
HAL Id: inserm-04605232
https://inserm.hal.science/inserm-04605232

Submitted on 7 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Model-based bioequivalence approach for sparse
pharmacokinetic bioequivalence studies: Model selection

or model averaging?
Morgane Philipp, Adrien Tessier, Mark Donnelly, Lanyan Fang, Kairui Feng,
Liang Zhao, Stella Grosser, Guoying Sun, Wanjie Sun, France Mentré, et al.

To cite this version:
Morgane Philipp, Adrien Tessier, Mark Donnelly, Lanyan Fang, Kairui Feng, et al.. Model-based bioe-
quivalence approach for sparse pharmacokinetic bioequivalence studies: Model selection or model av-
eraging?. Statistics in Medicine, 2024, Online ahead of print. �10.1002/sim.10088�. �inserm-04605232�

https://inserm.hal.science/inserm-04605232
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Received: 16 February 2023 Revised: 16 March 2024 Accepted: 14 April 2024

DOI: 10.1002/sim.10088

R E S E A R C H A R T I C L E

Model-based bioequivalence approach for sparse
pharmacokinetic bioequivalence studies: Model selection
or model averaging?

Morgane Philipp1 Adrien Tessier2 Mark Donnelly3 Lanyan Fang3

Kairui Feng3 Liang Zhao3 Stella Grosser4 Guoying Sun4 Wanjie Sun4

France Mentré1 Julie Bertrand1

1Université Paris Cité, IAME, INSERM,
Paris, France
2Clinical Pharmacometrics, Quantitative
Pharmacology, Servier, Suresnes, France
3Division of Quantitative Methods and
Modeling, Office of Research and
Standards, Office of Generic Drugs,
Center for Drug Evaluation and Research,
U.S. Food and Drug Administration, Silver
Spring, Maryland, USA
4Office of Biostatistics, Office of
Translational Sciences, Center for Drug
Evaluation and Research, U.S. Food and
Drug Administration, Silver Spring,
Maryland, USA

Correspondence
Morgane Philipp, Université Paris Cité,
IAME, INSERM, 75018 Paris, France.
Email: morgane.philipp@inserm.fr

Funding information
U.S. Food and Drug Administration,
Grant/Award Number: 75F40119C10111

Conventional pharmacokinetic (PK) bioequivalence (BE) studies aim to com-
pare the rate and extent of drug absorption from a test (T) and reference
(R) product using non-compartmental analysis (NCA) and the two one-sided
test (TOST). Recently published regulatory guidance recommends alternative
model-based (MB) approaches for BE assessment when NCA is challenging,
as for long-acting injectables and products which require sparse PK sampling.
However, our previous research on MB-TOST approaches showed that model
misspecification can lead to inflated type I error. The objective of this research
was to compare the performance of model selection (MS) on R product arm data
and model averaging (MA) from a pool of candidate structural PK models in
MBBE studies with sparse sampling. Our simulation study was inspired by a
real case BE study using a two-way crossover design. PK data were simulated
using three structural models under the null hypothesis and one model under
the alternative hypothesis. MB-TOST was applied either using each of the five
candidate models or following MS and MA with or without the simulated model
in the pool. Assuming T and R have the same PK model, our simulation shows
that following MS and MA, MB-TOST controls type I error rates at or below
0.05 and attains similar or even higher power than when using the simulated
model. Thus, we propose to use MS prior to MB-TOST for BE studies with sparse
PK sampling and to consider MA when candidate models have similar Akaike
information criterion.

K E Y W O R D S
bioequivalence, model averaging, model selection, non-linear mixed effect models,
two one-sided test

Abbreviations: AIC, Akaike information criterion; AUC, area under the curve; BE, bioequivalence; BSV, between-subject variability; BOT,
bioequivalence optimal test; Cmax , maximum concentration; CI, confidence interval; EMA, European Medicine Agency; FDA, Food and Drug
Administration; FIM, Fisher information matrix; GLMEM, general linear mixed effect model; GMR, geometric mean ratio; LOQ, limit of
quantification; MA, model averaging; MB, model-based; MC, Monte Carlo; MCMC, Monte Carlo Markov chains; MS, model selection; NCA,
non-compartmental analysis; NLMEM, non-linear mixed effect model; PK, pharmacokinetics; R, reference; RUV, residual unexplained variance;
SAEM, stochastic approximation of expectation-maximization; SE, standard error; SP, secondary parameter; T, test; TOST, two one-sided test;
WSV, within-subject variability.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2024 Servier and The Author(s). Statistics in Medicine published by John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their
work is in the public domain in the USA.

Statistics in Medicine. 2024;1–14. wileyonlinelibrary.com/journal/sim 1

https://orcid.org/0000-0001-9827-316X
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://wileyonlinelibrary.com/journal/SIM
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsim.10088&domain=pdf&date_stamp=2024-06-07


2 PHILIPP et al.

1 INTRODUCTION

Bioequivalence (BE) studies are key in the development of generic drugs and new formulations of an approved drug
product. The U.S. Food and Drug Administration (FDA) states that a proposed drug product, or a test (T) product, is
bioequivalent to a reference listed drug, or a reference (R) product, if the rate and extent of absorption of the drug
do not show a significant difference from the rate and extent of absorption of the listed drug when administered at
the same molar dose of the therapeutic ingredient under similar experimental conditions in either a single dose or
multiple doses.1

Conventionally, the two metrics used for BE evaluation are the area under the curve (AUC) and the maximum plasma
concentration (Cmax), which respectively characterize the extent and rate of absorption, and the statistical test performed
is the two one-sided test (TOST) proposed by Schuirmann.2 When using average BE analysis, FDA (2001) and European
Medicines Agency (EMA, 2010) recommend that if the 90% confidence interval (CI) of the geometric mean ratio (GMR,
e.g., the anti-log of the difference of means in log-transformed pharmacokinetic (PK) metric between T and R) is con-
tained within the BE limits 0.8 and 1.25, BE is concluded.3,4 The 2001 FDA guidance states that “due to the nature of
normal-theory confidence intervals, this is equivalent to carrying out two one-sided tests of hypothesis at the 5% level of
significance (Schuirmann, 1987).”3

Regulatory authorities typically recommend BE studies to be conducted using a single-dose, two-period,
two-sequence, two-treatment, crossover (two-way crossover) study design and PK data to be analyzed using
non-compartmental analysis (NCA).4,5 NCA is a model-independent approach which requires few assumptions, but rich
data is recommended. For instance, FDA recommends that PK sampling includes 12 to 18 samples with at least three
sampling points after the peak.1 Individual AUC are then derived using the trapezoidal rule and the treatment effects on
AUC and Cmax are obtained using a general linear mixed effect model (GLMEM) on individual log-transformed AUC and
Cmax.

In 2011, our group had proposed a model-based (MB) approach for BE assessment (MB-TOST) where PK data are
analyzed using a non-linear mixed effect model (NLMEM) with a treatment effect on all fixed effects. MB-TOST provided
comparable results to the NCA-TOST in BE PK studies with rich data.6 MB-TOST even outperformed the non-parametric
bootstrap NCA-based approach recommended by FDA for PK BE studies on ophthalmic drug products using a parallel
design with only one PK sample taken per patient if the underlying PK structural model can be correctly specified.7
However, due to under-estimation of the asymptotic standard errors (SE) on sparse data, MB-TOST showed inflated type
I error rates.6 Thus, we proposed alternative methods for SE calculation at finite distance.8 In addition, we proposed a
bioequivalence optimal test (BOT), which can be more efficient than TOST.9

In a broader context, model-based drug development (MIDD) has demonstrated its ability to improve the effectiveness
of drug development and the regulatory decision-making process. Indeed, it efficiently streamlines time and resource
allocation during the initial phases of learning, while also providing valuable insights for the subsequent confirmatory
stages of development.10 Recent revisions to Population Pharmacokinetics Guidance for Industry, published by FDA in
February 2022, note that MB approaches can be an alternative for evaluating the BE of long-acting injectables, products
with sparse PK sampling or other scenarios when NCA becomes challenging.11 The absence of harmonization should
be contributed to an under utilization of MIDD methods in both drug development and regulatory decision-making.10

However, the guidance notes that “for such applications, the model’s intended use and its regulatory impact determine
the level of robustness needed for model evaluation”.11 Thus, a robust model evaluation may provide opportunities to
utilize the insights gained from available data for optimal designs, improve the understanding of confirmatory studies,
and diminish reliance on conventional methods during drug development when they are not feasible.10 One notable
challenge with using MB approach to assess BE is the lack of information or consensus on the true PK model of the
reference product. In this case, a pool of candidate models may be considered in the MBBE approach. Our previous
evaluation of PK BE studies with sparse PK sampling and parallel design on drugs with a long half-life, showed that a
model selection (MS) step on the R product arm data could prevent a type I error inflation due to model misspecification
when the T product arms have the same PK model as the R product arms.12 Another method, model averaging (MA),
which allows for model uncertainty, has recently showed good statistical properties in dose finding clinical trials13-15 as
well as model-informed precision dosing.16 MS and MA have been compared in numerous other situations, but our study
investigated the potential utility of these methods in MBBE evaluation of PK studies with sparse sampling, which present
certain challenges using conventional BE methods.17

The aim of the present work was to compare the impact of MS and MA in BE evaluation for PK studies with sparse
sampling when a pool of candidate structural PK models is available. Of note, we did not explore misspecification of
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PHILIPP et al. 3

the random-effect and/or residual error variability models. First, we studied the concentrations of amlodipine collected
in a single-dose, two-way crossover BE study of two formulations of a drug used to treat hypertension, developed at
Servier.18 MS and MA were applied to the real case study data using the original sampling times and a subset of sparse
sampling times, with a pool of ten candidate models, then MB-TOST was applied. Second, we performed a simulation
study to evaluate the impact of MS and MA in BE evaluation using MB-TOST in terms of type I error rate and power
when T and R have the same PK structural model. We simulated with three different structural PK models under the null
hypothesis and with one model under the alternative. MS and MA in BE evaluation using MB-TOST were applied to the
simulated datasets with a pool of four to five candidate models whether the simulated model was excluded or included
in the pool.

2 MODEL-BASED BIOEQUIVALENCE

2.1 Model-based two one-sided tests

MB-TOST has been previously studied in sparse sampling PK BE studies using parallel6,8,12 and crossover6,8 designs.
In a cross-over study with two treatments (R and T), two periods and two sequences (RT and TR), the NLMEM

describing the drug concentration yijk of individual i ∈ {1, … ,N}, at sampling time tijk with j ∈ {1, … ,nik}, for the
period/occasion k ∈ {1, 2} can be written as follows:

yijk = f (tijk, 𝜙ik) +
(

a + b × f (tijk, 𝜙ik)
)
× 𝜖ijk

with f the non-linear structural model depending on 𝜙ik the p-dimensional vector of individual parameters for subject i
at occasion k. 𝜖ijk ∼ N(0, 1) refers to the measurement error for the individual i, at the time tijk, for the period k with a the
intercept and b the proportional term of the residual unexplained variability (RUV) model. To ensure positiveness, we
use log-normally distributed parameters. Therefore, all the elements of the vector 𝜙ik can be detailed as follows, here we
consider the case of the lth element:

log(𝜙ikl) = log(𝜇l) + 𝛽T
l × Tik + 𝛽P

l × Pk + 𝛽S
l × Si + 𝜂il + 𝜅ikl

with 𝜇l the fixed effect of the reference product for the lth PK parameter. Tik, Pk and Si correspond to the two-dimensional
vector of treatment, period and sequence covariates with the first element being considered as the reference. Con-
sequently 𝛽T

l , 𝛽P
l and 𝛽

S
l are two-dimensional vectors of treatment, period and sequence effect coefficients for the lth

PK parameter with a 0 as first element. 𝜂il and 𝜅ikl correspond to random-effects of individual i at occasion k for the
parameter l respectively capturing the between and within subject variability (BSV and WSV) where 𝜂i ∼ N(0,Ω) and
𝜅ik ∼ N(0,Γ) are the p-dimensional random-effect vectors andΩ and Γ are the p × p variance covariance matrices. Finally,
𝜃 = (𝜇, 𝛽T

, 𝛽

P
, 𝛽

S
,Ω,Γ, a, b) is the vector of parameters to be estimated with AUC and Cmax being secondary parameters

(SP) from the PK model. Additional steps are necessary to obtain the treatment effect estimate of the SP, ̂𝛽T
SP (ie, ̂𝛽T

AUC

and ̂
𝛽

T
Cmax

), and their associated SE; calculation details are provided in Appendix A. For a full explanation of this method,
please refer to appendix 2 of Guhl et al.12

The null hypothesis of the TOST, H0: {𝛽T
SP ≤ −𝛿 or 𝛽T

SP ≥ 𝛿} is decomposed in two one-sided hypotheses: H0,−𝛿 ∶ {𝛽T
SP ≤

−𝛿} and H0,𝛿 ∶ {𝛽T
SP ≥ 𝛿} and these two hypotheses can respectively be tested with the following statistics:

W−𝛿 =
̂
𝛽

T
SP + 𝛿

SE( ̂𝛽T
SP)

and W
𝛿
=

̂
𝛽

T
SP − 𝛿

SE( ̂𝛽T
SP)

where ̂
𝛽

T
SP is the treatment effect estimate for the secondary parameter of interest and SE( ̂𝛽T

SP) its standard error estimate.
The null hypothesis is rejected and BE is established if W−𝛿 ≥ z1−𝛼 and W

𝛿
≤ −z1−𝛼 where z1−𝛼 is the 1 − 𝛼 quantile of

the normal distribution N(0, 1) with 𝛼 = 5%. Similarly, BE can be concluded when the 90% CI of the GMR = exp( ̂𝛽T
SP) is

included in [exp(−𝛿), exp(𝛿)] = [0.8, 1.25].
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4 PHILIPP et al.

2.2 Model selection

We considered a pool of M structural models with m ∈ {1, … ,M} to select from. The reference product arm data are
fitted with all M structural PK candidate models. In these models, the fixed effects, the variance-covariance matrix of the
random-effects capturing the BSV, as well as the error model terms were estimated, that is, ̂𝜃R = (�̂�, ̂Ω, â, ̂b). Indeed, no
treatment, period, and sequence effects were included and WSV was not estimated.

Here, the model selection is performed according to the Akaike information criterion AIC = −2 × log( ̂L) + 2×dim( ̂𝜃R)
where ̂L is the maximized likelihood. The model with the smallest AIC is selected.

The selected structural PK model is, then, fitted to both arm data and MB-TOST is applied using this model estimates.
Here, we make the assumption that R and T products have the same structural PK model.

We believe it is preferable to apply MS of the structural PK model on R arms only and not to use data from the T
product arms at that stage of the analysis. Nonetheless, we also investigated MS of the structural PK model on both the R
and T product arms.

2.3 Model averaging

Both reference and test product arm data are fitted with all M structural PK candidate models. In these models, the fixed
effects, the period, sequence and treatment effects, the variance-covariance matrix of the random-effects capturing the
BSV and the WSV, as well as the error model terms were estimated, that is, ̂𝜃 = (�̂�, ̂𝛽T

,
̂
𝛽

P
,
̂
𝛽

S
,
̂Ω, ̂Γ, â, ̂b). A weight is then

associated to each of the M candidate models. The weight is not a known constant but is derived from the model’s AIC,
as Buatois et al15 showed this criterion to have the best predictive performance for dose-response modelling:

wm =
exp(−ΔAICm∕2)

∑M
m′=1 exp(−ΔAICm′∕2)

where AICm is the AIC = −2 × log( ̂L) + 2×dim( ̂𝜃) of the mth model andΔAICm = AICm −min(AIC1, … ,AICM). The for-
mula is derived from the Schwarz’s (1978)19 approximation of the Bayes factor,20 such that the two models with the same
AIC value are given the same weight whether or not they have the same penalty (2×dim( ̂𝜃)).

Then, with wm we derive the 𝛽T
SP estimate as follows:

̂
𝛽

T
SP =

M∑

m=1
wm × ̂

𝛽

T
SPm

with ̂
𝛽

T
SPm

the treatment effect estimate on the secondary parameter of interest of the model m. The formula by Turek
et al21 is used to obtain the SE( ̂𝛽T

SP):

SE( ̂𝛽T
SP) =

M∑

m=1
wm

√(
SE

(
̂
𝛽

T
SPm

)
×

t
𝜈m,1−𝛼

z1−𝛼

)2

+
(
̂
𝛽

T
SPm

− ̂
𝛽

T
SP

)2

with SE( ̂𝛽T
SP) the SE of the treatment effect estimate of the mth model, t

𝜈m,1−𝛼 the (1 − 𝛼) quantile of the t-distribution with
𝜈m = 2N−dim(𝜇m) degrees of freedom8 and z1−𝛼 the (1 − 𝛼) quantile of the standard normal distribution.

2.4 Implementation

We used the stochastic approximation of expectation-maximization (SAEM) estimation algorithm to estimate all model
parameters. SE were derived from the variance-covariance estimation matrix

(
̂VAR( ̂𝜃)

)
estimated as the inverse of the

Fisher information matrix (FIM) obtained by linearization. The log-likelihood was estimated by importance sampling
with the concentrations below the limit of quantification (LOQ) contributing as left-censored data. For numerical reasons,
models with wm < 0.005 on a dataset were removed from the candidates pool for this dataset and new weights were
calculated with the reduced pool.
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PHILIPP et al. 5

The auto-stop criteria, which enables switching automatically from the exploratory phase to the smoothing phase,
was deactivated to have similar conditions between the runs. Similarly, the simulated annealing, which allows a wider
exploration of the estimate space for a longer time, was deactivated as there is accumulated knowledge prior to BE stud-
ies.22 The numbers of exploratory and smoothing phase iterations were fixed to K1 = 1000 and K2 = 500, respectively.
Initial values for the parameters fixed effects, a and b can be found in Supplementary Material (Table S1 in Supplementary
Data S1), between and within subject standard deviations were initialised at 1 (to enable a wide exploration of the param-
eter estimate space) and treatment, period and sequence effect coefficients were initialised at 0 (as a neutral start for the
exploration). The number of Monte Carlo Markov chains (MCMC) of the SAEM algorithm was set to 5 and increased to
10 when difficulties were met to obtain the SE of the fixed effects and treatment effects required to calculate the SE of the
AUC and Cmax treatment effects.

Data management and visualization were performed with R version 4.0.3 using the packages dplyr, tydiverse and
ggplot2. PK modelling was performed with Monolix 2020R1 and automatized using the Monolix application programming
interface for R with the lixoftConnector package, the corresponding R code ran on the INSERM, Université Paris Cité,
UMR 1137, computing center with R version 4.1.2. The MB-TOST statistics were calculated using R version 4.0.3.

3 REAL CASE STUDY

3.1 Data

The real case study was based on data from a Servier phase I, open-label, randomised, two-way, single-dose, crossover
study in healthy volunteers,18 conducted in 2006, comparing two treatments for hypertension; a reference product with
two tablets: perindopril ter-butylamine (8 mg)+ amlodipine (10 mg) and a test product with one tablet fixed combination
of perindopril arginine (10 mg) + amlodipine (10 mg). In this work, only the amlodipine concentrations were considered
for the BE assessment.

During each period, the 36 healthy volunteers enrolled in the study received 10 mg of amlodipine at time t = 0 and
22 PK samples were collected pre-dose and at 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4, 6, 8, 10, 12, 16, 24, 36, 48, 72, 96, 144, 192 and
240 h after the dose. The amlodipine concentrations were determined by a validated LC-MS/MS method, with a LOQ at
0.05 𝜇g/L.18 A 3-week washout separated the two periods. Two sequences were defined (sequence 1: RT and sequence 2:
TR). Half of the patients were assigned to sequence 1 and the other half to sequence 2.

Our group proposed MB-TOST as an alternative to NCA for PK data with sparse sampling.6 So, to challenge MB-TOST
on the real case study data, we selected six sampling times out of the 22 from the original study empirically based on the
observation of the PK profiles, to create a sparse dataset. We selected the sampling time of 0.25 h to capture a potential
delay in the absorption phase, sampling times at 3, 6, and 12 h to capture the Cmax, and sampling times at 72 and 144 h to
capture the elimination phase.

3.2 Analysis

In the work by Rohatagi et al,23 amlodipine PK was best described by a one-compartment model with a delayed first
order absorption and a linear elimination. They explored different absorption models and number of compartments for
distributions were considered. As such, we defined a pool of M = 10 candidate PK models detailed in Table 1.

BE was assessed on the rich and sparse datasets using MS and MA.

3.3 Results

The amlodipine individual concentration profiles in the rich and sparse datasets are displayed in Figure 1.
The model which best described the concentrations in the reference product arms of the rich and sparse datasets was

the TRANSIT_2-COMPT model (Table S2 in Supplementary Data S1), with the highest number of parameters, and MA
on both arm data of the rich and sparse datasets gave a weight = 1 to this model. Consequently, MB-TOST was applied
using the parameter estimates of the TRANSIT_2-COMPT model following both MS and MA. The parameter estimates
of the model selected on the R arms, with their SE, can be found in Table S3 in Supplementary Data S1 for the rich and
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6 PHILIPP et al.

T A B L E 1 Description, name and list of parameters for the ten structural PK models in the pool of candidates.

Description Name Parameters

One compartment model with first order absorption 1-ORDER_1-COMPT ka, V/F, Cl/F

Two compartments model with first order absorption 1-ORDER_2-COMPT ka, V1/F, Cl/F, V2/F, Q/F

One compartment model with zero order absorption 0-ORDER_1-COMPT Tk0, V/F, Cl/F

Two compartments model with zero order absorption 0-ORDER_2-COMPT Tk0, V1/F, Cl/F, V2/F, Q/F

One compartment model with delayed first order absorption LAG_1-ORDER_1-COMPT Tlag, ka, V/F, Cl/F

Two compartments model with delayed first order absorption LAG_1-ORDER_2-COMPT Tlag, ka, V1/F, Cl/F, V2/F, Q/F

One compartment model with delayed zero order absorption LAG_0-ORDER_1-COMPT Tlag, Tk0, V/F, Cl/F

Two compartments model with delayed zero order absorption LAG_0-ORDER_2-COMPT Tlag, Tk0, V1/F, Cl/F, V2/F, Q/F

One compartment model with transit absorption TRANSIT_1-COMPT ktr, Mtt, ka, V/F, Cl/F

Two compartments model with transit absorption TRANSIT_2-COMPT ktr, Mtt, ka, V1/F, Cl/F, V2/F, Q/F

Abbreviations: Cl/F, apparent clearance; ka, absorption constant rate; ktr, transit rate; Mtt, mean transit time; Tk0, absorption duration; V/F, apparent volume
of the central compartment; V1/F, apparent volume of the compartment 1; V2/F, apparent volume of the compartment 2; Q/F, apparent inter-compartmental
clearance.

F I G U R E 1 Spaghetti plots of amlodipine individual log-concentration versus time profiles in the original data with rich sampling (top)
and sparse sampling (bottom) ordered by sequence and period (R: reference and T: test product).
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PHILIPP et al. 7

T A B L E 2 Geometric mean ratio [90% confidence interval] using a model-based (MB) and non-compartmental analysis (NCA) for AUC
and Cmax on the original data with rich sampling and using a MB analysis only on the data with sparse sampling.

Rich Sparse

Method AUC Cmax AUC Cmax

MB* 1.00 [0.97, 1.04] 1.04 [0.99, 1.10] 1.00 [0.96, 1.04] 0.97 [0.85, 1.12]

NCA 1.00 [0.97, 1.04] 1.03 [0.99, 1.07]

*Because the weight associated to the TRANSIT_2-COMPT model was equal to 1, MS and MA led to the same results.

sparse data sets, respectively, and on both arms R and T in Table S4 in Supplementary Data S1. Parameter estimates were
similar with larger SE on the sparse dataset for the variances of the absorption parameters and the additive term of the
RUV model.

For both rich (original) and sparse datasets, MB-TOST led to the conclusion that the R and T products were bioe-
quivalent with GMR 90% CI for AUC and Cmax included in the [0.8, 1.25] range (Table 2). On the rich (original) dataset,
MB-TOST and the traditional BE method (NCA-TOST calculated from observation data) led to the same result.18

MS on both the R and T product arms led to the same results (Table S2 in Supplementary Data S1).

4 SIMULATION STUDY

4.1 Settings

We simulated a PK BE study using a single-dose, two-way crossover design with 40 subjects based on the real case study
data. Twenty subjects were assigned to sequence 1 (RT) and 20 subjects were assigned to sequence 2 (TR). Each patient
received a 10 mg dose of amlodipine at time t = 0 of each period. All subjects were sampled at 0.3, 3, 6, 12, 72, 144 h
post-dose for both periods.

Under the null hypothesis of bioinequivalence, we set 𝛽T = log(1.25) on apparent clearance and volume parameters
and we simulated three scenarios, each with a different structural PK model. We used the three PK models which best
described the real case study original data in the reference product arms: TRANSIT_1-COMPT, TRANSIT_2-COMPT
and LAG_0-ORDER_2-COMPT (see Table S2 in Supplementary Data S1). The simulated PK parameter fixed effects are
reported in Table 3. They are derived from the fit of the R arms of the real case study data (Table S3 in Supplementary
Data S1). We simulated only one scenario under the alternative hypothesis of bioequivalence of the R and T products,
with 𝛽T = log(1.05) using the TRANSIT_2-COMPT model. Under both hypotheses, no sequence and period effects (ie,
𝛽

S = 0 and 𝛽P = 0) were simulated.
We simulated high levels of variability (ie, BSV = 50% and WSV = 30%) for all PK parameters. Of note, BSV and WSV

were estimated at 10% to 60% and 5% to 80%, respectively, on the real case study data (Table S4 in Supplementary Data S1).
The additive term of the residual error variance model was simulated at 0.02𝜇g/L and the proportional term at 30%
(b = 14% on the real case study data (Tables S3 and S4 in Supplementary Data S1)).

For each scenario, S = 200 datasets were simulated (ie, 800 in total) using the simulx function of the mlxR package in
R version 4.0.3.

4.2 Analysis

We considered a pool of M = 5 candidate models to fit the simulated data: TRANSIT_1-COMPT, TRANSIT_2-COMPT,
LAG_0-ORDER_2-COMPT, LAG_1-ORDER_2-COMPT and LAG_0-ORDER_1-COMPT models (cf. Table 1 for model
parameters). The first three models described correspond to the simulated models. The latter two models described were
included because they provided a simpler model of absorption and combined absorption and distribution, respectively,
when compared to the simulated models.

BE was assessed for each of the 800 simulated datasets using each of the five PK models in the pool of candidates, MS,
and MA. Both MS and MA were performed with and without the simulated model in the pool of candidates.
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8 PHILIPP et al.

T A B L E 3 Parameter fixed effect values for the three simulated structural PK models.

TRANSIT_1-COMPT TRANSIT_2-COMPT LAG_0-ORDER_2-COMPT

Parameter (units) Value Parameter (units) Value Parameter (units) Value

𝜇ktr (/h) 1.2 𝜇ktr (/h) 1.4

𝜇Mtt (h) 1.2 𝜇Mtt (h) 0.9 𝜇Tlag (h) 0.3

𝜇ka (/h) 1.3 𝜇ka (/h) 0.6 𝜇Tk0 (h) 3.7

𝜇Cl∕F (L/h) 40 𝜇Cl∕F (L/h) 41 𝜇Cl∕F (L/h) 41

𝜇V∕F (L) 2130 𝜇V1∕F (L) 1660 𝜇V1∕F (L) 1890

𝜇Q∕F (L/h) 42 𝜇Q∕F (L/h) 18

𝜇V2∕F (L) 600 𝜇V2∕F (L) 400

4.3 Evaluation

We evaluated the type I error rate of the MB-TOST for AUC and Cmax on the three scenarios simulated under H0 and the
power on the scenario simulated under H1. The 95% CI around the estimated type I error rates and powers were calculated
assuming a binomial distribution. Type I error rates were compared to 0.05 with an exact two-sided binomial test at the
level 5%.

4.4 Results

Under H0, the simulated profiles were very similar across the three structural PK models simulated (Figure S1 in Supple-
mentary Data S1). Further, the spaghetti plots were more scattered than the real data (Figure 1) due to the larger simulated
RUV (30%).

Of note, BE could not always be assessed when using one model from the pool of candidates, especially when fitting the
LAG_0-order_2-COMPT model and/or fitting data simulated with the TRANSIT_1-COMPT model. Indeed, the additional
steps to calculate ̂

𝛽

T
Cmax

and the associated SE relies on Monte Carlo (MC) calculations (see Appendix A) and numerical
issues arised especially in these two cases (Table S5 in Supplementary Data S1).

Figure 2 displays the estimation errors of the treatment effect on AUC and Cmax under H0 and H1. For both AUC and
Cmax, the treatment effect coefficients were estimated without bias using each model from the pool of candidates, MS
or MA with and without the simulated model included in the pool (ie, TRANSIT_1-COMPT, TRANSIT_2-COMPT or
LAG_0-ORDER_2-COMPT), with the exception of ̂𝛽T

Cmax
using TRANSIT_1-COMPT and TRANSIT_2-COMPT models to

analyze the data even when these two models were the models that were used to generate the PK data. These results could
be explained by the sparse design, which may be sub-optimal for TRANSIT models. To illustrate, the TRANSIT_2-COMPT
model was used to estimate seven PK parameters using only six sampling times. Conversely, a rich design with more
sampling times in the absorption phase performed better with the TRANSIT models (see Figure S3 in Supplementary
Data S1). Indeed, the estimation errors for ̂

𝛽

T
Cmax

using the TRANSIT models varied from −109 to 38.
Figure 3 displays the proportion of datasets for each scenario where models from the pool of candidates (including or

excluding the simulated model) are selected. The probability to select the simulated model was 0.28, 0.41 and 0.48 when
simulating with the TRANSIT_1-COMPT, TRANSIT_2-COMPT and LAG_0-ORDER_2-COMPT model under H0, respec-
tively, and 0.39 when simulating with the TRANSIT_2-COMPT model under H1. MS appeared driven first by the number
of compartments and second by the type of absorption. Indeed, when data were simulated with the TRANSIT_2-COMPT
model and the later was not included in the pool of candidates, models with two compartments were preferentially
selected whereas when data were simulated with the TRANSIT_1-COMPT model and the later was not included in the
pool of candidates, then the TRANSIT_2-COMPT model was preferentially selected.

Figure 4 displays the distribution of model averaging weights for the five models whether the simulated model is
included or excluded from the candidates pool. In 68% and 73% of the datasets simulated under H0 and H1, respectively,
MA was equivalent to MS with one of the model from the pool of candidates having a weight close to 1; a mixture of two
models was observed in 25% and 24% of the datasets and a mixture of more than two models in 7% and 4%.
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PHILIPP et al. 9

F I G U R E 2 Boxplot (2.5th, 25th, 50th, 75th and 97.5th percentiles) of the estimation errors of the treatment effect on AUC (top) and
Cmax (bottom), for the five models from the pool of candidates, model selection (MS) and averaging (MA) with and without (w/o) the
simulated model when simulating with the TRANSIT_1-COMPT, the TRANSIT_2-COMPT and the LAG_0-ORDER_2-COMPT model under
H0 and with the TRANSIT_2-COMPT model under H1. Note: 3.6% and 9.6% of the estimation errors were > 1 for AUC and Cmax, respectively,
on datasets simulated with the TRANSIT_1-COMPT model under H0 and 3.4% and 6.7% on datasets simulated with the TRANSIT_2-COMPT
model under H1.

Table 4 displays MB-TOST type I error rates when simulating with the TRANSIT_1-COMPT, the TRANSIT_2-COMPT
and the LAG_0-ORDER_2-COMPT model under H0 for AUC and Cmax when analyzing the data using each of the five
models, MS or MA with or without the simulated model in the pool of candidates. Likewise, Table 4 also displays the
power estimates when simulating with the TRANSIT_2-COMPT model under H1. For AUC, the type I error rates were
not significantly different from 0.05 regardless of the structural PK model used to fit the data. However, the type I error
rates for Cmax were sometimes significantly lower than 0.05. Overall, MA and MS, with the simulated model included or
excluded from the pool of candidate, in general performs similarly in terms of type I error rate and power. The highest
power estimates were obtained with the LAG_0-order_1-COMPT model even if it was not the simulated model. Using
MS and MA led to similar power as using the simulated model for AUC and greater power for Cmax.

MS when performed on both the R and T product arms obtained comparable results to MS on the R product arms
only in terms of proportion of selected model (Figure S2 in Supplementary Data S1), type I error rates and powers (Table
S6 in Supplementary Data S1) in our simulations where T was simulated to have the same structural model as R.
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10 PHILIPP et al.

F I G U R E 3 Proportion of datasets where the five candidate models were selected, with the simulated model included or excluded from
the pool of candidates, when simulating with the TRANSIT_1-COMPT, the TRANSIT_2-COMPT and the LAG_0-ORDER_2-COMPT model
under H0 and with the TRANSIT_2-COMPT model under H1.

5 DISCUSSION

In the present work, we applied MS and MA approaches to the MBBE analysis of a two-way crossover study conducted by
Servier. The MB analysis of the original data with rich and sparse sampling led to consistent estimates and conclusions
compared to the NCA analysis. Of note, this BE phase I study was meant for illustrative purposes. Indeed, the use of the
MBBE approach is intended to be an alternative when the NCA-based approach may not be feasible, such as in BE studies
involving special populations. For instance, the collection of rich PK sampling may not be feasible or ethical in BE studies
involving children, oncology patients, or immunocompromised patients.24

In our simulations, we evaluated the performance of MB-TOST in presence of a pool of five structural PK model can-
didates. We considered the combinations of different types of distribution (one vs. two compartments) but also different
types of absorption (first or zero-order and delay captured with a lag time or transit compartments), the later being of inter-
est when comparing different drug formulations. First, we showed that MS and MA led to type I errors not significantly
different from 0.05 while ensuring a reasonable power. Actually, we did not observe the type I error inflation reported by
Dubois et al6 using the simulated model with a similar sample size or reported by Guhl et al12 in the case of model mis-
specification. Both attributed the type I error inflation to an underestimation of the standard error of the treatment effect.
Here, we did not use D-optimal design to define the sampling times in the sparse scenario as performed by Dubois et al6
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PHILIPP et al. 11

F I G U R E 4 Distribution of model averaging weights for the five models, with the simulated model included or excluded from the pool
of candidates, when simulating with the TRANSIT_1-COMPT, the TRANSIT_2-COMPT and the LAG_0-ORDER_2-COMPT model under H0

and with the TRANSIT_2-COMPT model under H1.

and Guhl et al.12 This choice likely led to large standard errors preventing a type I error inflation and reducing power.
The absence of type I error inflation may also be due to the high variability of the simulated model (WSV = 30%). Indeed,
the power of a two-way crossover study is linked to WSV, likewise type I error rate. Second, we showed that the power of
MS and MA was similar to that of the simulated model for AUC and better for Cmax, even though it was lower than using
a couple of PK models (with fewer parameters) which were not used to simulate the data. Actually, when using the sim-
ulated model we obtained the lowest power because the sampling scheme was sub-optimal for the TRANSIT_2-COMPT
model which requires the estimation of seven PK parameters. In addition, the power of limited (sparse) data of a small
study (40 subjects) for estimation of seven PK parameters is lower than that when estimating fewer parameters. Indeed,
when simulating with a rich sampling design (as in the real case study data) the TRANSIT_2-COMPT model led to
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12 PHILIPP et al.

T A B L E 4 Type I error rates and powers with their 95% confidence interval for AUC and Cmax for the five models, model selection (MS)
and averaging (MA) with and without (w/o) the simulated model in the pool of candidates, when simulating with the TRANSIT_1-COMPT,
the TRANSIT_2-COMPT and the LAG_0-ORDER_2-COMPT model under H0 and with the TRANSIT_2-COMPT model under H1.

Under H0 Under H1

TRANSIT_1-COMPT TRANSIT_2-COMPT LAG_0-ORDER_2-COMPT TRANSIT_2-COMPT

AUC Cmax AUC Cmax AUC Cmax AUC Cmax

TRANSIT_1-COMPT 5.5 [2.8, 9.7] 1.5 [0.3, 4.3] 4.0 [1.7, 7.7] 1.5 [0.3, 4.3] 3.0 [1.1, 6.4] 0.5 [0.0, 2.8] 79.0 [72.7, 84.4] 36.5 [29.8, 43.6]

TRANSIT_2-COMPT 5.6 [2.8, 9.8] 0.5 [0.0, 2.8] 3.5 [1.4, 7.1] 1.0 [0.1, 3.6] 5.5 [2.8, 9.6] 1.5 [0.3, 4.3] 55.5 [48.3, 62.5] 38.0 [31.2, 45.1]

LAG_0-ORDER_2-COMPT 4.5 [1.8, 9.0] 2.6 [0.7, 6.4] 3.2 [1.2, 6.8] 3.2 [1.2, 6.8] 4.1 [1.8, 8.0] 1.0 [0.1, 3.7] 46.2 [38.9, 53.7] 61.3 [53.9, 68.3]

LAG_1-ORDER_2-COMPT 3.8 [1.5, 7.6] 2.2 [0.6, 5.4] 4.0 [1.8, 7.8] 2.5 [0.8, 5.8] 3.6 [1.5, 7.3] 2.6 [0.8, 5.9] 52.0 [44.8, 59.2] 52.5 [45.3, 59.6]

LAG_0-ORDER_1-COMPT 6.0 [3.1, 10.2] 4.2 [2.1, 8.4] 7.0 [3.9, 11.5] 5.0 [2.4, 9.0] 6.0 [3.2, 10.3] 2.0 [0.6, 5.1] 80.2 [74.3, 85.8] 82.5 [76.5, 87.5]

MS 5.5 [2.8, 9.6] 2.0 [0.5, 5.0] 4.5 [2.1, 8.4] 1.5 [0.3, 4.3] 4.5 [2.1, 8.4] 1.5 [0.3, 4.3] 56.0 [48.8, 63.0] 57.5 [50.3, 64.4]

MS w/o the simulated model 5.5 [2.8, 9.6] 2.0 [0.5, 5.0] 4.0 [1.7, 7.7] 3.0 [1.1, 6.4] 4.5 [2.1, 8.4] 1.5 [0.3, 4.3] 56.5 [49.3, 63.5] 63.0 [55.9, 69.7]

MA 6.0 [3.1, 10.2] 0.5 [0.0, 2.8] 4.0 [1.7, 7.7] 1.0 [0.1, 3.6] 4.0 [1.7, 7.7] 1.5 [0.3, 4.3] 54.5 [47.3, 61.5] 52.0 [44.8, 59.1]

MA w/o the simulated model 5.5 [2.8, 9.6] 0.5 [0.0, 2.8] 4.0 [1.7, 7.7] 2.5 [0.8, 5.7] 3.5 [1.4, 7.1] 1.5 [0.3, 4.3] 55.5 [48.3, 62.5] 58.5 [51.3, 65.4]

Note: Estimates with their 95% confidence interval in italic indicate that the type I error is significantly lower than 0.05 according to an exact two-sided binomial test with 5% type I
error.

unbiased and precise estimates (Figure S3 in Supplementary Data S1) and similar power estimates to that of the other
models (71% for AUC and 80% for Cmax in Table S8 in Supplementary Data S1). Of note, two compartment models with
rich sampling better described Cmax, but bias at the parameter level due to model misspecification was similar in both
arms, consequently the estimated ̂

𝛽

T
Cmax

were hardly impacted (see Figure S4 in Supplementary Data S1).
The challenging simulation study design (sampling scheme and high variabilities) also led to the selection of the simu-

lated model in only 28%, 41% and 48% of the cases when simulating with the TRANSIT_1-COMPT, TRANSIT_2-COMPT
and LAG_0-ORDER_2-COMPT model under H0, respectively, and 39% of the cases when simulating with the
TRANSIT_2-COMPT model under H1. With regard to the BSV and WSV, our simulation settings were close to the thresh-
old for highly variable drugs set by the regulatory agencies with WSV of approximately 30% for AUC and Cmax (Table S9
in Supplementary Data S1). However, the reference scaled BE approach1 for highly variable drugs is not applicable for
the two-way crossover study design considered in our simulations. Moreover, our simulation settings of RUV at 30% led
to low power estimates notably for Cmax, which estimation depends on a subset of samples, whereas AUC is based on an
average over all concentrations. We chose a challenging combination of high values for the variabilities but, arguably, we
did not consequently increase the number of subjects to achieve the usually targeted power of 80%.

Here, as in previous works, we simulated and fitted the data with the same model for the R and T product arms. We
deem this hypothesis reasonable as the treatments under comparison in BE studies are expected to behave similarly in
terms of processes of absorption (delayed or not), elimination (linear or non linear) and distribution (number of compart-
ments) at least for small molecules. However, we recognise the interest of exploring the performance of MS and MA prior
to MB-TOST when simulating the R and T product arms with different PK models. Yet, we believe the PK model selection
should only be based on R product arm data. If MS is also performed on T product arm data, it could inflate the overall BE
assessment type I error rate. With MA, no model is selected, therefore the overall BE assessment type I error rate is mostly
spent on MB-TOST when R and T have the same PK model. It would also be interesting to investigate the impact of other
model misspecifications, error, and variability models on the performance of MS and MA as well as BE assessment.

Further, we estimated a treatment effect on all absorption parameters, apparent volumes and clearances instead of
using a scaling parameter capturing the drug bioavailability (F). This approach is more costly in terms of number of
parameters to estimate but we showed it can be more flexible.12

Finally, no added value was observed with MA compared to MS because, in most datasets, one model had a weight
equal to 1. Mathematically, a model is assigned a weight of 1 (and the others a weight of 0.05% or less, the threshold used
in this work see Section 2.4) when it has an AIC lower by ten points. We hypothesize that such small AIC differences can
be expected when comparing structural models with one parameter fixed to different values. Here the PK models were
too different with regard to the absorption and distribution processes yielding non negligible differences in log likelihood.
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PHILIPP et al. 13

Further for any additional structural parameter, we added six estimates (fixed effect, treatment, period and sequence
coefficients, BSV and WSV). Thus, prior to MB-TOST, we propose to use MS on the R product arm data in the first place
and consider MA only if the differences in AIC are below ten points, presuming differences of the same magnitude will
be observed on R and T product arm data. Buatois et al15 showed the superiority of MA for model-based dose-response
studies in at least one of their simulation study scenarios. The discrepancy between our conclusions and those of Buatois
et al15 emphasizes the need for further assessment of MA and MS in MIDD under various scenarios and for different
purposes in drug development.10
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APPENDIX A. ESTIMATION OF THE TREATMENT EFFECT ON AUC AND Cmax AND THEIR
ASSOCIATED SE

We calculated ̂
𝛽

T
SP as a function h(�̂�−, ̂𝛽T−) with 𝜇− a subset of the vector of structural PK model parameter fixed effects

and ̂
𝛽

T− a subset of the vector of treatment effect coefficients.
When h had an analytical form, ̂𝛽T

SP was derived analytically and we used the delta method to calculate SE( ̂𝛽T
SP). Other-

wise, we performed Monte Carlo (MC) calculations. A total of kMC = 1, … ,KMC parameters values were sampled from a
multi-normal with mean (�̂�−, ̂𝛽T−) and variance ̂VAR(�̂�−, ̂𝛽T−). Then KMC reference and treatment concentration profiles
were calculated to derive KMC reference and treatment SP of interest. Minimum values for �̂�− (𝜇min) were set to enable
realistic concentration profiles. Finally, ̂𝛽T

SP and SE( ̂𝛽T
SP) were estimated by computing the mean and the standard devia-

tion of the KMC differences in the log SP of interest for the reference and test product arm data (= log(SPT) − log(SPR)). A
minimum number of MC samples KMC,min was required, otherwise BE can not be assessed.

We performed KMC = 1000 MC samples using the function mvrnorm of the package MASS, setting the minimum
number of samples KMC,min to 800, 𝜇min was set to 1 for apparent volumes and to 0.01 for other parameters.
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