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Parkinson’s Progression Markers Initiative (PPMI) (Marek & al. 2018)
4 time points: baseline (N=82), 1y (N=53), 2y (N=45) and 4y (N=33).
Baseline selection: fMRI image and MDS-UPDRS score at the same visit,
acquisition parameters from the original study (TR, TE), visit before 2020.
Follow-up selection: Searching for baseline participants that also had a
score 1 year, 2 years and 4 years after.

Homemade pre-processing pipeline using open source 
software packages. Code not available.

fALFF (fractional Amplitude at Low Frequency
Fluctuation) & ReHo (Regional Homogeneity).

Nested-cross validation: 10-fold CV inner-
loop, Leave-One-Out CV outer-loop.

🛑 Uncertainties about query time of the database

🛑 Evolutive database, updated in Sept. 2021

3. Features

Fixed choice for MNI template and denoising. 

Implementation of 3 different variations for CSF and 
WM estimation using FSL (B1), AFNI (Default) and 
without using anatomical priors (B2). 

Z-scoring and parcellation using 3 atlases.

Reproduction of the Schaefer atlas using publicly available atlases.

Comparison with and without z-scoring (C1) and with ALFF (C2). 

Selection with criteria à Replication cohort (A1)

Authors shared participants & sessions list with us ✅
Missing sessions, different session selected using criteria, 
etc. à Closest-to-original cohort (Default)

🛑Missing information on: WM and CSF timeseries
estimation, MNI template & denoising method
🛑 Non standard pipeline: homemade, multi-software

🛑 Z-scoring step was not found in the code shared by the authors
🛑 ALFF also used by the authors but not reported in the paper
🛑 Homemade Schaefer atlas not available

🛑 Inconsistencies between
code and paper’s reporting. Results

Code available on Software Heritage
swh:1:snp:ac39cd7495afa754e5d0d298a502cda8684c7eca

2. Image processing pipeline  

1. Cohort selection

4. Machine learning

Multiple variations (A à E), 
which ones impact the performance? 

Cohort
variations (A)

Processing
variations (B)

Features
variations (C)

Input features
variations (D)

With the default reproduction workflow:
- Better than chance performance for all models
- Performance close to the original ones

Different choices in machine 
learning model optimization
and performance reporting
(E) à Large impact 

Fig. 1 - Performance of models trained for prediction at each time point, using fALFF or ReHo, with
variations in the workflow for prediction at baseline and 1 year. Green line: original performance
reported in Nguyen et al. 2021. Red lins: Chance model.

Fig. 2 - Performance of models
with variations in model selection
and performance reporting.

Conclusions

fMRI studies are highly flexible and 
a slight change on the workflow 

can have a large impact on results.
Code and data sharing is

important for reproducibility. 

Baseline: large impact of feature processing choices (C).
At 1 year and after, impact of cohort variations (A) and
input features (D - without imaging, without UPDRS)
Small impact of pre-processing pipelines à prediction
mainly driven by clinical and demographic features.

Machine learning workflows are 
complex to design, results are often

over-estimated due to leakages.  

Software package choice
and software versions can 

impact the results.

Reproducibility associated to 
clinical data is challenging, in 
particular for cohort selection
and re-use of clinical features.

Reproducibility is essential to make trustworthy research.
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