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Abstract
Immunotherapy cancer clinical trials routinely feature an initial period during
which the treatment is given without evident therapeutic benefit, which may be
followed by a period during which an effective therapy reduces the hazard for
event occurrence. The nature of this treatment effect is incompatible with the
proportional hazards assumption, which has prompted much work on the devel-
opment of alternative effect measures of frameworks for testing. We consider
tests based on individual and combination of early- and late-emphasis infimum
and supremum logrank statistics, describe how they can be implemented, and
evaluate their performance in simulation studies. Through this work and illus-
trative applications we conclude that this class of test statistics offers a new
and powerful framework for assessing treatment effects in cancer clinical trials
involving immunotherapies.

K E Y W O R D S

censored data, delayed treatment effect, immunotherapy cancer trial, supremum statistic

1 INTRODUCTION

The proportional hazards model and associated logrank test are widely adopted for the analysis of censored data from
randomized clinical trials (RCT) with time-to-event endpoints. While the logrank test is the most powerful test for
detecting treatment effects within the class of proportional hazards (PH) models, the power can be greatly reduced

Abbreviations: PH, proportional hazards; PWPH, piecewise proportional hazards.
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under nonproportional hazards relationship. This is the case in cancer immunotherapy randomized clinical trials (RCTs)
where immunological responses can take weeks or months to manifest.1,2 This observation has resulted in a consider-
able amount of recent work on methods for designing and analyzing clinical trials with potentially delayed treatment
effects. Using evidence from reconstructed individual patient data, Fleming-Harrington (F-H) logrank tests with weight
functions emphasizing late differences, along with their supremum versions, have been recommended to increase sen-
sitivity for detecting drug effects on survival in cancer vaccine or immunotherapy oncology trials.1,3 It has been noticed
that late-emphasis logrank tests can lead to a considerable loss of power under non PH hazards other than delayed treat-
ment effects.4,5 To increase the sensitivity to PH alternatives and general non-PH alternatives, versatile tests based on
the maximum of multiple F-H logrank test statistics have been proposed1,6-8 and recently advocated as primary analy-
sis in oncology trials.9,10 In this paper we introduce new late-emphasis test statistics based on infimum and supremum
logrank statistics obtained by successively deleting the first failure events. We also define combination test procedures
based on the simultaneous use of early and late-emphasis infimum and supremum logrank statistics to increase the sen-
sitivity to detect non-PH differences. According to our numerical studies, the proposed tests provide adequate test sizes
under null differences and maintain empirical powers close to the power of the standard logrank test under PH assump-
tions. The new combination test procedure aimed at assessing the superiority of an experimental drug is found to be at
least as sensitive to early and late survival differences as the versatile test called MaxCombo recently advocated in oncol-
ogy trials.10 When there are concerns about delayed treatment effects and/or general non-PH situations, we conclude
that late-emphasis and combination test procedures based on infimum and supremum logrank statistics created by suc-
cessively analyzing or deleting the first failures offer an alternative powerful strategy for assessing treatment effects in
cancer clinical trials. The remainder of this paper is organized as follows. In Section 2 we define notation, the class of F-H
logrank statistics along with the definition of maximum combination tests using multiple F-H logrank statistics. Section 3
examines the infimum and supremum versions of logrank test statistics, the new combination tests, some elements of
large sample theory and computational guidelines on implementation. Numerical studies and illustrative applications in
immunotherapy oncology trials are discussed in Section 4 and Section 5, respectively. The paper concludes with general
remarks in Section 6.

2 BACKGROUND

We consider the setting of a two-arm clinical trial in which n individuals are randomized to receive the experimental treat-
ment or standard of care, with the aim of following them over (0, 𝜏]where 𝜏 denotes the administrative censoring time. We
let Ti be the time to the clinical endpoint and Li the loss to follow-up time giving right censoring time Ci = min(Li, 𝜏) for
individual i, i = 1, … ,n. We define group 0 (Zi = 0) as those assigned to receive standard care and group 1 (Zi = 1) as those
assigned to receive the experimental treatment. Then if Xi = min(Ti,Ci) and Δi = I(Xi ≤ Ci), data from the full sample
are given by {(Xi,Δi,Zi) , i = 1, … ,n}. Let Sk(t) be the survival function in group k, Sk(t) = P(Ti ≻ t|Zi = k), k = 0, 1. Our
interest lies in two-sample nonparametric tests of the null hypothesis H0 ∶ S1(t) = S0(t) for all t. In counting process nota-
tion we let Yi(t) = I(Xi ≥ t) indicate that individual i is at risk (event-free and uncensored) at t, and let Ni(t) = I(Xi ≤ t,Δi =
1) indicate that the failure event occurred and was observed by time t; then Y 1(t) =

∑n
i=1Yi(t)Zi and N1(t) =

∑n
i=1Ni(t)Zi

denote the number of subjects at risk and the number of failures observed by time t in group 1, respectively; likewise
Y 0(t) =

∑n
i=1Yi(t)(1 − Zi) and N0(t) =

∑n
i=1Ni(t)(1 − Zi) and we write Y (t) =

∑n
i=1Yi(t) and N(t) =

∑n
i=1Ni(t). We let n0 =

∑n
i=1(1 − Zi) and n1 =

∑n
i=1Zi be the numbers of individuals assigned to group k, k = 0, 1 and n = n0 + n1. F-H logrank

statistics commonly used when the goal is to detect differences between two survival distributions over a particular period
can be expressed generally as,

S
𝜌,𝛾
=
∫

𝜏

0
W(t)

[

dN1(t) − Y 1(t)
dN(t)
Y (t)

]

,

with W(t) =
[
̂G(t−)

]
𝜌
[
1 − ̂G(t−)

]
𝛾

, 𝜌 ≥ 0, 𝛾 ≥ 0 and ̂G(t) denotes the Kaplan-Meier estimate of the survival function in the
pooled sample.11 In order to achieve optimum power, the predetermined weight function W(t) should be proportional
to 𝛽(t) = log(𝜆1(t)) − log(𝜆0(t)), where 𝜆0(t), 𝜆1(t) are the hazard rate functions in each group, k = 0, 1.5,12 Setting 𝜌 = 0
and 𝛾 = 0, S0,0 reduces to the logrank statistic which has optimum power under proportional hazards alternatives. Ver-
satile test procedures based on the simultaneous use of multiple standardized F-H logrank test statistics FH𝛾,𝜌 have been
proposed to achieve robust performance under various type of non-PH alternatives.7,8,10 Lee7 showed that a maximum
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combination test based on an early-emphasis logrank test FH1,0 and a late-emphasis logrank test FH0,1 is nearly as sensi-
tive as its individual components in detecting early and late survival differences. More recently, the MaxCombo test based
on the combination of the F-H test statistics, FH0,0

,FH1,0
,FH0,1 and FH1,1, have been recommended in oncology trials to

provide robust performance under more general alternatives8,10.10 It has also been shown that the combination of FH0,0

with a sequence of piecewise weighted logrank test statistics created after successively deleting events during an initial
period provide robust performance under PH and general delayed treatment alternatives.13-15 Since all these combina-
tion tests follow an asymptotic multivariate normal approximation with independent increments covariance structure,
the P-values can be obtained using algorithms originally designed for group sequential testing.

3 LATE-EMPHASIS AND COMBINATION TESTS BASED ON INFIMUM
AND SUPREMUM LOGRANK STATISTICS

3.1 Late-emphasis infimum and supremum logrank statistics

Denote by H0 the null hypothesis to be tested, H0 ∶ S1(t) = S0(t) for all t ∈ (0, 𝜏], S
𝛾,𝜌
(t) the weighted logrank statistics

evaluated by time t

S
𝛾,𝜌
(t) =

∫

t

0
W(t)

[

dN1(t) − Y 1(t)
dN(t)
Y (t)

]

,

and �̂�

2
𝛾,𝜌

the variance estimator for weighted logrank statistics

�̂�

2
𝛾,𝜌
=
∫

𝜏

0
W2(t)Y0(t)Y1(t)

Y (t)

(
Y (t) − dN(t)

Y − 1

)(
dN1(t)
Y1(t)

− dN0(t)
Y0(t)

)

.

Gill,16 Fleming et al17 have shown the superiority of Renyi-type supremum logrank statistics �̂�

−1
𝛾,𝜌

supt≥0
|
|S𝛾,𝜌

(t)||
to the traditional logrank test in a variety of non PH settings, including early differences in survival. Denote by ̃S0,0(t)
the sequence of logrank type statistics obtained by successively deleting the failure events prior to time t,

̃S0,0(t) =
∫

𝜏

t

[

dN1(t) − Y 1(t)
dN(t)
Y (t)

]

, t ≥ 0.

To give more emphasis to late survival differences, we propose to test for H0 vs the upper alternative H1 ∶ S1(t) ≻ S0(t)
using the infimum statistic inf t∈(0,𝜏] ̃S0,0(t) and to test for H0 vs the lower alternative H1 ∶ S1(t) ≺ S0(t)using the supremum
statistic supt∈(0,𝜏]

̃S0,0(t). In the following these statistics will be referred to as the late-emphasis infimum logrank statistic
(le-Inf ) and the late-emphasis supremum logrank statistic (le-Sup). Given ̃S0,0(t) = S0,0 − S0,0(t), it follows from the stan-
dard martingale representation given in (1) that ̃S0,0(t) is asymptotically equivalent under H0 to the sum of martingales

n∑

i=1
∫

𝜏

t

[

Zi −
y1(u)
y(u)

]

dMi(u), t ≥ 0,

where yk(t) = limnk→∞ n−1
k Y k(t), y(t) = y0(t) + y1(t) and dMi(t) = dNi(t) − Yi(t)𝜆(t)dt. As a consequence of the central

limit theorems for martingales, the process n−
1
2 ̃S0,0(t) converges weakly to a zero-mean Gaussian process when n → ∞.

Following Lin et al,18 we can approximate P-values as the sample proportions

1
M

M∑

m=1
I
(

inf
t∈(0,𝜏]

̃Sm(t) ≤ le-Inf
)

and 1
M

M∑

m=1
I
(

sup
t∈(0,𝜏]

̃Sm(t) ≥ le-Sup
)

where ̃Sm(t) =
∑n

i=1I(t ≤ Xi)ΔiUm
i

[

Zi −
n−1

1 Y 1(Xi)
n−1Y (Xi)

]

are independent realizations obtained under the null by sampling

random normal deviates Um
i , m = 1, … ,M, i = 1, … ,n, and replacing martingale increments dMi(t) and limiting val-

ues y1(t), y(t) by randomly perturbed terms Um
i dNi(t) and consistent sample estimates n−1

1 Y 1(t), n−1Y (t), respectively.
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1984 BOHER et al.

Similarly, two-sided P-values are derived as sample proportions

1
M

M∑

m=1
I
(

sup
t∈(0,𝜏]

|
|
|
̃Sm(t)||

|
≥ |le-Sup|

)

.

where |le-Sup| = supt∈(0,𝜏]
|
|
|
S0,0(t)

|
|
|
.

3.2 Combination test using extreme values of logrank statistics

It is shown that logrank statistics S0,0(t) evaluated at time t are asymptotically equivalent under H0 to the sums19

n∑

i=1
∫

t

0

[

Zi −
y1(u)
y(u)

]

dMi(u), t ≥ 0. (1)

Let Inf = inf t∈(0,𝜏] S0,0(t) and Sup = supt∈(0,𝜏] S0,0(t). To achieve robust power performance under general alternatives,
including PH, early and late survival differences, we propose to test for H0 vs one-sided alternatives, H1 ∶ S1(t) ≻
S0(t) or H1 ∶ S1(t) ≺ S0(t), for some t ∈ (0, 𝜏] , using the combination test statistics Combo-Inf = min(Inf, le-Inf) and
Combo-Sup = max(Sup, le-Sup), respectively. Again, one-sided P-values can be approximated using sample proportions

M−1
M∑

m=1
I
(

min( inf
t∈(0,𝜏]

Sm(t), inf
t∈(0,𝜏]

̃Sm(t)) ≤ Combo-Inf
)

,

or

M−1
M∑

m=1
I
(

max( sup
t∈(0,𝜏]

Sm(t), sup
t∈(0,𝜏]

̃Sm(t)) ≥ Combo-Sup
)

,

where Sm(t) =
∑n

i=1I(Xi ≤ t)ΔiUm
i

[

Zi −
n−1

1 Y 1(Xi)
n−1Y (Xi)

]

,m = 1, … ,M. A two-sided versatile test for H0 is defined similarly

using the maximum combination statistic Combo- |Sup| = max
(

supt≥0
|
|S0,0(t)|| , supt≥0

|
|
|
S0,0(t)

|
|
|

)

. As before, the probabil-
ity of obtaining results at least as extreme as the observed results is approximated using the empirical distribution function
estimated from a sampling distribution

{

max
(

Supt∈(0,𝜏] |Sm(t)| , Supt∈(0,𝜏]
|
|
|
̃Sm(t)||

|

)

;m = 1, … ,M
}

.

3.3 Covariate-adjusted approach

It is often of interest to adjust the results of comparisons between groups on the individual values of a vector of certain
key individual covariates, noted Wi. Kong and Slud20 developed a robust approach using the covariate-adjusted partial
score statistic

S
𝜃
(0, ̂𝛽) = 𝜕

𝜕𝜃

log L(𝜃, 𝛽)|𝜃=0,𝛽= ̂
𝛽

,

where L(𝜃, 𝛽) denotes the Cox’s partial likelihood function derived under a general Cox’s proportional hazards model,

𝜆(t |Zi,Wi ) = 𝜆0(t) exp(𝜃Zi)h(t, 𝛽,Wi),

and ̂
𝛽 the restricted maximum partial likelihood estimator obtained under H0 ∶ 𝜃 = 0. Define for any given t > 0, the

following partial likelihood score processes,

S
𝜃
(t, 𝜃, 𝛽) = 𝜕

𝜕𝜃

log L(t, 𝜃, 𝛽), ̃S
𝜃
(t, 𝜃, 𝛽) = 𝜕

𝜕𝜃

log ̃L(t, 𝜃, 𝛽),
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BOHER et al. 1985

with L(t, 𝜃, 𝛽) =
∏

i∶Ti≤t Li(Ti, 𝜃, 𝛽)Δi
,
̃L(t, 𝜃, 𝛽) =

∏
i∶Ti≥t Li(Ti, 𝜃, 𝛽)Δi and Li(t, 𝜃, 𝛽) =

exp(𝜃Zi)h(t,𝛽,Wi)
∑n

j=1Yj(t) exp(𝜃Zj)h(t,𝛽,Wj)
. It can be shown

using first-order approximation21 and martingale representations for score process22 that the covariate-adjusted partial
score processes evaluated at 𝜃 = 0 and 𝛽 = ̂

𝛽, S
𝜃
(t, 0, ̂𝛽) and ̃S

𝜃
(t, 0, ̂𝛽), are asymptotically equivalent under H0 to the

following sums (see Appendix)

n∑

i=1

(

∫

t

0

[

Zi −
z(1)(u, 0, 𝛽0)
y(u, 0, 𝛽0)

]

dMi(u, 0, 𝛽0) − i
𝛽,𝜃
(t, 0, 𝛽0)i−1

𝛽,𝛽

(𝛽0)
∫

𝜏

0

[

Wi −
w(1)(u, 0, 𝛽)

y(u, 0, 𝛽)

]

dMi(u, 0, 𝛽0)
)

, (2)

and

n∑

i=1

(

∫

𝜏

t

[

Zi −
z(1)(u, 0, 𝛽0)
y(u, 0, 𝛽0)

]

dMi(u, 0, 𝛽0) − ̃ζ
𝛽,𝜃
(t, 0, 𝛽0)̃ζ−1

𝛽,𝛽

(𝛽0)
∫

𝜏

0

[

Wi −
w(1)(u, 0, 𝛽)

y(u, 0, 𝛽)

]

dMi(u, 0, 𝛽0)
)

, (3)

where 𝛽0 = limn→∞ ̂
𝛽 and for any t ≥ 0

dMi(t, 𝜃, 𝛽) = dNi(t) − Yi(t)h(t, 𝜃, 𝛽,Wi)𝜆0(t)dt,

z(1)(t, 𝜃, 𝛽) = lim
n→∞

n−1
n∑

i=1
Yi(t)Zih(t, 𝜃, 𝛽,Wi),w(1)(t, 𝜃, 𝛽) = lim

n→∞
n−1

n∑

i=1
Yi(t)Wih(t, 𝜃, 𝛽,Wi),

y(t, 𝜃, 𝛽) = lim
n→∞

n−1
n∑

i=1
Yi(t)h(t, 𝜃, 𝛽,Wi),

i
𝛽,𝜃
(t, 𝜃, 𝛽) = − lim

n→∞
n−1 𝜕

2

𝜕𝛽𝜕𝜃

log L(t, 𝜃, 𝛽), ̃ζ
𝛽,𝜃
(t, 𝛽0) = − lim

n→∞
n−1 𝜕

2

𝜕𝛽𝜕𝜃

log ̃L(t, 𝜃, 𝛽).

,

i
𝛽,𝛽
(𝛽0) = − lim

n→∞
n−1 𝜕

2

𝜕
2
𝛽

log L(𝜏, 0, 𝛽)|𝛽=𝛽0
,

̃ζ
𝛽,𝛽
(𝛽0) = − lim

n→∞
n−1 𝜕

2

𝜕
2
𝛽

log ̃L(𝜏, 0, 𝛽)|𝛽=𝛽0
.

New early-emphasis, late-emphasis and versatile combination test statistics adjusted for individual covariates are easily
obtained using the supremum or infimum values of covariate-adjusted score statistics S

𝜃
(t, 0, 𝛽) and ̃S

𝜃
(t, 0, 𝛽). Again,

the P-values are approximated using a sampling distribution of each test statistics obtained by replacing the martingale
increments dMi(t, 𝛽0) by randomly perturbed terms UmidNi(t) and the unknown limiting values y(t, 𝛽), z(1)(t, 𝛽), w(1)(t, 𝛽),
i
𝛽,𝛽
(𝛽0) with consistent sample estimates.

4 SIMULATION STUDIES

Numerical studies were conducted to evaluate the performance characteristics of the proposed early and late individ-
ual test statistics and combined test statistics, by repeatedly sampling patients at a uniform rate over 12 months in a
control arm (Z = 0) and an experimental arm (Z = 1) with equal probability. Let denote by Wi, i = 1, … ,n an individ-
ual binary risk factor. Individual survival data were drawn from exponential distributions with a constant hazard rate
𝜆0 exp(𝛽Wi) in the control arm, exponential distributions with a constant hazard rate 𝜆0 exp(𝜃 + 𝛽Wi) or two-piece expo-
nential distributions with constant hazard rates 𝜆1(t) = 𝜆0 exp(𝜃1 + 𝛽Wi) if t ≤ t0 and 𝜆1(t) = 𝜆0 exp(𝜃2 + 𝛽Wi) otherwise
in the experimental arm. Survival data were censored to the right at the end of study scheduled 5 years after the start
of the study. Parameter values used in simulation studies are presented in Table 1. Four different scenarios illustrated in
Figure 1 were investigated: PH differences including null differences, early and delayed differences, and “strong” null
hypotheses.23 Empirical error rates defined as the proportion of times the null hypothesis were rejected at the nominal
level of 5% are reported in Tables 2,3. A total of 10 000 trials with moderate sizes were simulated under the null hypothesis.
Otherwise, sample sizes were selected to achieve near 90% power with the most efficient test and sampling was repeated
5000 times.

Under null differences, two-sided supremum logrank statistics |Sup| and |le-Sup| maintain an experimentwise type
I error control (Table 2, scenarios S1 and S2). The same is true for the maximum combination test statistic Combo-|Sup|
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T A B L E 1 Model parameters used in simulation experiments.

Change point Treatment Covariate Baseline Censoring Test
Scenario in hazard ratio hazard ratio hazard ratio hazard rate (%) N type

Null hypothesis and PH model

S1 t0 = 0 1.0 1.0 0.030 24 100,150 Two-sided

S2 t0 = 0 1.0 2.0 0.022 24 100,150 Two-sided

S3 t0 = 0 0.5 1.0 0.045 24 150 Two-sided

S4 t0 = 0 0.5 2.0 0.030 26 150 Two-sided

S5 t0 = 0 2.0 1.0 0.020 27 150 Two-sided

S6 t0 = 0 2.0 2.0 0.015 26 150 Two-sided

Delayed treatment effect model

S7 t0 = 6 (1.0,0.5) 1.0 0.032 32 180 One-sided

S8 t0 = 9 (1.0,0.5) 1.0 0.032 31 205 One-sided

S9 t0 = 12 (1.0,0.5) 1.0 0.032 30 240 One-sided

Early treatment effect model

S10 t0 = 6 (0.5,1.0) 1.0 0.078 3 300 One-sided

S11 t0 = 9 (0.5,1.0) 1.0 0.078 3 225 One-sided

S12 t0 = 12 (0.5,1.0) 1.0 0.078 4 180 One-sided

“Strong” null hypothesis

S13 t0 = 6 (3.0,0.75) 1.0 0.04 15 100, 200, 400 One-sided

S14 t0 = 9 (2.5,0.75) 1.0 0.04 14 100, 200, 400 One-sided

S15 t0 = 12 (2.0,0.75) 1.0 0.04 14 100, 200, 400 One-sided

which reported empirical rejection rates similar to those obtained with the standard logrank test statistic |
|FH0,0|

|. As
expected under PH differences,17 these test statistics are nearly as sensitive as the optimal logrank test statistic (Table 2,
scenarios S3-S6). Same conclusions hold for one-sided upper tests under unequal allocation across treatment arms (see
Appendix, Table A1). The experimentwise error rates reported in Table 3 illustrate the poor performance of the logrank
test statistic under nonproportional hazards situations. Compared to one-sided superiority weighted logrank test statistics,
the late-emphasis infimum logrank (le-Inf ) and infimum logrank (Inf ) test statistics, respectively, increase the chances
to detect late survival differences (Table 3, S7-S9) and early survival differences (Table 3, S10-S12).

The proposed combination superiority test statistic Combo-Inf is shown to be nearly as sensitive as the individual
optimal component le-Inf or Inf in detecting late and early survival differences. Compared to the reference MaxCombo
test, this new combination statistic provides similar and robust power under late and early differences in survival (Table 3,
S7-S12), while maintaining experimentwise rejection rates close to error rates obtained with FH0,0 under PH (data not
shown). Finally, we evaluate the performance of individual test statistics and versatile combination test statistics under
strong null hypotheses where survival rates are always below the control arm (Figure 1D). The experimentwise error
rates of the le-Inf test statistic clearly increase with sample size and reach error rate levels well above the nominal level
of statistical significance of 5%. The same is true for the minimum combination test Combo-Inf , but to a lesser extent
(Table 3, S13-S15). As the logrank test statistic FH0,1 putting more weight to late events, these two statistics do not properly
account for the existence of early harm and lead to an increased risk of incorrectly concluding that an investigational
drug has better efficacy. To limit this risk, a pragmatic approach consists in simultaneously evaluating on the same data
the possibility of a beneficial and harmful efficacy of the experimental drug. For example, limiting the investigational
drug’s efficacy claim to situations where the supremum test statistic (Sup) detects no harmful efficacy and the le-Inf
or the Combo-Inf test statistics meet the level of statistical evidence, both at the predefined significance level of 5%,
helps to reduce the experimentwise error rates below 0.1% in all scenarios tested, irrespective of sample size. When there
are concerns about delayed treatment effects and/or general non-PH situations, our results suggest that the proposed
procedures based on individual or combination of infimum and supremum logrank statistics created by successively

 10970258, 2023, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9709 by C
ochrane France, W

iley O
nline L

ibrary on [15/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



BOHER et al. 1987

F I G U R E 1 Simulation study S3, S7, S10, and S13 scenarios.

T A B L E 2 Empirical sizes and powers of two-sided test statistics based upon supremum logrank statistics under proportional
hazard (PH) models.

Empirical error rates (%)

Hazard ratio for Unadjusted test statistics Adjusted test statistics

Scenario Treatment Covariate N |
|FH0,0|

|
|Sup| |le-Sup|

Combo-
|Sup| |

|FH0,0|
|

|Sup| |le-Sup|
Combo-
|Sup|

S1 1.0 1.0 100 5.2 5.0 4.7 4.9 5.1 5.1 4.8 4.8

1.0 1.0 150 5.2 4.9 5.0 4.9 4.9 4.6 4.9 4.7

S2 1.0 2.0 100 5.0 4.8 4.7 4.8 5.2 4.8 4.7 4.6

1.0 2.0 150 4.7 4.7 4.7 4.6 5.0 4.8 4.6 4.6

S3 0.5 1.0 150 96.0 94.5 94.7 94.4 96.1 94.9 95.0 94.7

S4 0.5 2.0 150 92.4 91.0 90.4 90.6 95.8 94.4 94.4 94.0

S5 2.0 1.0 150 94.9 93.8 94.0 93.7 95.0 93.7 93.4 93.3

S6 2.0 2.0 150 92.9 91.9 91.3 91.4 94.9 93.8 93.7 93.5

Note: Two-sided test statistics: |Sup| = supt∈(0,𝜏]
|
|S0,0(t)||, |le-Sup| = supt∈(0,𝜏]

|
|
|
̂S0,0(t)

|
|
|

and Combo- |Sup| = max(|Sup| , |le-Sup|).
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1988 BOHER et al.

T A B L E 3 Empirical power of one-sided upper test statistics under late differences, early differences, and strong null hypotheses.

Empirical type II error rates (%)

Individual test statistics Combination test statistics

Scenario Change point N FH0,0 FH1,0 FH0,1 FH1,1 Inf le-Inf
MaxCombo-
Min

Combo-
Inf

Delayed effect model

S7 t0 = 6 180 87.2 74.5 92.4 93.6 83.2 92.2 90.7 91.3

S8 t0 = 9 205 83.1 63.5 92.1 91.8 77.3 90.8 88.8 90.0

S9 t0 = 12 240 76.8 53.0 92.0 88.8 70.0 88.8 85.8 88.3

Early effect model

S10 t0 = 6 300 54.2 81.1 13.2 30.0 72.8 45.5 67.3 70.8

S11 t0 = 9 225 67.4 88.3 20.1 49.8 83.2 59.5 79.0 80.5

S12 t0 = 12 180 74.9 90.3 28.2 65.1 87.2 68.3 83.8 84.3

Strong null hypotheses

S13 t0 = 6 100 < 0.1 < 0.1 6.2 1.3 < 0.1 7.5 5.6 3.5

200 < 0.1 < 0.1 7.6 < 0.1 < 0.1 15.2 11.9 4.4

400 < 0.1 < 0.1 7.7 < 0.1 < 0.1 30.9 25.3 4.2

S14 t0 = 9 100 < 0.1 < 0.1 3.7 < 0.1 < 0.1 3.9 2.7 2.1

200 < 0.1 < 0.1 2.7 < 0.1 < 0.1 7.2 4.7 1.1

400 < 0.1 < 0.1 2.2 < 0.1 < 0.1 17.3 12.6 < 0.1

S15 t0 = 12 100 < 0.1 < 0.1 3.6 < 0.1 < 0.1 3.2 1.9 1.8

200 < 0.1 < 0.1 3.1 < 0.1 < 0.1 5.5 3.8 1.5

400 < 0.1 < 0.1 2.0 < 0.1 < 0.1 12.4 8.7 1.0

Note: One-sided upper test statistics: Inf = inf t∈(0,𝜏] S0,0(t), le-Inf = inf t∈(0,𝜏] ̂S0,0(t), MaxCombo-Min = min(FH0,0
,FH1,0

,FH0,1
,FH1,1) and

Combo-Inf = min(Inf, le-Inf).

analyzing or deleting the first failures offer an alternative powerful strategy for assessing treatment effects in cancer
clinical trials. Empirical sizes and powers of test statistics based upon supremum logrank statistics under proportional
hazards (PH) models and unequal allocation across arms (1:2) are rep.

5 ILLUSTRATIVE APPLICATIONS

We reanalyzed data from two large RCTs assessing the benefit of combination of an experimental immunotherapy drug
with standard chemotherapy vs standard chemotherapy alone. The individual patient data were reconstructed using
digitizing software24 from Kaplan-Meier progression-free survival (PFS) curves originally published for the treatment
arms.25,26 To illustrate the sensitivity of the different methods in settings of moderate sample size, we assess the efficacy of
the investigational drug compared to standard chemotherapy regimen using one-tailed tests of superiority and inferiority
in three randomly selected sub-samples of each study dataset (see Table 4).

5.1 Pacific trial (NCT02125461)

A total of 713 patients with stage III nonsmall-cell lung cancer were randomized in this trial to receive either Durvalumab
or placebo after standard chemotherapy, including 473 and 237 patients assigned to receive Durvalumab and placebo,
respectively. The Kaplan-Meier estimates for treatment arms plotted in Figure 2 show a benefit for the experimental arm
in PFS data after a short lag time. We splitted the dataset into five subsamples from a multinomial distribution with prob-
ability mass P = (1∕5, … , 1∕5). One-sided test results assessing the efficacy of Durvalumab vs standard chemotherapy
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BOHER et al. 1989

T A B L E 4 P-values of test statistics of experimental arm vs control arm in subsamples.

Pacific trial Bellmunt trial

subsample Subsample Subsample Subsample Subsample Subsample
# 1 # 2 # 3 # 1 # 2 # 3

Test statistic n = 147 n = 145 n = 142 n = 174 n = 185 n = 182

F-H’s weighted logrank test

FH0,0 0.005(0.995) 0.001(0.999) 0.037(0.963) 0.785(0.215) 0.369(0.631) 0.360(0.640)

FH1,0 0.010(0.990) 0.002(0.998) 0.052(0.948) 0.995(0.005) 0.722(0.278) 0.940(0.060)

FH0,1 0.004(0.996) 0.005(0.995) 0.041(0.959) 0.025(0.975) 0.079(0.921) 0.001(0.999)

FH1,1 0.003(0.997) 0.002(0.998) 0.025(0.975) 0.475(0.529) 0.173(0.827) 0.048(0.952)

Infimum (supremum) logrank test statistics

Inf (Sup) 0.012(0.594) 0.004(0.708) 0.076(0.332) 0.897(0.005) 0.602(0.117) 0.653(0.020)

le-Inf (le-Sup) 0.007(0.856) 0.002(0.847) 0.008(0.867) 0.035(0.372) 0.041(0.879) 0.004(0.918)

Versatile tests

MaxCombo-Min(Max) 0.005(0.997) 0.002(0.999) 0.045(0.981) 0.051(0.047) 0.148(0.430) 0.002(0.110)

Combo-Inf (Sup) 0.008(0.755) 0.003(0.873) 0.013(0.434) 0.044(0.006) 0.056(0.138) 0.006(0.024)

Notes: One-sided upper test statistics: Inf = inf t∈(0,𝜏] S0,0(t), le-Inf = inf t∈(0,𝜏] ̂S0,0(t), MaxCombo- Min = min(FH0,0
,FH1,0

,FH0,1
,FH1,1) and

Combo-Inf = min(Inf, le-Inf). One-sided lower test statistics: Sup = supt∈(0,𝜏] S0,0(t), le-Sup = supt∈(0,𝜏]
̂S0,0)(t),

MaxCombo- Max = max(FH0,0
,FH1,0

,FH0,1
,FH1,1) and Combo-Sup = max(Sup, le-Sup).

in the first three subsamples are reported in Table 4. The logrank tests FH0,0
,FH0,1and FH1,1 and the late emphasis test

statistic le-Inf evaluating the superiority of the Durvalumab arm over the control arm consistently reject the null hypoth-
esis in favor of the experimental arm in all subsamples analyzed. The le-Inf statistic yields the lowest P-values, which
confirms its good performance observed in simulations under PH or delayed treatment models. Among versatile tests
assessing the superiority of Durvalumab, only the Combo-Inf test statistic detects significant differences at the 5% nomi-
nal level in all subsamples analyzed. All tests assessing the superiority of the control arm over the experimental arm show
no significant difference in favor of the standard treatment in any subsample.

5.2 Bellmunt randomized trial (NCT02256436)

A total of 542 patients with advanced urothelial cancer were equally randomized in this trial to receive Pembrolizumab
or the investigator’s choice of chemotherapy. The Kaplan-Meier estimates for treatment arms plotted in Figure 3 show a
cross in progression-free survival with higher survival rates for the experimental arm after 6 months. The patient data were
splitted in three subsamples with equal probability. Among the one-sided weighted logrank tests, only FH1,0 and FH0,1

detect significant or borderline significant differences in two of three subsamples, respectively, in favor of Pembrolizumab
or the standard arm. The proposed late-emphasis test statistic le-Inf assessing the superiority of Pembrolizumab show
significant differences at the 5% nominal level in all subsamples, while the supremum logrank statistic Sup confirms
harmful drug efficacy for Pembrolizumab in two subsamples. Versatile test statistics lead to similar conclusions with
lower P values obtained by combining infimum or supremum versions of logrank statistics. These results reflect the lack
of an overall clinical benefit for the experimental drug, as shown in Figure 3, where the harmful effect of the experimental
precludes the claim of its efficacy. These results confirms the good performance of our proposed versatile test procedure
observed in simulations under various non-PH.

6 DISCUSSION

In recent years, a considerable attention has been given to the challenge of designing and analyzing clinical trials with
potentially delayed treatment effect. This is the case in clinical trials of cancer immunotherapy where time-lag treatment
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1990 BOHER et al.

F I G U R E 2 Pacific cancer trial—Progression-free survival rates for Durvalumab vs standard chemotherapy reproduced from the
original published figure.

F I G U R E 3 Bellmunt cancer trial–Progression-free survival rates for Pembrolizumab vs standard chemotherapy reproduced from the
original published figure.

effects have been observed. The use of late-emphasis weighted logrank tests and their supremum versions as primary
testing strategy at the design and analysis stages have been suggested in the literature as an alternative to the standard
logrank test and/or the hazard ratio estimation.1,3,27 Friede and Korn have noted that giving more weight to later events
can result in considerable power loss if the PH assumptions are satisfied or nearly satisfied.4 Here we study late emphasis
infimum/supremum versions of two-sample logrank statistics obtained by successively deleting the first failure events
for evaluating drug differences in survival. Empirical results show that these test statistics increase the chances to detect
late survival differences while being nearly as sensitive as the logrank test under PH assumptions. The main drawback
of this approach is that down-weighting early events does not properly account for existence of early harm, leading to an
increase risk of erroneously concluding in favor of the experimental drug for an inferior drug. Magirr and Burman23 have
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BOHER et al. 1991

proposed a class of modestly weighted logrank tests that allow down-weighting early events while controlling the type I
error risk below the nominal level of significance. Instead we propose a pragmatic approach consisting in simultaneously
evaluating on the same data the possibility of a beneficial and harmful efficacy of the experimental drug. For instance, we
show that limiting the efficacy claim of the investigational drug when the supremum logrank statistic detects no harmful
efficacy and the late-emphasis infimum logrank statistics meet the level of statistical evidence help to considerably reduce
the error risk below the nominal level of significance. To provide robust performance under general non PH alternatives,
some versatile test procedures that combine multiple weighted logrank tests have been proposed.7,8,10 In particular, the
MaxCombo test procedure used as a reference method have been recently recommended in the field of oncology trials
as it provides robust power under PH, early and late survival differences or crossing survival curves alternatives. We
show how to combine through an efficient Monte Carlo algorithm early and late-emphasis infimum/supremum logrank
statistics to yield robust power against different alternatives of interest. Our numerical studies show that the evaluated
combination tests provide adequate test sizes under null differences and maintain empirical powers close to the power of
the standard logrank test under PH assumptions. Compared to the MaxCombo versatile test procedure, the Combo-Inf test
statistic assessing the superiority of an investigational drug was found to be at least as sensitive under general alternatives,
including PH, early and late survival differences. When there are concerns about delayed treatment effects and/or general
non PH situations, late-emphasis or combination test procedures based on infimum and supremum versions of logrank
statistics created by successively analyzing or deleting the first failure events offers an alternative powerful framework for
assessing treatment effects in cancer clinical trials. Eng et al28 have shown how to increase the sample size for supremum
logrank tests to preserve the power under PH assumptions relative to the optimal logrank test. Although sample size
formulas have been proposed for the weighted optimal logrank test in delayed processing effect models,14,27 no existing
method for determining sample size allow to preserve the power of the supremum versions of logrank test statistics
compared to the optimal weighted logrank test. Following some recommendations, extensive simulation studies have to
be performed to determine the sample size needed for the late-emphasis infimum and supremum logrank tests or the
more versatile combination test procedure to achieve the desirable power under delayed treatment effect models and
more complex non proportional hazards scenarios.29 The lack of sequential test procedure for the proposed late-emphasis
and more versatile combination test statistics allowing for early rejection of the null hypothesis represents a limitation
to the implementation of the procedure in future RCTs. A limitation to this work is the lack of appropriate measure to
summarize the treatment effect size. The definition of an appropriate summary measure of the effect size under non PH
remains a key challenge in RCTs.30
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APPENDIX

Elements of large sample theory

Using first-order approximation and standard probabilistic arguments,21 it follows that the observed covariate-adjusted
partial score processes n−1∕2S

𝜃
(t, 0, ̂𝛽) and n−1∕2̃S

𝜃
(t, 0, ̂𝛽) can be decomposed as follows,

n−1∕2S
𝜃
(t, 0, ̂𝛽) = n−1∕2S

𝜃
(t, 0, 𝛽0) − i

𝜃,𝛽
(t, 𝛽0)i−1

𝛽,𝛽

(𝛽0)n−1∕2S
𝛽
(𝜏, 0, 𝛽0) + OP(1),
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and

n−1∕2
̃S
𝜃
(t, 0, ̂𝛽) = n−1∕2

̃S
𝜃
(t, 0, 𝛽0) −̃i𝜃,𝛽(t, 𝛽0)i−1

𝛽,𝛽

(𝛽0)n−1∕2
̃S
𝛽
(𝜏, 0, 𝛽0) + OP(1),

where OP(1) designates a negligible term. Given the following martingale decomposition of the Cox partial likelihood
score processes,22

n−1∕2S
𝜃
(t, 𝜃, 𝛽) = n−1∕2

n∑

i=1
∫

t

0

[

Zi −
z(1)(u, 𝜃, 𝛽)
y(u, 𝜃, 𝛽)

]

dMi(u, 𝜃, 𝛽) + OP(1),

and

n−1∕2S
𝛽
(t, 𝜃, 𝛽) = n−1∕2

n∑

i=1
∫

t

0

[

Zi −
w(1)(u, 𝜃, 𝛽)

y(u, 𝜃, 𝛽)

]

dMi(u, 𝜃, 𝛽) + OP(1).

it then follows that the observed processes n−1∕2S
𝜃
(t, 0, ̂𝛽) and n−1∕2̃S

𝜃
(t, 0, ̂𝛽) are asymptotically equivalent under H0 ∶

𝜃 = 0 to the sums of independent random variables given in (2) and (3), respectively. Following Lin et al18 an empirical
approximation to the null distribution of the different test statistics based on the extreme values of statistics S

𝜃
(t, 0, ̂𝛽) and

̃S
𝜃
(t, 0, ̂𝛽) are derived by sampling independent realizations,

Sm(t, ̂𝛽) =
n∑

i=1
I(Xi ≤ t)ΔiUm

i

[

Zi −
Z
(1)
(Xi, ̂𝛽)

Y (Xi, ̂𝛽)

]

− I(t, ̂𝛽)I−1( ̂𝛽)
n∑

i=1
ΔiUm

i

[

Wi −
W

(1)
(Xi, ̂𝛽)

Y (Xi, ̂𝛽)

]

,

T A B L E A1 Empirical sizes and powers of test statistics based upon supremum logrank statistics under proportional hazards
(PH) models and unequal allocation across arms (1:2).

Empirical error rates (%)—One-tailed upper tests - 𝜶 = 0.025

Hazard ratio for Unadjusted test statistics Adjusted test statistics

Scenario treatment Covariate N FH0,0 Inf le-Inf Combo-Inf FH0,0 Inf le-Inf Combo-Inf

S1 1.0 1.0 100 3.0 1.7 1.6 1.6 2.8 1.7 1.7 1.7

1.0 1.0 150 2.9 2.0 2.0 1.9 3.1 2.0 2.1 2.0

S2 1.0 2.0 100 2.9 1.6 1.7 1.7 3.5 1.9 2.1 1.9

1.0 2.0 150 2.8 1.8 1.9 1.7 3.0 2.1 2.3 2.1

S3 0.5 1.0 150 94.2 89.9 90.1 89.3 93.7 89.2 89.8 89.2

S4 0.5 2.0 150 89.8 84.8 84.1 83.6 93.1 88.5 88.7 88.5

Empirical error rates (%) - Two-tailed tests - 𝜶 = 0.050

Hazard ratio for Unadjusted test statistics Adjusted test statistics

Scenario treatment Covariate N |
|FH0,0|

|
|Sup| |le-Sup| Combo- |Sup| |

|FH0,0|
|

|Sup| |le-Sup| Combo- |Sup|

S1 1.0 1.0 100 5.2 5.0 5.0 5.5 5.1 4.7 4.7 5.3

1.0 1.0 150 5.6 5.3 5.1 5.5 5.2 5.0 5.0 5.3

S2 1.0 2.0 100 5.9 5.1 5.1 5.6 5.6 5.0 4.9 5.4

1.0 2.0 150 4.9 4.8 4.8 5.2 5.2 4.9 4.8 5.3

S5 2.0 1.0 150 92.2 92.8 92.8 92.7 91.4 92.0 92.0 92.1

S6 2.0 2.0 150 88.5 89.8 89.1 89.7 91.2 91.9 91.6 91.6

One-sided upper test statistics: Inf = inf t∈(0,𝜏] S0,0(t), le-Inf = inf t∈(0,𝜏] ̂S0,0(t) and Combo-Inf = min(Inf, le-Inf). Two-sided test statistics:
|Sup| = supt∈(0,𝜏]

|
|S0,0(t)||, |le-Sup| = supt∈(0,𝜏]

|
|
|
̂S0,0(t)

|
|
|

and Combo- |Sup| = max(|Sup| , |le-Sup|).
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1994 BOHER et al.

and

̃Sm(t, ̂𝛽) =
n∑

i=1
I(Xi ≥ t)ΔiUm

i

[

Zi −
Z
(1)
(Xi, ̂𝛽)

Y (Xi, ̂𝛽)

]

− I(t, ̂𝛽)I−1( ̂𝛽)
n∑

i=1
ΔiUm

i

[

Wi −
W

(1)
(Xi, ̂𝛽)

Y (Xi, ̂𝛽)

]

,

obtained by drawing independent random normal deviates
{

Um
i ;m = 1, … ,M, i = 1, … ,n

}
, and replacing unknown

martingale increments dMi(t, 0, 𝛽0) and limiting values in equations (2) and (3) by randomly perturbed terms Um
i dNi(t)

and consistent sample estimates.
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