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Predicting Parkinson's disease trajectory using

clinical and functional MRI features (Nguyen et al. 2021)
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1. Cohort selection

Parkinson’s Progression Markers Initiative (PPMI) (Marek & al. 2018)

4 time points: baseline (N=82), 1y (N=53), 2y (N=45) and 4y (N=33).
Baseline selection: fMRI image and MDS-UPDRS score at the same visit,
acquisition parameters from the original study (TR, TE), visit before 2020.
Follow-up selection: Searching for baseline participants that also had a
score 1 year, 2 years and 4 years after.
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3. Features

Homogeneity).

Z-scoring and parcellation using 3 atlases.

- Z-scoring step was not found in the code shared by the authors
@ ALFF also used by the authors but not reported in the paper
@ Homemade Schaefer atlas not available

Reproduction of the Schaefer atlas using publicly available atlases.

Comparison with and without z-scoring (C1) and with ALFF (C2).

4. Machine learning

Nested-cross validation: 10-fold CV inner-
loop, Leave-One-Out CV outer-loop.
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@ Inconsistencies between
code and paper’s reporting.

Features

variations (C) .
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@ Uncertainties about query time of the database

@ Evolutive database, updated in Sept. 2021

Selection with criteria = Replication cohort (A1)

Authors shared participants & sessions list with us ¥
Missing sessions, different session selected using criteria,
etc. =2 Closest-to-original cohort (Default)

2. Image processing pipeline

Homemade pre-processing pipeline using open source
software packages. Code not available.

- Missing information on: WM and CSF timeseries
estimation, MNI template & denoising method
@ Non standard pipeline: homemade, multi-software

Fixed choice for MNI template and denoising.

Implementation of 3 different variations for CSF and
WM estimation using FSL (B1), AFNI (Default) and
without using anatomical priors (B2).

Results

Code available on Software Heritage
swh:1:snp:ac39cd7495a£f2754e5d0d2982502cda8684c7eca

With the default reproduction workflow:

- Better than chance performance for all models
- Performance close to the original ones

- Multiple variations (A = E),
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Fig. 1 - Performance of models trained for prediction at each time point, using fALFF or ReHo, with Default 0124 Fig. 2 - Performance of models
variations in the workflow for prediction at baseline and 1 year. Green line: original performance Workflow E1 | -0164  With variations in model selection
reported in Nguyen et al. 2021. Red lins: Chance model. Workilow E2 | -0.102  and performance reporting.

Reproducibility associated to
clinical data is challenging, in
particular for cohort selection
and re-use of clinical features.

Code and data sharing is
important for reproducibility.
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Conclusions

Reproducibility is essential to make trustworthy research.

Software package choice
and software versions can
impact the results.

For more info, see the preprint:
inserm.hal.science/inserm-
04465765

Machine learning workflows are
complex to design, results are often
over-estimated due to leakages.
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