TNBC.90 Finally, the tumor microenvironment and its
crosstalk between cancer cells may play a role in treat-
ment resistance, including targeted agents. For instance,
the secretion of interleukin-8 by tumor-associated mac-
rophages and the subsequent activation of epidermal
growth factor receptor (EGFR) signaling has been associ-
ated with lapatinib resistance,91 while an immunosup-
pressive microenvironment has been associated with
resistance to anti-HER2-based neoadjuvant treatment.92

� Spatial biology: Technological developments have also
allowed to overcome some limitations of bulk analyses.
Spatial transcriptomic methodologies enable spatial
profiling of tumoral features, mapping gene activity up
to the single-cell level. This could allow a better under-
standing of spatial tumoral heterogeneity as well as of
tumor microenvironment. In addition, these new plat-
forms could be of major interest in predicting which
ADC or combination of ADCs should be given to a spe-
cific patient.93
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pipeline of precision oncology.
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� Patient-derived ex vivo devices: Patient-derived ex vivo de-
vices, such as organoids and spheroids, are one of the
most promising tools for functional precision medicine.
These assays are able to largely preserve the genomic,
epigenetic, and histological phenotype of a patient’s tu-
mor and to faithfully predict responses to systemic thera-
pies.94 Therefore, 3D cell cultures represent an ideal
preclinical model not only to study cancer development,
but also as personalized platforms for patient-specific
olume 9 - Issue 3 - 2024
drug screening. The potentiality of organoids as a drug
screening platform was evaluated with encouraging re-
sults,95 and ongoing trials are exploring the possibility of
guiding treatment choice according to organoid sensitivity
(NCT04931381). In addition, patient-derived xenograft,
developed by transplanting tumoral cells into immunode-
ficient mice, represents a further tool to preclinically
analyze tumor features better recapitulating cancer het-
erogeneity and tumor microenvironment.94,96
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NEW METHODS OF DATA ANALYSIS AND DATA
INTEGRATION

Artificial intelligence applied to digital pathology

Artificial intelligence applied to digital pathology could
address three challenges in the near future: it could assist
the pathologist in the interpretation of markers that are
difficult to read, it could detect populations with a high
likelihood of presenting a rare molecular alteration, and it
could identify new predictors of drug sensitivity. Some
proof-of-concept works have already shown how artificial
intelligence applied to histological slides may help with
relevant oncological questions. For example, Kather et al.97

used hematoxylin and eosin slides of colorectal cancer to
detect patients with a high likelihood of microsatellite
instability. Similarly, Garberis et al.98-100 applied a deep
learning algorithm to HR-positive/HER2-negative BC treated
with upfront surgery to identify features associated with a
poor outcome and to predict the risk of distant recurrence
within 5 years.
Multimodal data integration

As mentioned in the ‘Introduction’ section, the long-term
goal of precision medicine efforts is to reach cancer ava-
tars that recapitulate the tumor biology at the individual
scale, through the integration of multiple translational
features, the analysis of data from similar large cohorts, and
the creation of multidimensional tools that recapitulate
cancer and host features (Figure 3). To reach this goal, there
is a need to integrate multiple components of biology
derived from unidimensional analyses to define a compre-
hensive molecular and cellular portrait of the cancer.

There are two different strategies to generate compre-
hensive molecular portraits. The first one is a bottomeup
approach where all the biomarkers that have a significant
impact are selected to reduce the dimensions of the data
sets, and are further integrated to define a comprehensive
portrait of cancer. For example, estrogen receptor expres-
sion and PIK3CA mutations are integrated to define a subset
of patients with BC who should receive endocrine therapy
plus PI3K inhibitors. This strategy of data integration, more
conservative, requires that each biomarker is validated in
clinical trials.

The other approach to cancer modeling is a topedown
approach. It consists in analyzing simultaneously multiple
components of biology thanks to a combination of high-
throughput technologies in order to integrate the data
types and provide deeper biological insights compared with
individual omics.79,101 They can also be used to develop
multisource prediction models using new methods of arti-
ficial intelligence learning integrative and compact data
representation.102 This approach requires large sample sizes
and has yet to show its clinical impact (Figure 4).

PERSPECTIVES

The advancement in molecular profiling provided by the
wider use of biotechnologies has opened new challenges.
10 https://doi.org/10.1016/j.esmoop.2024.102247
The ultimate clinical goal of cancer precision medicine is a
patient-centered approach with individualized therapies.
Although technological improvements will likely allow the
identification of targetable driver alterations in most pa-
tients, one of the main limitations to face in the next years
could be the lack of compounds able to target the identified
alterations. In other words, more precise modeling of tumor
biology and a deeper fragmentation of cancers in multiple
rare subtypes could lead to the conclusion that the needed
drug does not exist yet. Therefore the future need to
address will be the personalized construction of the specific
drugs necessary for each patient with cancer. To overcome
the complexity of drug discovery, new tools of clinical
pharmacology should be applied to develop new molecules.
Ongoing trials are evaluating the feasibility of a patient-
personalized treatment through organoids (NCT04931381)
or CAR-T cells (NCT03970382), and in the future, the
application of artificial intelligence and pharmacogenomics
could accelerate this process. To maximize the potentiality
of modern biotechnologies in the evolving landscape of
precision oncology, a shift of the therapeutic algorithm to-
ward a further level of individualization should be encour-
aged and should be thoroughly evaluated in clinical trial
programs.
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