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3 Consultation d’addictologie UF6525, Hôpital de la Timone, APHM, Marseille, France
∗ Authors to whom any correspondence should be addressed.

E-mail: viktor.jirsa@univ-amu.fr andmeysam.hashemi@univ-amu.fr

Keywords:Hierarchical Bayesian inference, adaptive Monte Carlo sampling, convergence diagnostics, prior information,
model selection and validation, population pharmacokinetic analysis, alcohol use disorder

Abstract
Alcohol use disorder (AUD), also called alcohol dependence, is a major public health problem,
affecting almost 10% of the world’s population. Baclofen, as a selective GABAB receptor agonist,
has emerged as a promising drug for the treatment of AUD. However, the inter-trial,
inter-individual and residual variability in drug concentration over time in a population of patients
with AUD is unknown. In this study, we use a hierarchical Bayesian workflow to estimate the
parameters of a pharmacokinetic (PK) population model from Baclofen administration to patients
with AUD. By monitoring various convergence diagnostics, the probabilistic methodology is first
validated on synthetic longitudinal datasets and then applied to infer the PK model parameters
based on the clinical data that were retrospectively collected from outpatients treated with oral
Baclofen. We show that state-of-the-art advances in automatic Bayesian inference using self-tuning
Hamiltonian Monte Carlo (HMC) algorithms provide accurate and decisive predictions on
Baclofen plasma concentration at both individual and group levels. Importantly, leveraging the
information in prior provides faster computation, better convergence diagnostics, and substantially
higher out-of-sample prediction accuracy. Moreover, the root mean squared error as a measure of
within-sample predictive accuracy can be misleading for model evaluation, whereas the fully
Bayesian information criteria correctly select the true data generating parameters. This study
points out the capability of non-parametric Bayesian estimation using adaptive HMC sampling
methods for easy and reliable estimation in clinical settings to optimize dosing regimens and
efficiently treat AUD.

1. Introduction

Alcohol use disorder (AUD) is a major public health problem, affecting almost 10% of the world’s
population (Schuckit 2009). The harmful use of alcohol is responsible for 5.1% of the global burden of
disease, resulting in more than 200 diseases, injuries and other health conditions, and contributing to 3
million deaths globally each year, i.e. 5.3% of all deaths according to World Health Organization (2022).
Beyond health consequences, this brain disorder brings significant mental and behavioral symptoms, as well
as social and economic losses to individuals and society at large.

Baclofen is a selective agonist of the Gamma-Aminobutyric Acid type B receptors (GABAB), which may
exert an inhibitory effect on dopaminergic neurons (Doherty and Gratton 2007). It was originally marketed
as a muscle relaxant for the treatment of neurological-induced spasticity. Various experiments have shown a
positive effect of Baclofen on AUD in rodents and non-human primates (see Colombo et al 2018 for a
review). Although there is no clear evidence on the dosing, efficacy, safety, and ideal duration of Baclofen
treatment for AUD, clinical studies have shown its promise as a medication for patients with moderate to
severe AUD (Agabio et al 2002, Garbutt et al 2021). Preclinical experiments have also shown its efficacy in
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reducing alcohol withdrawal syndrome (Brennan et al 2013) and voluntary alcohol consumption (Colombo
et al 2004). The optimal dosage of Baclofen varies according to individuals and has not been well established
with a general agreement. It is mainly prescribed to patients for whom the existing treatments have not been
effective, or in those with liver disease due to its minimal damage to the liver. See de Beaurepaire et al (2019),
for a review of the use of Baclofen as a treatment in human AUD. Although in recent years, Baclofen has been
used to reduce craving, voluntary alcohol intake and withdrawal syndrome of alcoholic patients, a wide
inter-individual variability has been observed, and the potential high risk of sedation is unknown (Imbert
et al 2015, Simon et al 2018). Thus, the precise efficacy of dosing and the ideal duration of treatment in
different AUD patient groups need to be evaluated.

Mathematical modeling is widely used in many areas of science to learn about the data generation
process, make predictions on outcomes (unseen data), and to justify hypotheses. In the modeling framework,
differential equations provide us with the natural evolution of the system under study at any given time
point. They are often used to describe the principles that govern the dynamics of the system, allowing us to
adequately describe the processes involved and make quantitative predictions, such as the rate of change of
drug concentration and clinical efficacy. In this study, we use a population pharmacokinetic (PK) model of
the Baclofen effect on patients with AUD to estimate the variability in drug concentration over time in a
population of patients. The PK analysis has been widely used in clinical development, with several
applications, for instance, to improve the understanding of the in vivo behavior of complex delivery systems,
as it allows for the separation of drug-, carrier-, and pharmacological system-specific parameters (Sheiner
and Ludden 1992, Meibohm and Derendorf 1997, Bonate 2011, Upton and Mould 2014). Analysis of PK
model is currently an indispensable component of drug discovery, by ensuring that robust evidence from
preclinical models closely shapes the design of clinical studies (Zou et al 2020). Although PK modeling has
facilitated the drug development process, the accurate and reliable estimation of its parameters from noisy
data is a major challenge in conducting clinical research to determine the safety and efficacy of a drug within
a particular disease or specific patient population. To estimate unknown quantities, optimization methods
within the frequentist approach are often used in practice, in which an objective (or cost) function is defined
to score the performance of the model by comparing the observed and predicted values. However, such a
parametric approach results in only a point estimation, and the optimization algorithms may easily get stuck
in a local maximum, requiring multi-start strategies to address the potential multi-modalities. Moreover, the
estimation depends critically on the form of the objective function defined for optimization, and the models
involving differential equations often have non-identifiable parameters (Hashemi et al 2018).

In this study, we use the Bayesian approach to address these challenges in the estimation of a population
PK model’s parameters from synthetic data (generated by known values for validation purposes), and then
from routine clinical data that were retrospectively collected from 67 adult outpatients treated with oral
Baclofen. The Bayesian framework is a principled method for inference and prediction with a broad range of
applications, wherein the uncertainty in parameter estimation is naturally quantified through probability
distribution placed on the parameters, which are updated with the information provided by data (Bishop
2006, Gelman et al 2014). Such a probabilistic technique provides the full posterior distribution of unknown
quantities in the underlying data generating process, given only observed responses and the existing
information about uncertain quantities expressed as a prior probability distribution (Ferreira et al 2020,
Hashemi et al 2020, 2021). In other words, Bayesian inference provides all plausible parameter ranges that are
consistent with observation by integrating information from both domain expertise and experimental data.

In the context of clinical trials, the frequentist approach utilizes prior information (based on evidence
from previous trials) only in the design of a trial, not in the analysis of the data (Gupta 2012, Jack and Chu
2012). In contrast, the Bayesian approach provides a formal mathematical framework to combine prior
information with available information at the design, conduct, and analysis stages of the experiment
(Spiegelhalter et al 1999, Berry 2006, Yarnell et al 2021). To conduct Bayesian data analysis, Markov chain
Monte Carlo (MCMC) methods have often been used to sample from and, hence, approximate the exact
posterior distributions. However, MCMC sampling in high-dimensional parameter spaces, which converge
to the desired target distribution is non-trivial and computationally expensive (Betancourt 2014, 2017). In
particular, the use of differential equations, such as PK population models, together with noise in data raises
many convergence issues (Hashemi et al 2020, Grinsztajn et al 2021, Jha et al 2022). Designing an efficient
MCMC sampler to perform principled Bayesian inference on high-dimensional and correlated parameters
remains a challenging task. Although Bayesian inference requires painstaking model-specific derivations and
hyper-parameter tuning, probabilistic programming languages such as Stan (Carpenter et al 2017) provide
high-level tools to reliably solve complex parameter estimation problems. Stan (see https://mc-stan.org) is a
state-of-the-art platform for high-performance statistical computation and automatic Bayesian data analysis
(Gelman et al 2020), which provides advanced algorithms (Hoffman and Gelman 2014), efficient gradient
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computation (Margossian 2018), and numerous diagnostics to check the convergence of sampling (Vehtari
et al 2021), hence, the reliability of inference and prediction.

In the present work, to estimate the full posterior distribution of a population PK model’s parameters, we
use a self-tuning variant of Hamiltonian Monte Carlo (HMC) in Stan. This algorithm adapts the parameters
of the HMC, making the sampling strategy more efficient and automated (Hoffman and Gelman 2014). The
Bayesian setting in this study, which is first validated on synthetic data according to various diagnostics,
enables us to efficiently and accurately estimate the effect of Baclofen on retrospective patients with AUD.
Importantly, we demonstrate that leveraging the level of information in priors provide faster computation,
better convergence diagnostics, and substantially higher out-of-sample prediction accuracy. Moreover, we
show that the root mean squared error as a measure of within-sample predictive accuracy can be misleading
for model evaluation and selection. In constrats, the fully Bayesian information criteria (such as
Watanabe–Akaike information criterion; Gelman et al 2014) correctly select the true data generating
parameters. This work may pave the way to reliably predicting the efficacy of treatment drugs from
longitudinal patient data in a fully Bayesian setting, thus optimizing strategies for clinical decision-making,
especially in brain disorders.

2. Materials andmethods

2.1. Clinical data
In this study, we used the routine clinical data retrospectively collected from 67 adult outpatients (43 men
and 24 women, with weights ranging from 42 kg to 128 kg and ages ranging from 29 to 68 years old), with
AUD treated with oral Baclofen, in the Department of Addictology at Sainte Marguerite Hospital in
Marseille, France. Ethics committee approval and patient consent were not compulsory in France for the use
of retrospective therapeutic drug monitoring data, before Loi Jardé (no 2012-300 du 5 Mars 2012 relative aux
recherches impliquant la personne humaine). Our data were collected before 2012, thus they are retroactively
considered as Hors Loi Jardé. In October 2018, France became the first country to officially approve Baclofen
for AUD (Rolland et al 2020). The French Medicines Agency (ANSM) has granted marketing authorization
for Baclofen to support drinking reduction in AUD, which is a major and insufficiently addressed public
health issue, with more than 60 000 patients treated with Baclofen in France (Rolland et al 2020). The data
has been thoroughly described and published in a previous study by Imbert et al (2015).

In brief, Baclofen was administered orally in conventional tablet form and the dosing schedule consisted
of a tailored and variable dose for each patient. All patients met the DSM-5 criteria for AUD (American
Psychiatric Association, 2013). Therapeutic drug monitoring enabled the measurement of plasma
concentrations. The treatment was conducted similarly for all patients, that is, doses were progressively
increased (subject to a good tolerance to the treatment) from an initial dose of 15mg/d (5mg three times per
day [t.i.d]) for 1week to reach the target dose of 180mg at 3months (representing a Baclofen increase of
15mg every week). The clinical event schedule (dosing and measurements) of each subject is specified
according to the Nonlinear Mixed Effects Modeling software (NONMEM, Beal et al 2009) conventions. The
number of observations is subject-dependant, with a total of 427 recordings. For each patient, the number of
measurements is comprised of between 1 and 16 observations (median= 6). The total follow-up time ranges
between 1 and 613 days (average is 185 days). The following data were collected for each patient: drug
administration data with the patient’s dosage regimen of Baclofen, serum concentration of Baclofen with the
date and time of each measurement, demographic data (age, body weight, height, gender), biological data
(creatinine, urea, hepatic transaminases aspartate aminotransferase/alanine aminotransferase, albumin,
prothrombin ratio, fibrinogen, mean corpuscular volume, bilirubin, alkaline phosphatase,
carbohydrate-deficient transferrin, gamma-glutamyl transferase) and alcohol and tobacco consumption. The
planned visits were every week the first month then at months 2 and 3 following the treatment initiation. At
each visit, routine psychological support counseling was provided by the same professional staff and craving
level for alcohol was assessed using the obsessive compulsive drinking scale (OCDS). According to a
one-compartment PK population model with first-order elimination (ADVAN2 TRANS2), none of the
covariates tested was able to improve the fit using an exponential model, or decrease the intersubject
variability and the base model, and previous analysis showed no formal bias (Imbert et al 2015).

2.2. Synthetic data
Using synthetic data for fitting allows us to validate the inference process as we know the ground-truth of the
parameters being estimated. Therefore, we can use standard error metrics to measure the similarity between
the inferred parameters and those used for data generation. Synthetic data were generated following the same
event schedule as empirical clinical data and using a one-compartment population model with first-order
absorption (see equation (1)). The synthetic data was generated using the R package mrgsolve (Baron 2022),
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which enables simulation from ODE-based hierarchical models, including random effects and covariates.
The mrgsolve package (Elmokadem et al 2019) uses Livermore Solver for Ordinary Differential Equations
(LSODE; Radhakrishnan et al 1993) of the Fortran ODEPACK library (Hindmarsh 1992) integrated in R
through the Rcpp (Eddelbuettel and Francois 2011) package.

2.3. Populationmodel for pharmacometrics
PK models are currently used to predict clinical response in humans through understanding the mechanism
of action and disease behavior for a given drug. Inference on the PK model from data can optimize the
design of clinical trials, provide an appropriate dose range, anticipate the effect in certain subpopulations,
and better predict drug–drug interactions. The PK population models invoke nonlinear mixed-effects
models that allow for the quantification of exposure–response relationships on both a global population and
individual level (Bonate 2011, Owen and Fiedler-Kelly 2014, Keizer et al 2018). Such a modeling approach
provides a flexible tool for hypothesis testing and refining assumptions, e.g. the random phenomena
underlying the exposure–response mechanism by including group-specific (in this case, subject-specific)
effects within a population. This model also allows for the inclusion of covariates whose influence on
inter-group variations can be inferred.

In the present work, drug concentration in the plasma is modeled by a one-compartment model with
first-order absorption

dydosing
dt

=−kaydosing,

dycentral
dt

= kaydosing−
CL

V
ycentral.

(1)

The above linear ODE system describes the evolution of the amount y of the drug in both dosing
compartment4 and the central compartment (plasma). The first-order kinetics parameter ka (h

−1) is the
absorption constant of the drug. The parameter V (L) is the volume of distribution, which represents the
hypothetical volume in which the drug would need to be diluted to the same level as in plasma. The clearance
CL (L/h) controls the elimination of the drug from the organism, and such a linear ODE system has an
analytical solution, as we used in this study. Let y= (ydosing,ycentral)T, the linear system given by equation (1)
can be expressed in matrix form

dy

dt
= Ay, with A=

(
−ka 0
ka −CL

V

)
. (2)

Solutions of this homogeneous linear system at time t are given by

y(t) = etAy0, (3)

where y0 = y(0) is the initial condition and etA denotes the matrix exponential5.

2.4. Bayesian modeling
In Bayesian modeling, all model parameters are treated as random variables and the values vary based on the
underlying probability distribution (Bishop 2006). That is, in the case of a one-compartment PK model,
kinetic parameters CL, V and ka will be interpreted as random variables, and we aim to infer their probability
distributions based on prior knowledge (e.g. derived from physiological information or previous evidence),
updated with available information in the observed data through the so-called likelihood function, i.e. the
probability of some observed outcomes given a set of parameters. Although the likelihood function can
provide the best-fit points (maximum likelihood estimators), we are interested in the whole posterior
distribution over unknown model parameters, as it contains all relevant information about parameters after
observing data to perform a reliable model selection (Gelman et al 2014, Hashemi et al 2021).

Formally, given data y and model parameters θ, Bayes rule gives the posterior distribution as

p(θ | y) = p(θ)p(y | θ)
p(y)

(4)

that combines and actualizes prior knowledge on parameters (before seeing data) with knowledge acquired
from observed data (through likelihood function). The denominator p(y) =

´
p(y | θ)p(θ)dθ represents the

4 For oral dosing, doses are added in the dosing compartment; infusion and IV bolus injections must be added directly in the central
compartment.
5Matrix exponential etA is defined as etA =

∑∞
k=0

(tA)k

k!
. Stan features a matrix exponential function matrix_exp.
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probability of the data and it is known as evidence or marginal likelihood. In the context of inference, this
term amounts to simply a normalization factor, thus equation (4) is reduced to a proportionality relation

p(θ | y)∝ p(θ)p(y | θ). (5)

The Bayesian approach applied to PK analysis provides a fully probabilistic description of unknown
quantities, allowing not only a straightforward interpretation of the inferred parameters and outcomes, but
also the modeling of uncertainty about the inferred values of these quantities. Moreover, it provides us with a
principled method for model comparison, selection, and decision-making by measuring the out-of-sample
model predictive accuracy (i.e. the measure of the model’s ability in new data prediction). This metric
evaluates the generalizability of a model, as it provides an estimate of how well the model is likely to perform
when used to make predictions on unseen data. To assess the out-of-sample predictive accuracy, we used
Watanabe–Akaike (or widely available) information criterion (WAIC; Gelman et al 2014). This metric is a
fully Bayesian information criterion that utilizes the entire posterior distribution, thus allowing us to
incorporate our prior knowledge into the model selection. Following Gelman et al (2014), WAIC is given by:

WAIC=−2(lppd− peff), (6)

where lppd is the log pointwise predictive density for a new data point (as the accuracy term6), and peff is the
effective number of parameters (as penalty term to adjust for overfitting)7. In practice, we can replace the
expectations with the average over the draws from the full posterior to calculate WAIC (for more details see
Gelman et al 2014, Hashemi et al 2021). Note that WAIC uses the whole posterior distribution rather than
the point estimation used in the classical information criteria such as AIC and BIC. Finally, the relative
difference in WAIC is used to measure the level or the strength of evidence for each candidate model under
consideration. The lower value of WAIC indicates a better model fit. Following Burnham and Anderson
(2002), Hashemi et al (2021), a relative difference larger than 10 between the best model (with minimum
WAIC) and other candidate models indicates that an alternative model is very unlikely; that is, an alternative
model has essentially no support.

2.5. MCMC sampling
Monte Carlo (MC) sampling is a family of computational algorithms used for uncertainty quantification by
drawing random samples from distributions, in which the sampling process does not require knowledge of
the entire distribution. Markov chain Monte Carlo (MCMC) methods construct Markov chains (sequences
of probabilistically linked states, with the probability of transitioning to a given state depending only on the
current state) that have a desired stationary probability distribution, to extract samples from this distribution
(Gelman et al 2014). Using MCMC, the samples are obtained by retrieving the history of states visited by the
chain; if the chain is run for long enough, these samples will originate from the stationary distribution
(independent of the initial states). From these samples, we can construct MC estimates describing the target
probability distribution, such as mean and quantiles; the sample average approximates an expectation with
respect to the stationary distribution of the chain. In this context, Monte Carlo standard errors (MCSE)
provide an indication of the quality of reported estimates, that is, a quantification of the estimation noise.
The MCSE of an estimator θ̂n is given by the posterior standard deviation divided by the square root of the
effective sample size (ESS). In addition to sample mean and sample standard deviation, MCMCmethods
provide the estimated error (standard deviation) in the posterior mean estimation, on the scale of the
parameter value (Carpenter et al 2017).

2.6. Adaptive HMC sampling using Stan
Stan (https://mc-stan.org) is an open-source statistical tool that implements automatic gradient-based
algorithms for Bayesian modeling and probabilistic machine learning (Carpenter et al 2017). Hamiltonian
Monte Carlo (HMC) is a powerful MCMCmethod that uses the derivatives of the density function being
sampled to generate efficient transitions that explore the whole posterior distributions in complex
probabilistic models (Duane et al 1987, Neal 2011). However, the performance of HMC is highly sensitive to
the algorithmic parameters, such as the step size and the number of steps in the leapfrog integrator. Stan
provides a self-tuning variant of the HMC, the so-called No U-Turn Sampler (Hoffman and Gelman 2014),
which uses a recursive algorithm to eliminate the need for setting the hyperparameters, i.e. it adaptively tunes

6 Log predictive density or log-likelihood is proportional to the mean squared error if the model is normal with constant variance.
7 The effective number of parameters is calculated by summing over all the posterior variance of the log predictive density for each data
point.
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the HMC algorithm without requiring the user intervention (Hoffman and Gelman 2014, Betancourt 2017).
The NUTS algorithm avoids random walk behavior and sensitivity to correlated parameters to construct
efficient Markov chain exploration of the distribution’s typical set, that is, the set that concentrates the
majority of the volume-density trade-off (Betancourt 2017).

Starting from an initial value (random or defined by the user), the NUTS algorithm updates parameters θ
through a series of iterations by evolving them according to Hamiltonian dynamics and submitting them to a
Metropolis proposal. More precisely, HMC transforms the problem of sampling from a target distribution
into the problem of simulating Hamiltonian dynamics; it artificially introduces an auxiliary momentum ρ to
suppress random walk behavior, which extends the representation of the target parameter space into a phase
space of joint parameters (ρ,θ). The auxiliary momentum is sampled from the conditional distribution
π(ρ|θ). In Stan implementation, it is sampled from a multivariate normal distributionN that is independent
of θ:

ρ∼N (0,M), (7)

with covariance matrixM estimated as the inverse of posterior covariance during a warm-up phase. The joint
phase space parameters (ρ,θ) are evolved through Hamiltonian dynamics (the expression of the Hamiltonian
is given in appendix A.1) by solving the Hamiltonian equations of motion (see appendix A.2). To do so, Stan
uses the leapfrog integrator (see appendix A.3). The output of the integrator (ρ∗,θ∗) is then submitted as a
move proposal inside the Metropolis algorithm and is either accepted or rejected with a given probability and
the system is evolved accordingly. The process is repeated iteratively starting with the momentum
(re)sampling step (equation (7)).

2.7. Convergence of MCMC sampling
After running a class of MCMC algorithms, it is necessary to monitor the convergence of the samples. This
can be carried out in different ways, including traceplots (showing the evolution of parameter estimates from
MCMC draws over the iterations), pair plots (to identify collinearity between variables), and autocorrelation
plots (to measure the degree of correlation between draws of MCMC samples). More quantitative metrics are
also used in this study to assess the MCMC convergence, as described in the following.

2.7.1. Split-R̂
Sampling from a target distribution to estimate expectations can only be reliable if the chains have converged
to the stationary distribution. The primary step to ensure the reliability of MCMC posterior chains is to
check the convergence of chains with different random initializations. MCMC is asymptotically exact in the
limit of infinite runs (N→∞), however, in our finite-time settings, MCMC convergence cannot be
guaranteed with a limited number of samples, thus, we have to rely on diagnostic quantities to assure
convergence. Potential scale reduction statistic R̂ (Gelman and Rubin 1992) is widely used in statistics to
assess the convergence of multiple Markov chains involved in posterior sampling. The R̂ diagnostic provides
an estimate of how much variance could be reduced by running the chains longer. The R̂ close to 1 (in
practice, lower than 1.1) indicates good mixing of the chains; otherwise, the chains have not converged to the
same stationary distribution.

Computation of R̂ relies on between- (B) and within- (W) chain variances8. In particular, the marginal
posterior variance is (over-) estimated as a combination of these two quantities

v̂ar+(θ | y) = N− 1
N

W+
1

N
B, (8)

where N is the number of draws in each of theM chains. The potential scale reduction R̂ is then defined as

R̂=

√
v̂ar+(θ | y)

W
. (9)

Stan reports summary statistics including R̂ computed on the split-half chains, an additional precaution to
detect non-stationarity in individual chains9.

8W is defined as the averaged sum of the squares of the within-chain variance of each chain (Gelman et al 2014).
9 A simple example: two chains with complementary increasing and decreasing values will yield R̂ close to 1, even though they are not
mixing well.
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2.7.2. Divergent transitions
The trajectories generated by numerical (leapfrog) integrator in the Hamiltonian equations may diverge,
typically due to highly varying posterior curvature (such as funnel-shaped distributions; Betancourt 2017),
then, the samples cannot be trusted. With symplectic integrators10, divergences build up very quickly,
making them easy to detect. We have carefully monitored the Stan summary statistics for divergent
transitions encountered during sampling.

2.7.3. ESS
A complication with MCMCmethods is the autocorrelation within the generated samples of a chain, which
is often caused by strong correlations among variables. Higher autocorrelation in chains increases the
uncertainty of the estimation of posterior quantities of interest. Highly correlated MCMC samplers affect the
efficiency of the sampler, as they require more samples to produce the same level of MC error for an estimate
(Gelman et al 2014). The ESS provides an estimation of the independency of draws from posterior
distributions that generated Markov chain would be equivalent to. Thus, a large enough ESS is an important
factor for the reliability of the inferred quantities from posterior draws. We use the bulk-ESS and tail-ESS
computed on rank-normalized posterior draws (Vehtari et al 2021) to assess the efficiency of sampling in the
bulk (mean estimates efficiency), and tail (quantiles estimates efficiency) of the sampled posterior
distribution, respectively. In the case of sampling with four individual chains (each with iter= 2000 and
warmup= 1000), we consider a minimum ESS of 400 (Vehtari et al 2021).

2.7.4. Posterior predictive checks
Validating model assumptions and assessing the reliability of the model performance requires both domain
expertise and the evaluation of the model’s predictive performance. A posterior predictive check (PPC) is
often used for model validation, i.e. generating data from the model using parameters drawn from the
estimated posterior, and then comparing it with observed data. PPCs address such questions as does the
fitted model and its estimated parameters generate data similar to those observed experimentally? Are the
individual and population variability, such as the influence of covariates, consistently modeled? The principle
of PPCs is to simulate multiple sets of data according to the predictive distribution yi ∼ yrep , i = 1,2, . . . ,N,
and compare them to the observed data y, visually or quantified by summary statistics. Visual predictive
checks usually depict the predicted mean and 95% confidence/credibility intervals (2.5% and 97.5%
empirical quantiles of the posterior predictive draws) confronted with observed data. Note that PPCs are not
predictive per se because we are not comparing predicted data to new observations, but rather we are
comparing it to the same data that the model was fitted with. Such a process involves the double use of the
data and should not be confused with validation prediction, which is evaluated on a separate validation
dataset or unseen data (e.g. using WAIC). Systematic discrepancies between model predictions and data
would indicate an inadequate model predictive power, and in this case, could be investigated to identify
model failures.

2.8. Solving ODE systems in Stan
Linear ODE systems have the virtue of being analytically solvable, which not only provides an exact solution
but is also very computationally efficient. The one-compartment linear ODE system (equation (1)) was
solved analytically as provided by the Torsten library ready-to-use solver. Torsten package (Zhang et al 2021)
is based on Stan software (v2.27.0) and provides functions that facilitate the analysis of pharmacometrics
data (Margossian et al 2021). The library handles clinical event schedule data written in NONMEM (Beal
et al 2009) conventions and the computation of steady-state dosing11. A steady-state is reached when the
quantity of drug eliminated matches the quantity of drug that reaches the systemic circulation. In the context
of a repeat-dose regimen, steady-state concentrations of drugs in the blood will rise and fall according to a
repeating pattern as long as the dosing schedule remains unchanged. Torsten also offers specific functions for
one- and two-compartment models for which it implements analytical solutions using matrix exponential in
the Stan language.

The model simulation and parameter estimation were performed on a Linux machine with 3.60GHz
Intel Core i7-7700 and 8GB of memory.

10 A numerical integration scheme for Hamiltonian systems to nearly conserve the total energy and is particularly useful when treating
long times.
11 Computation of steady-state dosing in Torsten is detailed in appendix D in the case of one-compartment modeling.
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Figure 1. (A) Diagram of a one-compartment model; oral intake of the drug is absorbed into the blood plasma (central
compartment) with the first-order absorption rate ka (h−1) and is eliminated from the plasma with constant k10 = CL/V (h−1).
(B) One-compartment-simulated (in blue) and empirical (in red) data corresponding to plasma drug concentration (mg/L) for a
single individual, and additional simulated data (in green) from the same dosing schedule.

3. Results

3.1. Bayesian inference on synthetic data
In order to validate the Bayesian workflow, a synthetic dataset is generated from a one-compartment
population model with first-order absorption, based on the same dosing schedule as the clinical setting, and
with population PK parameters as CLpop = 7 (L/h), Vpop = 65 (L), kapop = 2.5 (h

−1). Inter-individual
variations ω = (ωCL,ωV,ωka) are equally set to 0.3, and residual intra-individual variation σ is set to 0.1. An
example of simulated drug concentration data compared to empirical observation for a single individual is
shown in figure 1.

Bayesian inference of the unknown parameters of the underlying data generating process depends on
both the observed responses and prior information about the underlying generative process. For the
generated dataset, we aim to explore the actual sensitivity of the inference process to the level of information
encoded in the prior. To do so, we consider two different prior specifications on population parameters
CLpop, Vpop and kapop, while the prior distributions placed on other parameters remain identical.
Inter-individual variations are modeled by a variance-covariance matrix Ω, in which for computational
efficiency in MC sampling, it is decomposed as

Ω= diag(ω)LL ′ diag(ω) (10)

with L (resp. L ′) as the Cholesky factor (resp. its transpose) of a correlation matrix R= LL ′, and
ω = (ωCL,ωV,ωka) as the vector of standard deviation of PK parameters. Here, L is assigned with a
Lewandowski–Kurowicka–Joe (LKJ; Lewandowski et al 2009) prior distribution (a distribution over the set
of correlation matrices or their Cholesky factor) with uniform density over all Cholesky factors of correlation
matrices, whereas ω is assigned with a half-normal prior with zero mean and a standard deviation of 0.1:

L∼ lkj_corr_cholesky(η = 1), (11)

ω ∼Half-N (0,0.1). (12)

Individual parameters (normalised without covariate influence) denoted by θi = {CLi,Vi,kai }Ni=1 are
modeled by a Gaussian distribution centered on population parameters θpop = {CLpop,Vpop,kapop}, and

log(θi)∼N (log(θpop),Ω) ∀i. (13)

Given the parameters θi for the ith individual, the virtual amount of drug in both absorption and plasma
compartments is computed by analytically solving the one-compartment ODE system given by equation (1).
Here, we employed a ready-to-use one-compartment model solver provided by the Torsten package for event
schedule specified data (Zhang et al 2021). Estimation of drug concentration in the blood for individual i,

with unknown Ci underlying observations Ci[obs], is given by Ĉi(t) =
ŷcentrali (t)

Vi
, with the likelihood of

log(Ci[obs])∼N (log(Ĉi[obs]),σ). (14)

Given the above formulation, we compare two classes of a priori information on the population PK
parameters. In the first set-up (denoted by model I), we place a weakly informative prior distribution
centered around the true value of the parameters:
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Table 1. Summary statistics and convergence diagnostics for Bayesian inference on synthetic data (figure 1), using weakly informative
priors (given by model I) and diffuse priors (given by model II), averaged over four HMC chains. Overall, the Bayesian model I with a
higher level of information in prior, yields faster computation, better convergence diagnostics, and substantially higher prediction
accuracy.

model I model II

Step size average 0.046 0.033

SE 0.00 0.01
Integrator steps average 121 159

SE 19 56
Effective Sample Size (ESS) min 65 27

average 5876 3631

max 13 367 13 138
R̂> 1.1 0% 0%
R̂> 1.01 2.1% 8.9%
Divergences 0 0
Sampling time 17 min 24 min
Gradient evaluation 0.009 sec 0.012 sec
Maximum correlation 0.20 (kapop,ωka) 0.71 (Vpop,kapop)
Number of parameters 418a 418
Root Mean Square Error (RMSE) 0.349 0.331
Effective number of parameters (peff) 40 669.36 56 303.03
Watanabe-Akaike information criterion (WAIC) 82 401.03 113 679.84

a Three population parameters (CLpop,Vpop,kapop) and their respective variability (ωCL,ωV,ωka ); 3× 67 individual parameters
{CLi,Vi,ka i}N=67i=1 ; elements of 3× 3 Cholesky matrix L; 3× 67 standard normal variables for non-centered parametrization of
equation (13); residual variability σ.

CLpop ∼N (7,5)

Vpop ∼N (70,5) (model I)

kapop ∼Half-N (3,0.5).

In the second set-up (denoted by model II), we place more diffuse (uninformative) priors, but still they are
centered on true value for parameters Vpop and kapop:

CLpop ∼N (7,5)

Vpop ∼N (70,10) (model II)

kapop ∼Half-N (3,2).

To perform inference, prediction, and model comparison, we ran four individual chains with NUTS default
setting in Stan (e.g. 2000 discarded warm-up iterations and 2000 saved sampling iterations, an expected
acceptance probability of 0.85, and a maximum tree-depth of 10). In the following, we first carefully monitor
the convergence of Markov chains, then we show the estimated posterior distributions and PPCs for
population PK parameters. Finally, we demonstrate model comparison using WAIC to reliably select the
model that best explains the data.

3.1.1. Sampling diagnostics
Sampling properties of both Bayesian models with weakly informative and diffuse priors (given by model I
and model II, respectively) are overall satisfactory (see table 1). Neither of the models exhibited sampling
pathologies such as divergent transitions or reaching maximum tree-depth. The values of the potential scale
reduction factor are R̂< 1.1 for all parameters in both Bayesian models, indicating that the Markov chains
have converged to a stationary distribution. When considering a more exigent threshold, then R̂< 1.01 for all
parameters of model I, except those relative to the 53th individual. More precisely, the individual parameter
which partly controls the individual variation for the 53th individual and as a result biases the PK parameters
and quantities (estimated and predicted concentration) for this individual. The Bayesian model II encounters
more convergence issues with more individuals (16th, 44th, 53th, 64th). This model exhibits around 9% of its
total 418 parameters that do not fall under the threshold, compared to 2.1% for the other model (see table 1).

The Bayesian model I also exhibits a better convergence according to HMC specific diagnostics compared
to model II (see table 1): the self-tuning step size of the leapfrog integrator is larger, and has fewer integration
steps, resulting in faster computational time (around 1.5 order of magnitude), and more efficient sampling.
Towards a principled Bayesian workflow (Gelman et al 2020), we investigate more closely the convergence of
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Figure 2. Rank plots (histograms of the 2000 ranked posterior draws over all four chains), for inference on the population PK and
variability parameters using (A) Bayesian model I with weakly informative priors, and (B) Bayesian model II with diffuse priors.
In the case of good mixing, all rank plots should be close to uniform (dashed horizontal lines). It can be seen that model I yields
more uniform rank plots due to better mixing of the chains.

the two fitted Bayesian models using the methods and quantities proposed by Vehtari et al (2021) to address
possible flaws in R̂-based convergence diagnostics.

3.1.2. Mixing of the chains
Rank plots are an alternative approach to trace plots for visual sanity checking of convergence in posterior
chains (Vehtari et al 2021) as shown in figure 2. For comparison to raw trace plots of the chains for the
population PK parameters, see appendix figure B.1. Rank plots are histograms of posterior draws, ranked
over all four chains, and plotted for each chain separately. If all chains are targeting the same posterior
distribution, the rank histograms should not deviate significantly from uniformity, which is expected with a
higher ESS. Figure 2 illustrates rank plots for population PK parameters using both Bayesian model I
and model II. From this figure, we can see that a higher level of information in model I yields more uniform
rank plots due to better mixing of the chains.

3.1.3. ESS
We have carefully monitored the ESS as an indicator of the number of independent draws, which affects the
uncertainty of the estimation. We investigate the ESS for the three population PK parameters using the
computation of split-R̂ and ESS on rank-normalized (normal scores) samples, and the corresponding
diagnostics proposed by Vehtari et al (2021). They have observed that the convergence of the chains is not
necessarily uniform over the entire distribution of a parameter of interest. In addition to rank-normalized
based ESS (or bulk-ESS), they proposed a tail-ESS to evaluate convergence in extreme quantiles.

In figure 3, we illustrate the checks of efficiency of quantiles and small-interval probabilities, as well as the
efficiency evolution with the number of iterations. The Bayesian model I yields an overall larger ESS for the
three population PK parameters, especially for parameter Vpop. The Bayesian model I quantile estimates
efficiency is comparatively improved compared to model II for parameter Vpop, and high quantiles of kapop,
the first being higher and uniform and the latter being increased in the right tail of the distribution. The
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Figure 3. Effective sample size (ESS) plots of population PK parameters using (A) Bayesian model I with weakly informative
priors, and (B) Bayesian model II with diffuse priors. In each panel, Top: the local efficiency of small interval probability
estimates, Middle: the efficiency of quantile estimates, Bottom: the estimated ESS (bulk and tail methods) with an increasing
number of iterations. Bulk ESS: between-chains discrepancy location; Tail ESS: between-chains scale discrepancy. In the case of a
well-behaved sampling, the estimated ESSs should increase linearly with the number of iterations. Overall, a higher level of
information in model I yields larger ESS, i.e. more independent posterior draws, thus, the more faster and reliable estimations.

parameter Vpop in model II has noticeable small and decreasing efficiency in high quantiles. CLpop quantile
estimates efficiency is similar in both models. In the case of a well-behaved sampling, the estimated ESSs
should increase linearly with the number of iterations. This is the case for the population PK parameters
in model I. However, in model II, the parameter Vpop exhibits a problematic drop at half of the total
iterations in tail-ESS, which indicates inter-chain scale discrepancy. Population PK parameters of both
models reach an acceptable ESS over the recommended threshold of 400 when the number of draws exceeds
2000, except for pathological parameter Vpop in model II. Together, these diagnostics validate that the
samples in model I have better convergence to the target distribution.

3.1.4. Posterior behaviour
The prior and posterior distributions of model I and model II are illustrated in figure 4. It can be seen that,
when using model I, the true values of all PK parameters (dashed vertical lines) are well within the support of
the posterior densities, indicating that the Bayesian parameter recovery was successful. In contrast, the
setting in model II failed to recover the parameters Vpop and kapop. When using a wider set of priors (model
II), the posterior distribution of Vpop shifts towards values that are significantly lower than ground-truth,
under over-influence of the data (over-fitting). A similar phenomenon is observed for the absorption
parameter ka. The uncertainty of the estimation of posterior quantities (mean, MCSE of the mean, standard
deviation, 95% credible intervals, and ESS) for the population PK parameters in both Bayesian models are
summarised in table 2.

Visualizing the joint posterior samples in pair plots is especially useful for identifying collinearity
between parameters as well as the presence of non-identifiability (banana-shaped distributions). As shown in

11



Mach. Learn.: Sci. Technol. 4 (2023) 035048 N Baldy et al

Table 2. Comparison of sampled posterior distributions of population PK parameters using Bayesian model I and model II; sample
mean, MCSE, sample standard deviation (SD), posterior 95% credible intervals and effective sample size (ESSbulk). Parameters marked
with a ∗ have ESS below the limit of 400 recommended by Vehtari et al (2021).

Population

parameters

model I model II

Mean MCSE SD 95% CI ESSbulk Mean MCSE SD 95% CI ESSbulk

One-compartment

PK

CLpop (L/h) 7.5 0.028 0.86 [6.05 ; 9.45] 873 7.4 0.028 0.9 [5.87 ; 9.39] 1058

Vpop (L) 66 0.056 4.8 [56.68 ; 75.42] 7582 18 0.5 7.5 [7.94 ; 36.37] 326∗

kapop (h
−1) 2.1 0.007 0.45 [1.29 ; 3.05] 4148 0.39 0.003 0.12 [0.22 ; 0.68] 1893

Intersubject

variability ω

ωCL 0.52 0.002 0.05 [0.43 ; 0.62] 446 0.55 0.001 0.05 [0.46 ; 0.65] 1272

ωV 0.24 0.002 0.08 [0.11 ; 0.41] 1404 0.35 0.004 0.086 [0.19 ; 0.52] 450

ωka 0.41 0.001 0.07 [0.28 ; 0.54] 4682 0.32 0.008 0.084 [0.28 ; 0.54] 142∗

Residual

variability

σ (exp) 0.08 0.0002 0.003 [0.07 ; 0.09] 496 0.072 0.0005 0.0034 [0.07 ; 0.08] 40∗

Figure 4. Comparison of prior and posterior distributions (4 chains, 2000 draws each) of population PK parameters for the two
models fitted against simulated data: (A) Bayesian model I with weakly informative priors, and (B) Bayesian model II with diffuse
priors. The dashed vertical lines indicate the true values. When using diffuse priors (in blue), the posterior distribution (in
orange) of Vpop and ka shift towards values that are significantly lower than ground-truth.

figure 5, model II exhibits a larger degenerate behavior in the form of a positive correlation (r> 0.7) between
Vpop and kapop posterior samples that is not seen in the more informative model I (r< 0.2). Such a high
collinearity leads to an inefficient exploration of the posterior, which can be quantifiably observed in
decreased numbers of effective samples and increased R̂ values. Moreover, by randomly initializing the
chains, the estimation of posterior density of CLpop is more robust than that of the other two parameters. The
robustness of the sampling of CLpop with respect to other parameters was also observed in the ESS plots
(figure 3). According to these results, the Bayesian set-up used in model I substantially improved the
convergence of the recovery for population PK parameters.

3.1.5. PPCs
Posterior predictive (or retrodictive) checks are a widely-used tool for verifying the reliability of the fitted
model by monitoring its predictive performance on the fitted dataset. Synthetic datasets (67 individuals, total
of 427 observations) of plasma drug concentration are repeatedly drawn from the predictive distribution
given by the fitted model (4 chains, each with 2000 draws). Punctual predictions (mean) and the
corresponding 95% credible intervals are extracted from the draws and plotted along with the actual
observations (see figure 6). For both Bayesian model I and model II, these visual checks suggest no
systematic bias in the predictive distribution compared to the fitted data.

3.1.6. Residuals
Non-normalised residuals are calculated as differences between observed plasma concentration Cobs and the
estimated concentration computed by solving the one-compartment ODE system (see equation (1)), over
the fitted individual PK parameters (CLi, Vi, kai) and evaluated at observation points Ĉobs. Monitoring the
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Figure 5. Paired posterior draws (4 chains, 2000 draws each) of population PK parameters obtained using (A) Bayesian model I
with weakly informative priors, and (B) Bayesian model II with diffuse priors. In model I, the joint posteriors are well
decorrelated (independent samples), whereas in model II, the joint plot of Vpop and kapop exhibits high positive correlation
(Pearson correlation coefficient of r= 0.71).

Figure 6. Posterior predictive checks of individual drug plasma concentration (mg/L) - all individuals plotted (in red), using (A)
Bayesian model I with weakly informative priors, and (B) Bayesian model II with diffuse priors. The point prediction (mean, dark
blue) is plotted along with its 95% CI (in light blue). If successive observation records are spaced by less than 7 days, the
corresponding posterior 95% CI is plotted as a shaded area; otherwise, as an error bar.

residuals can help in pointing out issues with the estimation of PK parameters, an inadequate
compartmental modeling, or ODE-solver inaccuracies. Histograms of non-normalised residuals for
both model I and model II are given in appendix figure B.2. They are reasonably zero-centered (not biased),
and there is no significant difference in the distributions of the non-normalised residuals of model I
and model II. Note that the root mean squared error (RMSE, figure B.2, and table 1) as a within-sample
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predictive accuracy is slightly smaller in model II; this is consistent with the marginal posterior densities
(figure 4) where the interaction of the likelihood with more diffuse priors fails to recover the true
parameters; hence, the resulting model fits the observed data even better, but at the cost of a poor
representation of the true data generating process (Gelman et al 2017, Betancourt 2018).

3.1.7. Model selection
To select the best Bayesian model considered in this study for the synthetic dataset, we use the widely
applicable information criterion (WAIC) as a measure of model evidence. WAIC is an indicator for the
comparison of point-wise out-of-sample predictive accuracy of Bayesian models, based on the whole
estimated posterior distribution. WAIC is here reported (see table 1) in the -2 log-score scale (deviance): a
model with a smaller WAIC value suggests higher predictive accuracy, i.e. a better balance between accuracy
and complexity, even though the number of parameters is equal for both candidate models. Our model
comparison based on WAIC substantially favors model I (since∆WAIC≫ 10). Taken together, the Bayesian
set-up used in model I substantially improved the convergence and model predictive power for estimation
over population PK parameters.

3.1.8. Effect of noise on estimation
Lastly, we investigate the effect of the observation noise level on model parameter estimation. For varying
levels of exponential residual noise, we examine the robustness of inference by monitoring HMC sampling
diagnostics, PK parameter estimation, the within-sample accuracy of the fit (RMSE), and the out-of-sample
predictive accuracy (WAIC). A sweep over noise values is depicted in figure B.3 for the best selected model
(i.e. model I). We observed that lower residual noise levels (σexp < 2) yield better estimation of posterior
distributions of model parameters, a better RMSE between observed and fitted data, and enhanced model
evidence according to WAIC measures. However, a large value of residual noise (σexp ≥ 2) results in a
significantly small predictive accuracy (i.e. the larger RMSE and WAIC values). This indicates that HMC
sampling with the Bayesian set-up used in model I is robust when dealing with high levels of noise in
observed data.

3.1.9. Out-of-distribution (OOD) PK parameters
The OOD parameters refer to situations where the observed data falls outside the range of typical or expected
values. We generate biologically implausible data from unrealistic PK parameters (e.g. a volume of
distribution V of 1 L), and we challenge the model’s ability to infer from these data, which are unrealistic.
Figure B.4 shows the predictive ability of model I measured using WAIC, when marginally changing the
values of the population parameters in the data generation process. We observed a significantly lower WAIC
value for plausible values of the parameters, resulting in better prediction accuracy than OOD parameters.
This result indicates that the WAIC is able to effectively capture the underlying patterns and relationships in
the data when the parameter values fall within a plausible range, thus establishing bounds or ranges in which
the current model performs well.

3.2. Bayesian inference on clinical data
After calibrating models on simulated data, we fit model I on empirical Baclofen data. In particular, we use
the set of population PK priors defined in model I. As in the previous section, we ran 4 chains of 2000
iterations each, with default settings in Stan (e.g. 2000 warm-up iterations, a target Metropolis acceptance
rate of 0.85, and a maximum tree-depth of 10).

3.2.1. Sampling diagnostics
Stan diagnostics reported no warning on convergence, in particular, there is no R̂ value above the threshold
of 1.01, no diverging transition, and no quantity with insufficient ESS. We also rely on convergence
diagnostics as shown in the investigation of models on simulated data: trace plots in figure C.1 show that the
chains are mixing well; rank plots in figure C.2 are close to uniform; ESS (bulk and tail methods) in
figure C.3 is large for the main three population PK parameters; paired samples of population PK parameters
in figure C.4 exhibit no significant correlation.

3.2.2. Posterior distributions
The sampled posterior distributions of the three main population PK parameters and their respective
inter-individual variability parameters are shown and compared to their prior distributions in figure 7.
Statistical summary of posterior distributions of the population PK parameters is reported in table 3. We
report the mean, MCSE of the mean, standard deviation, 95% credible intervals, and ESS. Interpretation of
Bayesian posterior credible intervals is straightforward: a 95% CI is the central portion of the posterior that
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Figure 7. Comparison of prior and posterior distributions (4 chains, 2000 draws each) of population PK parameters and their
respective variability parameters for weakly informative model I, fitted against empirical Baclofen data. All four chains, which
were randomly initialized, converged to the same target distribution with no warnings on various diagnostics.

Table 3. Statistical summary of posterior distributions of population PK parameters sampled from empirical Baclofen data; sample
mean, Monte Carlo standard error (MCSE), sample standard deviation (SD), and posterior 95% credible interval.

Population
parameters

Posterior sampled distributions

Mean MCSE SD 95% C.I. ESSbulk

One-compartment
PK

CLpop (L/h) 11 0.023 1.2 [8.80 ; 13.68] 2861
Vpop (L) 62 0.05 5.1 [52 ; 72.07] 10 419
kapop (h

−1) 1.1 0.0041 0.27 [0.64 ; 1.72] 4307
Intersubject
variability ω

ωCL 0.31 0.0006 0.042 [0.24 ; 0.40] 4421
ωV 0.5 0.0008 0.058 [0.39 ; 0.62] 5400
ωka 0.3 0.0013 0.076 [0.15 ; 0.45] 3354

Residual
variability

σ (exp) 0.084 0.00 003 0.003 [0.08 ; 0.09] 10 805

concentrates 95% of sampled values; given the observed data, the parameter falls into the interval with
probability of 95%. Distributions of sampled individual PK parameters CLi, Vi and kai are plotted for every
individual in figure C.5.

3.2.3. PPCs
Predicted Baclofen plasma concentration datasets (N= 4 chains× 2000 draws) are generated from the
estimated predictive distribution (see figure 8). Each shown data-point corresponds to an actual individual
observation (in red). The PPCs are shown for all individual observations (in blue). For every individual
observation, the corresponding punctual prediction (mean) and 95% confidence interval over the repeated
simulations are also plotted (in light blue). No systematic deviation of predictive simulations from reality is
visible, suggesting that the model’s predictive distribution accurately captured the plasma concentration.

3.2.4. Residuals
Checking the residuals between the fitted ODE-solved estimated concentration at observation points Ĉobs

and actual observations Cobs allows us to ensure that there is no bias in the estimation of the PK parameters
and issues in the resolution of the underlying ODE system. The histogram of non-normalized residuals and
the residuals along the time-axis are shown in figure 9, indicating that there is no biased estimation.
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Figure 8. Posterior predictive checks (in dark blue) of individual concentration of Baclofen in blood plasma (mg/L) using
model I, fitted against empirical data (in red) for all individuals. The point prediction (mean, in dark blue) is plotted along with
its 95% CI (in light blue). If successive observation records are spaced by less than 7 days, the corresponding posterior 95% CI are
plotted as a shaded area; else as an error bar.

Figure 9. Residuals (non-normalised) plots of the fitted ODE-solved estimated concentration at observation points Ĉobs minus
actual observations Cobs. (A) Residuals histogram, and (B) Residuals as a function of time.

3.2.5. Covariates
Clinical data includes 18 biological covariates, which are detailed in Imbert et al (2015). The influence of a
continuous covariate (denoted by COVAR) on individual parameter θi is modeled by

θi,COVAR = θi

[
COVARi

median(COVAR)

]ρ
. (15)

Searching for significant covariates on PK parameters was performed by evaluating repeated regressions
(in linear and nonlinear forms of equation (15)) on HMC-fitted individual PK parameters. The statistical
significance (p< 0.01) of regression coefficients was tested for covariates such as gender, body weight, age,
height, creatinine serum, creatinine clearance, urea, alanine aminotransferase, aspartate aminotransferase,
albumin, mean corpuscular volume, prothrombin ratio, fibrinogen, gamma-glutamyl transferase, alkaline
phosphatase, carbohydrate-deficient transferrin, tobacco, and fagerstrom score. None exhibited significance,
and as a result, no covariate was retained in the final model. This is consistent with the covariate selection
that was performed with a NONMEM (Beal et al 2009) routine in Imbert et al (2015) and resulted in no
selected covariate.

3.2.6. Prediction on individual dose regimen
The individualized estimation of PK model parameters allows for personalized prediction in customized
dosing and temporal contexts. By placing the estimated posterior samples of the individual parameters into
equation (3), we are able to predict the drug concentration in the blood under any time frame and different
dose regimens, thus deriving reliable projections for optimizing the doses for individuals. Figure 10 shows
examples of short-term posterior simulations for control subjects and Baclofen patients, under two different
dose regimen. These simulations were obtained following a one-compartment modelling and using each
individual’s set of posterior samples of kinetic parameters. Note that in control cases, individual predictions
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Figure 10. Personalized predictions of one-compartment pharmacokinetics for a batch of four synthetic control subjects (A, B)
and four Baclofen patients (C, D). (A), (C): single dose regimen of 15mg at initial time zero, and (B), (D): repeated dose regimen
of 15mg every 6 hours starting at initial time zero. Dashed black lines: the average prediction computed using group-level
posterior population parameters, blue lines: the average computed using posterior estimates of individual parameters, and red
dots: control observations computed from ground-truth individual parameters.

based on posterior estimates of individual parameters are considerably less accurate predictors compared to
the population mean when individual settings deviate from the average.

4. Discussion

Bayesian inference is a principled method for estimating the posterior distribution of unknown quantities
given only observed responses and prior beliefs about unobserved hidden states (or latent variables). An
advantage of using the Bayesian framework in the context of inference/prediction is the ability to generate
not only a single point estimate (e.g. in the frequentist approach), but also full probability distributions for
the quantities of interest (uncertainty quantification for decision-making process). From the latter, one can
directly extract quantiles, with the possibility to answer questions such as ‘what is the probability that the
parameter of interest is greater/smaller than a specific value?’, with the confidence intervals in estimation. In
addition, the propagation of uncertainty in the Bayesian framework provides a more robust and reliable
predictive capability for the model under study, rather than point estimation with optimization methods.
Importantly, the out-of-sample prediction accuracy (i.e. the measure of the model’s ability in new data
prediction e.g. using WAIC) enables reliable and efficient evaluation of potential hypotheses, as performed in
this study. Several previous studies have used a scoring function (such as root mean square error or
correlation) to measure the similarity between empirical and fitted data (Imbert et al 2015). The choice of
scoring function can dramatically affect the ranking of model candidates, and, ultimately, the
decision-making processes (see RMSE in table 1). Rather, we used non-parametric probabilistic mythology
to analyze data, while various convergence diagnostics were carefully monitored to assess when the sampling
procedure has converged to sampling from the target distribution.
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Another advantage of the Bayesian approach used in this study is to integrate our prior information
(domain expertise before seeing the data) into the inference process to better improve the model’s ability to
predict new data. For instance, it has been shown that measuring the prediction accuracy of a whole-brain
network model with a higher level of information in the prior provides decisive evidence in favor of the true
hypothesis regarding the degree of epileptogenicity, across different brain regions (Hashemi et al 2020, 2021,
Vattikonda et al 2021). Accuracy of the predictive models is critical in determining the quality of their
predictions for evidence-informed decision-making. It is important to note that the prior information is
relevant in estimating the parameters rather than in calculating predictive accuracy (Gelman et al 2014).
However, a substantial change in priors will affect the computations of the marginal likelihood, thus, the
accuracy of the predictive models. An inappropriate choice of prior can lead to weak inferences and,
consequently, poor predictions (see figure 4). On the other hand, a sufficient amount of information
encoded through the prior distribution can provide decisive evidence in favor of the correct hypothesis, as
shown in this study (see WAIC values in table 1). In addition to achieving a model with higher performance
prediction accuracy, the appropriate priors can dramatically improve the exploration of the search space in
terms of computational cost and algorithmic diagnostics, such as effective numbers of samples, rendering a
more efficient inference process (see table 1, figures 2, 3 and 5).

MC methods allow us to sample from and, thus, approximate the exact posterior densities, without
requiring knowledge of the whole distribution. HMC uses the gradient information of the posterior to avoid
the undesired random walk of traditional sampling algorithms, thereby samples efficiently from posterior
distributions with correlated parameters, particularly in high dimensional settings. Thanks to the
open-source Stan programs (Carpenter et al 2017), adaptive HMC sampling refined the inference on
population PK parameters, with the uncertainty in estimated parameters compared to point estimation in
the previous work of Imbert et al (2015). In this study, we integrated domain expertise into inference process
through the prior distribution to obtain the full posterior distribution that is well consistent with the data
and domain expertise. For instance, prior information refined inference for the clearance parameter CLpop
and its variability ωCL that are outside the 95% bootstrap confidence intervals compared to previous analysis.
The posterior distributions of other inferred population PK parameters exhibit mean values that are within
the previously proposed confidence intervals, and the credibility intervals extracted from their posterior
distributions have been narrowed in comparison. Moreover, here the residual variance has been reduced by a
factor of 10.

In this study, we estimated the effect of Baclofen on retrospective patients with AUD through Bayesian
estimation of the parameters of a population PK model. Note that, retrospective studies do not involve the
manipulation of variables, making it challenging to establish a cause-and-effect relationship between the
exposure and the outcome. Although, they can provide important information about the potential
associations between exposures and outcomes, but they cannot prove causation. This is because retrospective
studies are subject to various sources of bias, including selection bias, confounding, and measurement bias.
Despite these limitations, retrospective studies can still provide valuable information for generating
hypotheses, guiding further research, and informing clinical decision-making. Using the prospective data, to
establish a causal relationship between Baclofen’s dose and exposure, and measuring the probability of cause
and effect remains to be investigated in future studies.

The Bayesian approach, relying on automatic MCMC sampling algorithms used in this study provided
accurate and reliable estimation of Baclofen effect, validated by posterior behavior analysis and various
convergence diagnostics. This principled and probabilistic methodology enabled us to integrate the prior
information in the explanation of observations to maximize the model prediction power for a given patient
with AUD. This work offers proper guidance for the prediction of drug efficacy in clinical practice, bringing
personalized medicine closer to reality in the treatment of brain disorders.
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Appendix A. Hamiltonian equations of motion

A.1. Expression of the Hamiltonian
The Hamiltonian function is expressed in terms of parameter θ and sampled auxiliary momentum ρ by
developing the joint probability formula,

H(θ,ρ)≡− logπ(θ,ρ)
≡− logπ(ρ | θ)− logπ (θ)
≡ K(ρ,θ)+V(θ)

(A.1)

where K(ρ,θ) corresponds to the kinetic energy and V(θ) is the potential energy.

A.2. Hamiltonian equations of motion
Parameters (θ, ρ) in phase space are evolved through Hamiltonian dynamics by solving the Hamiltonian
equations of motion: 

dθ

dt
=

∂H

∂ρ
=

∂K

∂ρ
,

dp

dt
=−∂H

∂θ
=−∂K

∂θ
− ∂V

∂θ
.

(A.2)

A.3. Leapfrog integrator
For a number of iterations L, the leapfrog integrator successively updates the momentum of half a ϵ step then
parameters of a complete step and then updates the momentum of half a step again.


ρ← ρ − ϵ

2
∂V
∂θ ,

θ← θ + ϵM−1 ρ,

ρ← ρ − ϵ
2
∂V
∂θ .

(A.3)

Appendix B. Bayesian inference on synthetic data

Figure B.1. Trace plots of sampled posteriors for population PK parameters (4 chains, 2000 draws each) on synthetic data, using
(A) Bayesian model I with weakly informative priors, and (B) Bayesian model II with diffuse priors.
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Figure B.2.Histogram of residuals (non-normalised) for (A) Bayesian model I with weakly informative priors (RMSE= 0.348),
and (B) Bayesian model II with diffuse priors (RMSE= 0.331).

Figure B.3. Effect of varying residual noise level σ on inference using model I: (A) RMSE between ground-truth and the estimated
parameters, (B) RMSE as the within-sample accuracy of the fit, and (C) WAIC as the out-of-sample prediction accuracy.

Figure B.4. The calculated WAIC of model I, by fitting to the data generated from out-of-distribution parameter values. Black dot
denotes WAIC for the fitted model I with population parameters CLpop = 7 (L/h), Vpop = 65 (L), kapop = 2.5 (h−1).

21



Mach. Learn.: Sci. Technol. 4 (2023) 035048 N Baldy et al

Appendix C. Bayesian inference on empirical data

Figure C.1. Posterior chains of population PK parameters (4 chains, 2000 draws each) for weakly informative model I fitted
against empirical Baclofen data, showing that the chains are mixing well.

Figure C.2. Rank plots (histograms of 2000 ranked posterior draws, ranked over all four chains) of population PK and variability
parameters for weakly informative model I fitted against empirical Baclofen data. Rank plots are close to uniform (dashed
horizontal lines), indicating that the chains mixed well and converged to a stationary distribution.

Figure C.3. Effective sample size (ESS) plots of population PK parameters using weakly informative model I fitted against
empirical Baclofen data. Top: local efficiency of small interval probability estimates, Middle: efficiency of quantile estimates,
Bottom: estimated ESS (bulk and tail methods) with the increasing number of iterations.
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Figure C.4. Paired posterior draws (4 chains, 2000 draws each) of population PK parameters using weakly informative model I
fitted against empirical Baclofen data.

Figure C.5. Individual posterior distributions (histograms with 40 bins) of individual one-compartment PK parameters fitted
against empirical Baclofen data.
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Appendix D.Workflow of the steady state calculation for one-compartment models
with Torsten

Translated to algorithm text from the PredSS_oneCpt.hpp file of Torsten library12.

Case of interest: bolus dose in the gut compartment (cmt = 1), with ss = True.
Set α := (CLV ,ka)T

• Computation of amount in gut ygut :
a := (0;1)T

pred(ygut) = PolyExp(t=ii, amt, rate=0, tinf=0,τ=ii, ss=True,
a,α,nCmt=2)

→ Calls PolyExp.hpp:
If only one dose (ii=0) :

For i = 0, i+= 1, i< nCmt : result+= a[i]exp(−α[i] ∗ t)
i.e. result= exp(−ka ∗ ii)

Else :
If SS=True (case of interest) :

For i = 0, i+= 1, i< nCmt : result+= a[i] exp(−α[i]∗t)
1−exp(−α[i]∗tau)

That is, result= 1
exp(ka∗ii)−1

Return result * amt
• Computation of amount in central compartment ycent:
a := ( ka

(ka−(CL/V)) ;−
ka

(ka−(CL/V)) )
T

pred(ygut) = PolyExp(t=ii, amt, rate=0, tinf=0,τ=ii, ss=True,
a,α,nCmt=2)

→ Calls PolyExp.hpp:
If only one dose (ii=0) :

For i = 0, i+= 1, i< nCmt : result+== a[i]exp(−α[i] ∗ t)
That is, result= 0

Else :
If SS=True (case of interest) :

For i = 0, i+= 1, i< nCmt : result+= a[i] exp(−α[i]∗t)
1−exp(−α[i]∗tau)

That is, result= ka
(ka−(CL/V))

[
1

exp((CL/V)∗ii)−1 −
1

exp(ka∗ii)−1

]
Return result * amt

Return result ∗ amt
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