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Abstract. We propose a novel approach to improve the reproducibil-
ity of neuroimaging results by converting statistic maps across different
functional MRI pipelines. We make the assumption that pipelines can be
considered as a style component of data and propose to use different gen-
erative models, among which, Diffusion Models (DM) to convert data be-
tween pipelines. We design a new DM-based unsupervised multi-domain
image-to-image transition framework and constrain the generation of 3D
fMRI statistic maps using the latent space of an auxiliary classifier that
distinguishes statistic maps from different pipelines. We extend tradi-
tional sampling techniques used in DM to improve the transition per-
formance. Our experiments demonstrate that our proposed methods are
successful: pipelines can indeed be transferred, providing an important
source of data augmentation for future medical studies.

Keywords: Neuroimaging · Analytical variability · Deep learning · Style
transfer · Diffusion models · Generative models.

1 Introduction

For the past ten years, scientific research faced a “reproducibility crisis”, prompt-
ing the adoption of new research practices, in particular to increase sample sizes.
Data sharing platforms [18,8] were developed to facilitate the re-use of raw data
but also of derived data through meta- and mega-analyses [5]. In functional
Magnetic Resonance Imaging (fMRI), due to the high flexibility of the analytical
pipelines [2], derived data shared on public databases often come from different
workflows, also known as ‘pipelines’. However, different pipelines can lead to dif-
ferent results [1] and combining results from different pipelines in mega-analyses
can lead to a higher risk of false positive findings [26]. To benefit from these
large amount of derived data available, it is necessary to find a way to mitigate
the effect of analytical variability.

In computer vision, recent advances gave rise to performing deep generative
models such as Generative Adversarial Networks (GANs) [7] and Denoising Dif-
fusion Probabilistic Models (DDPMs) [9]. These models produce high quality
results for generating new images from a known distribution but also in the task
of image-to-image transition [11,28], i.e. converting data from a source domain to
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a target domain. Unsupervised frameworks [32,30,15] do not necessitate pairs of
data in different domains for their training as they use constraints like cycle con-
sistency [32] and shared latent space assumption [15,30]. They provide a good
opportunity to benefit from large unlabeled databases to learn complex map-
ping without any ground-truth target data. By conditioning on domain-specific
features (e.g. class vector, latent space of auxiliary classifiers, etc.) instead of
full target images, unsupervised frameworks also extend to multi-domain tran-
sitions [4,3,10] to learn transfer between multiple domains in a single model.

Recently, DDPMs have achieved state-of-the-art performance in synthesiz-
ing natural images, overpassing GANs by producing complex and diverse im-
ages [20], while reducing the risk of modality collapse [14]. In medical imag-
ing, image-to-image transition frameworks are used for multiple tasks, includ-
ing modality transition in which DDPMs and GANs showed promising perfor-
mance [21,16,22,6,13]. Lyu et al [16] showed the superiority of diffusion models
compared to GANs in this task for the conversion between MRI and Computed
Tomography (CT) using a supervised framework (i.e., with pairs of data from
both modalities). In unsupervised settings, Pan et al [22] developed a cycle-
guided DDPM composed of two DDPMs that condition each other to gener-
ate synthetic images from two different MRI pulse sequences. Considering the
achievements of these models in modality transition, which involves transition-
ing between distinct acquisition modalities, there is reason to anticipate their
success in transitioning between other image types, such as analysis pipelines.

However, DDPMs are challenging to control when the objective is to gen-
erate images that maintain the intrinsic properties of the source images while
transferring the extrinsic properties to the target domain. DDPMs are itera-
tive generative models, i.e. they learn to model the transition from a Gaussian
distribution to a target data distribution. Thus, data generated by the DDPM
depend on the initial samples drawn from the Gaussian distribution, usually at
random. Moreover, conditioning is often performed using a single target image
or a one-hot encoded vector which might not represent the whole variability of
the target domain.

In this work, we design a new unsupervised multi-domain DDPM framework
in order to convert fMRI results (i.e. statistic maps) across pipelines, i.e. to
convert a map from a pipeline (source domain) to the corresponding maps from
another pipelines (target domains). Our contributions are as follow:

– We are the first to make the assumption that pipelines can be considered as
extrinsic properties of statistic maps and can be transferred between maps.

– We extend the methods from [10,25] to build a classifier-conditional DDPM,
called CCDDPM, in an unsupervised multi-domain transition framework to
convert between multiple pipelines using a single model.

– We condition our CCDDPM using the latent space of a classifier trained to
distinguish statistic maps between pipelines, a task previously unexplored.

– We propose a novel sampling strategy by selecting multiple target samples
using a guided process based on clustering, to improve both transfer of target
domain features while maintaining the source image properties.
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Fig. 1. Diagram of the workflow. During the forward diffusion (A), original maps X0

are turned into Xt after t steps of noise addition ϵ. (B) Class conditioning uses latent
vectors extracted from a classifier. These are averaged across N images, which are
the centroids of N clusters identified using a K-Means algorithm. (C) Time and class
are embedded using two Multi-Layers Perceptrons (MLP). A mask is applied to the
class conditioning vector to jointly train an unconditional model with a pre-defined
probability. (D) During the reverse diffusion, the neural network ϵθ(Xt, t, c) learns to
predict the noise added to the image and reconstructs Xt−1 iteratively until t = 0.

– We compare CCDDPM to simpler DDPM models and also to a state-of-the-
art multi-domain image-to-image transition model, starGAN [4], specifically
implemented in 3D. We evaluate and compare the performance of each com-
petitors on a broad set of metrics.

2 Classifier-Conditional Diffusion Model (CCDDPM)

Fig. 1 illustrates the model design. CCDDPM uses traditional diffusion pro-
cesses [9] and the conditioning principles of [10]. We improve the sampling strate-
gies by fixing the initial state of the DDPM with noisy source images to keep its
intrinsic properties and by conditioning on the latent space of a classifier using
multiple target images to represent the diversity of the target domain.

2.1 Diffusion processes (forward and reverse)

Diffusion models work by successively adding noise to the training data, and then
learn to reverse the process to construct desired data samples from the noise. In
the forward diffusion process (Fig. 1(A)), the source image X0 is subjected to t
steps of gradual noise ϵ addition to generate intermediate noisy versions of the
image {X0, X1, ..., Xt}. The t− th version of the image is expressed as:

Xt =
√
ᾱt ∗X0 +

√
1− ᾱt · ϵ with ϵ ∼ N(0, I) (1)
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where αt corresponds to fixed hyper-parameters between 0 and 1 related to the
variance and ᾱt =

∏t
i=1 αt, extracted from [9].

The reverse diffusion process (Fig. 1(D)) uses a neural network trained to
predict the noise added to the image ϵ̂t = ϵθ(Xt, t, C) at each time step t given
Xt the noisy version of X0, t the corresponding time step and C a conditioning
vector. During training, the conditioning vector correspond to features of the
true domain of the image, see 2.2). This way, the model learns to predict the
noise added to the image while taking into account the domain of the image. This
creates a multi-domain framework in which the model can predict the noise from
any source image and to convert this image to each domain seen during training.
Starting from Xt and using the predicted noise, the image Xt−1 from previous
step can be reconstructed using the following equation and we can reconstruct
X0 by repeating this process for t times:

X̂t−1 =
1

√
αt

· (Xt −
1− αt√
1− ᾱt

· ϵ̂t) +
√

1− ᾱt−1 · z where z ∼ N(0, I) (2)

The equation is extracted from [9]. The network ϵθ(Xt, t, C) is trained using
a Mean Squared Error loss, LMSE := EX,C,t,ϵ∼N(0,1)[∥ ϵt − ϵ̂t ∥22].

2.2 Conditional diffusion

The general method of conditional diffusion follows the principles described
in [10]. Timestep and conditioning are embedded using 2 MLP and infused with
the neural network activations at a certain layer via aL+1 = cemb · aL + temb

(Fig. 1(C)). An unconditional DDPM is trained along with the conditional one
by setting a contrast mask m. This mask changes the conditioning vector to
a null token ∅ with some probability puncond., set as hyper-parameter. During
sampling, we compute both conditional and unconditional noise prediction and
we perform a linear combination of the two with a weight w to represent the
strength of the conditional guidance using the equation from [10]:

ϵ̂θ(Xt, t, C) = (1 + w) · ϵ̂θ(Xt, t, C)− w · ϵ̂θ(Xt, t) (3)

Classifier conditioning. In [10], the diffusion is conditioned using a one-
hot encoding of the domain, which decreases the diversity of samples. In [25],
a semantic encoder is used to guide sampling. In CCDDPM, we extend this
idea by using a pre-trained Convolutional Neural Network (CNN) classifier that
identifies the pipeline used in statistic maps to condition the model (Fig. 1(B)).
The features are extracted just before the fully connected layer, to get a latent
vector with the most important features that distinguish images across pipelines.

2.3 Sampling strategy for image-to-image transition

Multi-target images. To condition on the latent space of the classifier during
sampling, target images must be selected. In [3], authors showed that condition-
ing on multiple images generates images that share coarse or fine features with
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the target ones depending on the number of selected images. Selecting multiple
target images to convert images between domains can help to generate images
that represent the diversity of the target domain. In practice, the whole set of im-
ages available in the target domain could be used. This is impractical for large
datasets and might lead the model to focus on specific patterns of the target
domain if these are over-represented in the dataset. Here, we propose to use a
K-Means algorithm [17] to identify N clusters of images in the target domain
(Fig. 1(B)). Then, we extract the centröıd of these clusters and average their
latent vector for conditioning. The number of cluster N must be chosen depend-
ing on the dataset and its diversity.

Source content preservation. To keep the intrinsic properties of the source
image, [28] concatenated the source image along with random Gaussian noise to
initialize the diffusion. Here, we propose to fix the initial state of the DDPM
by directly using the forward diffusion process to generate a noisy version of
the source image Xt (Equation 1). Then, the noisy source image is iteratively
denoised using the predicted noise and the reverse diffusion process (Equation 2)
with an additional conditioning on the target domain.

3 Experiments

3.1 Dataset

This work was performed using data from the Human Connectome Project [31].
Written informed consent was obtained from participants and the original study
was approved by the Washington University Institutional Review Board. We
agreed to the Open Access Data Use Terms. We used fMRI data from the motor
task of the HCP Young Adult dataset [31] release S-1200 and computed the
fMRI maps for the 1,080 participants using 4 analysis pipelines that differed in
terms of software package (SPM [24] or FSL [12]) and presence or absence of
the derivatives of the Hemodynamic Response Function (HRF) for the first-level
analysis. We built 1,000 groups of 50 randomly-sampled participants, leading
to 1,000 group-level statistic maps for each pipeline. In the following, we will
refer to each pipeline as ‘software-presence of hrf derivatives’. For instance, the
pipeline using FSL and no HRF derivatives will be denoted by ’fsl-0’.

The selected group-level statistic maps were resampled to a size of 48 x 56 x
48 and masked using the intersection mask of all groups. The voxel values were
normalized between -1 and 1 for each statistic maps using a min-max operation.
The 1,000 groups were split into train, valid and test with a 90/8/2 ratio and all
models were trained and evaluated on the same sets. Further investigation about
possible data leakage across groups is provided in Supplementary Materials.

3.2 Implementation settings

Our code is available at : https://anonymous.4open.science/r/style-trans
fer_diffusion-12B2. Trained models are shared as Supplementary Materials.

https://anonymous.4open.science/r/style-transfer_diffusion-12B2
https://anonymous.4open.science/r/style-transfer_diffusion-12B2
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The neural network used to predict the noise follows a simple U-Net architec-
ture [27] with two downsampling and upsampling blocks with 3D convolutions
layers and skip connections. The hyperparameters of the DDPMs are the follow-
ing: t = 500 diffusion steps; linear noise schedule with variances in the range of
β1 = 104 and βt = 0.02; batch size of 8 and learning rate of 1e-4. The weight
w used to control the conditional guidance is optimized on the validation set
by comparing w = 0, w = 0.5 and w = 2 and a value of 0.5 was found to give
the best results in terms of Pearson’s correlation coefficient between the target
ground-truth and the generated image on this set. The model is implemented
using PyTorch [23] and trained for 200 epochs on 1 GPU NVIDIA Tesla V100.

The CNN used to extract class conditional features is composed of five 3D
convolution layers with 3D batch normalization and leaky rectified linear units
(ReLU) activation functions, followed by a fully connected layer. The latent
space corresponds to a 4, 096 flatten vector which is injected as conditioning to
the U-Net. It is trained for 150 epochs using a learning rate of 1e-4 and a batch
size of 64 on 1 GPU NVIDIA Tesla V100.

3.3 Evaluation metrics & competitors

We evaluate the performance using different metrics: Pearson’s correlation (Corr.)
in percent, Peak Signal to Noise Ratio (PSNR) and Inception Score (IS) [29],
computed using the pipeline classifier described above. The first two metrics
study the adequacy of generated images to the ground truth target, whereas
IS explore the confidence of the conditional class predictions (quality) and the
integral of the marginal probability of the predicted classes (diversity).

We compare CCDDPM to different variations of conditional DDPMs: condi-
tioning using a one-hot encoding of the class, as in [10] and conditioning using
the latent space of the classifier but only one target image selected randomly,
inspired from [25]. We also implement a 3D version of the state-of-the-art star-
GAN [4] to compare the the performance of DDPMs with GANs.

In default settings, CCDDPM uses N = 10 target images. We also assess
the impact of the number of target images for N = 5, 10 and 20. We also
compare the selection process with a random sampling of target images and
with a sampling based on the identification of images that are close to the source
image using a K-Nearest Neighbors algorithm [19].

3.4 Results

In Table 1, we show the performance for 4 transfers, between two pipelines with:
different HRF and different software (columns 1-4), same HRF and different
software (columns 4-6) and, different HRF and same software (columns 6-8).
Performance of CCDDPM are compared to the one in [10] and one inspired
from [25] with classifier-conditioning and N = 1 target image selected randomly.
Regarding the quality of the transfer to the target domain, all models succeed in
changing the class identified by a pipeline classifier to the target domain. CCD-
DPM outperforms the other models (including starGAN) in terms of Inception
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fsl-1 → spm-0 spm-0 → fsl-1 fsl-1 → spm-1 fsl-1 → fsl-0

IS Corr. PSNR Corr. PSNR Corr. PSNR Corr. PSNR

Initial 3.69 76.2 78.2 76.2 78.2 82.6 81.3 91.0 83.9
One-hot [10] 3.66 83.8 77.2 75.0 79.4 78.7 77.7 81.1 79.5
N=1 [25] 3.70 85.5 79.0 77.8 80.0 79.9 78.0 82.8 80.2
StarGAN [4] 3.63 90.5 81.9 87.5 84.2 87.6 81.8 91.5 85.0
CCDDPM 3.86 86.1 79.4 79.0 80.7 81.2 78.9 84.1 80.6

N=5 3.86 86.4 79.8 78.7 80.6 81.2 79.4 84.5 80.9
N=20 3.87 86.1 79.5 79.2 80.7 81.3 79.2 83.9 80.9
N=5, random 3.89 86.5 79.4 79.1 80.4 82.0 79.2 84.2 80.2
N=10, random 3.86 86.5 79.2 79.0 80.2 81.8 79.4 84.3 80.8
N=20, random 3.85 86.7 79.1 79.3 80.6 81.5 79.4 84.4 80.7
N=10, KNN 3.75 84.9 79.3 78.7 80.0 81.6 79.1 83.6 80.7

Table 1. Performance associated with four transfers. IS means ”Inception Score” across
all transfers. Pearson’s correlation (%) and Peak Signal to Noise Ration (PSNR) com-
puted between generated and ground-truth target image for 20 images per transfer. Ini-
tial represents the metrics between the source image (before transfer) and the ground-
truth target image. Default CCDDPM uses N=10. Boldface marks the top model.

Score. The use of a DDPM with classifier-conditioning and multiple target im-
ages seems to improve both quality and diversity of images, which might be
explained by the non-determinism of sampling in DDPMs.

In terms of similarity to the ground-truth target image, CCDDPM outper-
forms the other DDPM models by up to 4% in correlations between target
ground-truth and generated image compared to [10] for transfer spm-0 to fsl-1
and up to 3% for fsl-1 to spm-0. Even compared to the other best DDPM models
in each task, CCDDPM is at least 0.6% better in terms of correlations. For the
last two transfers in Table 1, our performance does not overpass the initial values
between the source image and the ground-truth target image. These low perfor-
mance could be explained by the difficulty of the models to learn differences
between close pipelines. In Supplementary Figures, we show the performance of
the pipeline classifier and compare the similarity of features.

However, the performance of starGAN [4] remain highly superior to the ones
obtained with any DDPM, even for the last two transfers for which it over-
passes the initial metrics. This superiority can be explained by the differences
between frameworks: GAN-based methods use adversarial training and starGAN
improves this by using a classifier loss and a cyclic-reconstruction loss. Moreover,
GANs sampling rely on the source image directly and do not require to set an
initial state, which might facilitate the source content preservation.

At the bottom of Table 1, we show the influence of the number of target
images and of the selection methods. The number of images does not seem
to impact the performance, correlations are very similar between N = 5, N =
10 and N = 20. Performing selection using K-Means algorithm does not seem
to improve performance compared to a random selection, for any N values,
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76.9% 78.9% 76.7% 85.8% 79.9%

91.3% 82.9% 81.6% 91.6% 84.3%

Fig. 2. Generated images for two transfer and different competitors: conditioning with
one-hot encoding [10], with a classifier and N=1 [25], starGAN [4] and CCDPM.
Correlation with target ground-truth are indicated below generated and source images.

probably due to the low diversity in our dataset. However, selection using a
K-Nearest Neighbors (KNN) algorithm decreases the performance from 1.6%,
meaning that the diversity of target images is beneficial for a good transfer.

The first row of Figure 2 illustrates a transfer between pipelines with dif-
ferent HRF and different software (spm-0 to fsl-1). The second row shows a
transfer between pipelines with different HRF (fsl-1 to fsl-0). CCDDPM gener-
ates statistic maps close to the ground-truth for both transfer, representing the
intrinsic properties of the map while modifying its extrinsic properties to the
target domain. Maps generated using starGAN [4] remain closer to the target
ground-truth, with more similar patterns, as stated by the similarity metrics.

4 Conclusion

We explore the ability to convert fMRI maps between pipelines using genera-
tive models. In particular, we provide a new DDPM unsupervised multi-domain
image-to-image transition framework by conditioning on multiple target images
in the latent space of a classifier. Our results show that images can be converted
successfully, but with lower adequacy with the ground-truth target compared
to GANs. In future work, we would like to focus on latent diffusion models to
improve image quality and conservation of intrinsic properties of the image.
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