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Abstract 

Objective: As lifetime horizons are considered for economic evaluations, the Kaplan-Meier 

(KM) estimate is used to extrapolate survival in cases of immature overall survival (OS) data. 

This study estimated the error induced by the choice of distribution when extrapolating 

different levels of OS maturity.  

Methods: Fifteen phase 3 trials reporting KM estimates of OS where at least 70% maturity 

(i.e. 70% of the population had died during follow-up) were included and compared to 

artificially created truncated data (30% and 50% maturity). Individual patient-data were 

reproduced using the Guyot algorithm based on digitized KM curves. Parametric survival 

distributions were fit for each arm in each study, for each maturity level, using the same 

time horizon (equal to the maximum follow-up). For each KM curve, the best distribution 

was chosen based on visual inspection, Akaike/Bayesian information criteria, and external 

validity. Outcomes were measured as life expectancy in months (LM) and life months gained 

(LMG). 

Results: The Weibull (33%), log-logistic (32%) and log-normal (27%) were most often 

selected as the best fitting distribution. Compared to LM at full maturity, LM was 

overestimated in 23% and 40% of cases, at 30% and 50% maturity, respectively. Mean 
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absolute error was             at 30% maturity, and decreased to             at 50% 

maturity. When comparing to mature data, the mean percentage of error in LMG was 

       and 6     at 30% and 50% maturity, respectively.  

Conclusion: The extent of OS maturity increases the risk of error when projecting long-term 

life expectancy for economic models. Even marginal gains in OS maturity result in more 

accurate estimations and should be considered when developing models. 
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Short title: Data maturity for projecting survival in economic models 

 

 

Introduction 

Health economic evaluations consist of a comparative analysis of treatment options, both in 

terms of costs and benefit, expressed as life years gained (LYG) or in quality-adjusted life 

years (QALY). Extrapolating survival to capture the life course of a disease is recommended 

by multiple health-technology assessment (HTA) authorities for economic evaluations of 

oncology drugs, in order to best assess the long-term consequences of the compared 

strategies [1-3].  

Overall Survival (OS) is considered the gold standard as a primary endpoint of randomized 

controlled trials of interventions aimed at extending life, particularly in oncology [4,5]. A 

literature review found that this information was not available at the time of approval for 

more than half of the drugs receiving market authorization by the European Medicines 

Agency.[6] Oncology drugs in particular benefit from early phase approvals (accelerated 

procedures, adaptive pathways, etc.) and/or are approved with relatively short trial follow-

up, to accelerate the patient’s access to innovation [6,7]. Hence, immature data on OS is 

frequently used for economic evaluations of oncology drugs.  
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In cases of immature and, as they often are, censored OS data, the Kaplan-Meier (KM) 

estimator can obtain estimates of the full survival benefit, allowing this data to then be used 

in an economic model. Multiple methods may be used for extrapolating data, with 

parametric distributions the most frequently used [8]. As each distribution has a different 

functional form, resulting in different survival estimates, extrapolating over much larger 

time horizons than that observed may result in potentially large differences. According to 

the Decision Support Unit of the National Institute for Health and Care Excellence [8,9], the 

selection of the best fitting distribution includes the assessment through multiple criteria : 

1) visual inspection, assessing how well each parametric model fits the clinical trial data by 

how closely it visually follows the KM curve; 2) Akaike’s Information Criterion (AIC) and 

Bayesian Information Criterion (BIC), which provide a statistical test of the relative fit of 

alternative models to KM curve; 3) clinical validity, obtained through expert clinical 

judgement on expected long-term survival for the intervention under consideration; and 4) 

referring to external evidence, such as general population data.  

The fit of a curve is depending on the information used to estimate its fit. Thus, the best 

fitting curve may differ when the maturity of the data is increased or decreased. This in turn 

impacts the estimation of life expectancy in months (LM) and life months gained (LMG) 

between compared treatments. To quantify the difference, this study aimed to estimate the 

error on LM and LMG due to the choice of distribution, for varying levels of OS maturity.  

 

Materials and methods 

Data selection 

A targeted literature review was undertaken to identify phase 3 randomized controlled trials 

in oncology for both solid tumors and haemato-oncology, published in peer-reviewed 

journals between 2013 and 2017; selected studies had to report OS KM survival curves in at 

least one arm (intervention or comparator), with a minimum of 70% maturity (defined as 

the rate of deaths (events) observed during the follow-up period) [10]. The KM curves also 

had to be technically digitizable, ensuring that the number of patients at risk could be 

extracted for each KM curve.  

Digitalization and extrapolation 
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In order to test the impact of maturity level on LM and LMG, artificially truncated maturity 

levels were created at 30% and 50% of  maturity. These artificially created truncated data 

were then compared against the full (>70%) maturity identified in the publication. A three-

step process was then performed for each OS KM curve. First, the KM curve was digitized 

using DigitizeIt software (www.digitizeit.de version 2.3.3) as recommended by Guyot et al 

[11]. Individual patient data was then reproduced using the algorithm by Guyot and 

reconstructing the KM data on which the survival curve was based [11]; this step was done 

using R version 3.5.1. Finally, parametric survival distributions were fit for each OS KM curve 

using the R survival package [12]. For each selected study, each of the five distributions 

(Weibull, Gompertz, exponential, log-logistic and log-normal) were fit for each treatment 

arm (intervention [I] and comparator[C]) and each maturity level (full maturity, truncation at 

50% maturity [50%], and truncation at 30% maturity [30%]). The curves were fit on the same 

time horizon, i.e. to the maximum follow-up of both groups in each study (in months), 

resulting in a total of 450 distributions for the 15 selected studies. Figure 1 shows an 

example of data at full maturity, 50% maturity and 30% maturity with conceptualized 95% 

confidence intervals. Digitalization and extrapolation was performed independently by two 

health-economists, with a quality check for each individual extrapolation. 

Distribution selection process 

For each KM curve, the best distribution was chosen by an expert panel of two oncologists 

and two health economists. The expert panel first assessed fit based first on visual 

inspection only, followed by Akaike/Bayesian information criteria and finally external 

validity [8,13]. To prevent board participants from being influenced by knowledge of full 

maturity, KM curves were presented sequentially first by type of cancer (solid tumor, then 

other) then by maturity (first 30%, then 50% and finally full). The curves were shown 

without any additional identifying information to avoid bias. Distributions were compared 

using the chi-square test.  

Statistical analysis 

For each distribution based on the 90 KM curves (2 treatment arms x 3 maturity levels x 15 

studies), the restricted mean survival time (RMST) [14], representing a patient’s life 

expectancy in months (LM), was estimated via the area under the curve (AUC). The number 

of cases where RMST was over- or under-estimated for 30% and 50% maturity compared to 
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full maturity, was then calculated. To quantify the error in terms of LM, the difference 

between RMSTs at full maturity versus 30% and 50% was then calculated as follows for each 

treatment arm: 

       (               )                         

Since the RMST differences (ErrRMST) can be negative or positive, meaning that studies that 

under-estimate LM can compensate studies that over-estimate LM, we also calculated the 

absolute error  using (AbsErrRMST) the absolute values of RMST difference between full 

versus 30% and 50% maturity for each treatment arm: 

          (              )     (    (              )) 

As life expectancy magnitude is specific to each study and treatment arm, the relative errors 

in percentage at 30 and 50% maturity compared to full were calculated for both treatment 

arms: 

        (              )  
          (              )

        
 

LMG were calculated for the intervention versus comparator as follows for each study, 

where x is the maturity: 

                                         

The percent error in LMG was estimated as follows:   

                         (
                    

       
) 

This parameter takes into account various levels of LMG among the 15 studies.  

 

Results 

Selected studies 

A total of 15 trials that met the inclusion criteria and are summarized in Table 1. Identified 

studies included various localizations of cancer as well as treatments. Average maximum 

duration of follow-up was 51 months (median=37 months, range=10-95) and the mean 

maturity level was 88%.  
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Distributions 

Type of distribution choice 

Based on the selection process, overall, the three best fitting distributions were Weibull 

(33%), log-logistic (32%) and log-normal (27%); the exponential distribution was never 

chosen. There were no differences observed in the choice of distributions for treatment 

arms (i.e. the same distribution was chosen for both treatment arms). Further, as shown in 

Figure 2, there was no difference in the distribution chosen across the three maturity levels 

(p=0.65). 

Life expectancy in months  

Across both treatment arms, the RMSTs were overestimated in 23% (7/30) and 40% (12/30) 

of the time, at 30% and 50% maturity, respectively (Figure 3). The mean life month error 

was 0.58 months for 50% maturity versus full and 1.23 months for 30% maturity versus full. 

The mean absolute error at 50% maturity was 0.88 months and increased to 2.12 months 

for 30% maturity (Figure 4). The improvement in the estimation of life expectancy was 2.4 

times better when maturity increased from 30% to 50%. The mean (median) percentage 

error at 30% maturity of RMST was 13.1% (10.4%) and at 50% maturity of RMST was 6.7% 

(3.3%).  

Life months gained  

On average, at 30% maturity versus full, the mean percentage of error in LMG was 126.4%; 

at 50% maturity versus full, the mean percentage of error in LMG was 62.4%. The median 

percentages were 64.4% and 28.0% at 30% and 50% maturity, respectively. An important 

heterogeneity was also observed: for 30% maturity, the minimum and maximum were 

between 8% and 790% and for 50% maturity, it ranged between 0.5% and 377% (Figure 5). 

Of note, zero percent indicates an absence of error in the estimation of LMG at full maturity 

for the extrapolations based on 30% and 50% maturity. 

 

Discussion 

The objective of this study was to quantify the error in estimated LM and LMG using 

extrapolations, based on immature OS data often used for pharmacoeconomic evaluations 
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for HTAs. Compared to OS at full maturity, an underestimation of life expectancy was 

observed in 77% and 60% of cases, respectively, for 30% and 50% maturity. Further, across 

the 15 studies, the mean absolute error on life expectancy was reduced by 2.4 times (from 

2.12 to 0.88 months) when maturity improved from 30% to 50%. Similar results were 

observed for LMG where the mean percentage in error was reduced with increasing 

maturity.  

The tendency to underestimate OS with immature data can be explained by the observation 

of a higher number of deaths during the early the early follow-up of a clinical trial. As such, 

it follows that extrapolating curves based on premature data (30% maturity) may 

underestimate OS for rapidly progressive and non-responding patients. Furthermore, 

extrapolating on immature data does not take into account possible plateaus for long 

responders. This underestimation of life expectancy is, however, considered conservative in 

the context of a health economic evaluation. Bullement et al. [15] conducted similar work 

though their work was limited to the scope of immunotherapies in the context of 

evaluations by NICE. They found a slight under-estimation of projected OS based on 

available data at time of submission compared to the most recently available data published 

following submission. 

There is also a strong correlation between maturity levels and the associated risk of error. 

While the maximum duration of follow-up among the 15 selected studies was 

heterogeneous (between 10 and 90 months), it appeared that the risk of error was higher 

for slowly progressing diseases, or diseases with an observed plateau where the models did 

not fit as well. Thus, extrapolations in the context of slower progressing diseases need to be 

carefully interpreted. Further, in the case of a cancer with either a good likelihood of 

survival or with slower progression of disease, death can also be due to causes other than 

cancer, which also explains why survival outcomes can be difficult to predict. Therefore, the 

natural evolution of the disease along with the maturity of the survival data should be taken 

into account for accuracy and robustness when considering the extrapolation needs. 

While the use of the most mature data is preferable in all cases, it should be noted that 

there are scenarios where the OS will remain immature when evaluated by the HTA 

agencies. The first is when OS is immature due to early results because a new drug has a 

major therapeutic impact or in a disease where there is a high unmet medical need (i.e. 
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CAR-T cell therapy for the management of large cell B lymphoma [16,17]). To address this, 

the Commission d’Evaluation Economique de Santé Publique (CEESP) in France has 

requested updated results when more mature OS data becomes available [18,19]. A second 

scenario corresponds to pathologies for which multiple lines of treatment are available and 

for which a benefit in OS is difficult to demonstrate in the short term [20,21]. This is the 

particularly the case for adjuvant therapies in oncology, such as in melanoma, as mentioned 

by NICE [22]. Finally, a third scenario can arise in diseases with slow progression and/or 

there is a competing risk of death from another cause. For instance, patients with surgically 

resectable oesophagal adenocarcinoma can be cured and die from consequences due to 

long-term consequences or treatment or comorbidities [23]. In both the second and third 

scenarios, OS may not be the most relevant endpoint. If validated by strong statistical 

methods [24-26], surrogate endpoints for OS may be a better alternative. This technique 

was used in the adjuvant treatment of melanoma where OS was estimated using RFS based 

on a predictive model for nivolumab versus ipilimumab [27]. A correlation ratio between OS 

and progression-free survival gain has previously been used as a proxy when more mature 

data were available in one population and then applied to another in a given indication[28]; 

however, this approach was challenged by NICE [29] given that the validation was based on 

the use of mature data in a subgroup of people with the BRCA mutation in a trial of olaparib. 

Previous studies have explored the impact of extrapolations [30-32]. However, to our 

knowledge, this is the first time that OS has been extrapolated across a large (n=15) sample 

of select oncology studies avoiding potential technical issues (i.e. digitization process), 

generating 450 different extrapolations covering a wide range of situations. Further, all 

selected studies had to be randomized controlled trials with mature OS data, resulting in 

publications in peer-reviewed, high impact factor journals. As our sample of studies included 

different types of cancer (both common and rare), at various stages (localized/metastatic) 

with various interventions (surgery, chemotherapy, immunotherapy, targeted therapy), they 

offer a good overview of the diversity of clinical situations that can be encountered in the 

field of oncology. Our process of choosing the best curved based on the combination of 

statistical and clinical inputs reflects commonly used methods of extrapolating OS in 

economic evaluations of oncology products for HTA reviews. Applying the same standard 

methodology to all 15 studies enabled reproducible results while reducing the 
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heterogeneity of estimations, as opposed to a situation of a meta-analysis based on 15 

single and independent experiments. Further, this process highlighted the importance of 

external clinical validity, and not only statistical criteria of fit, in the selection of survival 

curves.  

Our study has limitations. Our approach assumed that the KM estimate over the first 

months of mature data is identical to if the KM estimate had been made only with data to 

this same cut-off. This approach does not reflect the reality that KM estimates change as the 

data matures. This work was performed following initial evaluations for market 

authorization or submissions to HTA authorities potentially impacting the clinical experts 

experience in the given indication and/or the related drug’s efficacy. While this may have 

impacted their choice across possible distributions, the error would have been in the 

direction of the true OS KM curves. Thus, the presented results may be underestimated. 

Unlike HTA evaluations where the expert panel is selected based on their specific expertise 

for a given indication, the two oncologists in this study were selected based for their broad 

knowledge across all indications. Further, our selection of studies was based on an arbitrary 

cut-off maturity level of 70%, as a trade-off between the longest-term possible data and the 

available number of the most recent published studies was needed in order to identify 

appropriate trials. Use of immature data is standard practice in seeking reimbursement; 

extrapolation of survival outcomes will nearly always be required since trials rarely report 

complete survival data. While updating models is likely to reduce uncertainty in decision 

making, it may not always be possible and there will likely remain uncertainty in long-term 

outcomes. Future work, including the use of artificial intelligence, should explore alternative 

methods in reducing the uncertainty around this necessary extrapolation. While our study 

noted the proportion of models that under- or overestimated overall survival, this was not 

quantified. Quantifying and exploring the clinically relevant impact of under- or 

overestimates on overall survival should be explored in future research. Finally, this study 

does not consider all approaches to extrapolating survival. Flexible extrapolation 

approaches, including splines or fractional polynomials, are also available and may be 

appropriate in some circumstances.[9]  

This study highlights the impact of OS maturity in reducing error for the extrapolation of KM 

curves. Extent of OS maturity increases the risk of error when extrapolating for the purpose 
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of health economic models, with more mature OS data resulting in more accurate 

estimations. While more mature data in early stages of drug development is often not 

available, as more mature data becomes available, health economic analyses should be 

updated and revised. Investigators and HTA agencies should work together to update long-

term OS data in order to best inform health economic evaluations of oncology treatments. 
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Table 1: Characteristics of the selected studies  

 

Primary 

Author 

Year Population and 

indication  

Intervention Comparator Maximu

m 

duration 

of follow-

up (in 

months) 

Maturit

y 

Alderson 

[23] 

201

7 

Surgically 

resectable 

oesophageal 

adenocarcinom

a 

Cisplatin and 

fluorouracil 

Epirubicin, 

cisplatin, and 

capecitabine 

95 71% 

Ascierto 

[33] 

201

6 

Previously 

untreated 

BRAFV600 

mutated 

unresectable 

stage IIIC or 

stage IV 

melanoma 

Cobimetinib + 

vemurafenib 

Placebo 

+vemurafenib 

30 78% 
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Carbone 

[34] 

201

7 

First-line stage 

IV or recurrent 

PD-L1 positive  

Nivolumab Platinum-

based 

chemotherap

y 

28 88% 

Dummer 

[35] 

 

201

7 

Advanced 

unresectable 

stage IIIC or 

stage IV NRAS-

mutant 

melanoma 

Binimetinib Dacarbazine 28 91% 

Fujitani 

[36] 

 

201

6 

Advanced 

gastric cancer 

with a single 

non-curable 

factor 

Gastrectomy 

followed by 

chemotherap

y 

Chemotherap

y alone 

79 100% 

Gilbert 

[37] 

201

4 

Newly 

diagnosed 

glioblastoma 

Bevacizumab Placebo 30 82% 

Grothey 

[38] 

201

3 

Previously 

treated 

metastatic 

colorectal 

cancer 

Regorafenib Placebo 14 81% 

Harbeck 

[39] 

201

6 

HER2-

overexpressing 

metastatic 

breast cancer 

who had 

progressed on 

one previous 

treatment 

Afatinib plus 

vinorelbine 

Trastuzumab 

plus 

vinorelbine 

43 87% 
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Kantarjia

n [40] 

201

6 

Relapsed or 

refractory acute 

lymphoblastic 

leukemia 

Inotuzumab 

ozogamicin 

Standard 

therapy 

40 91% 

Motzer 

[41] 

201

5 

Previously-

treated 

advanced clear-

cell renal 

carcinoma 

Nivolumab Everolimus 32 69% 

Parker 

[42] 

201

3 

Castration-

resistant 

metastatic 

prostate cancer  

Radium-223 Placebo 37 94% 

Seddon 

[43] 

201

7 

First-line 

advanced or 

metastatic soft-

tissue sarcoma  

Gemcitabine 

and docetaxel 

Doxorubicin 10 73% 

Stintzing 

[44] 

 

201

6 

First-line 

treatment of 

patients with 

KRAS exon 2 

wild-type 

metastatic 

colorectal 

cancer 

FOLFIRI plus 

cetuximab 

FOLFIRI plus 

bevacizumab 

71 99% 

Tewari 

[45] 

201

4 

Recurrent, 

persistent or 

metastatic 

cervical cancer 

Chemotherap

y with 

bevacizumab 

Chemotherap

y without 

bevacizumab 

37 100% 

Zalcman 

[46] 

201

6 

First-line 

advanced 

Pemetrexed 

plus cisplatin 

pemetrexed 

plus cisplatin 

80 94% 
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malignant 

pleural 

mesothelioma 

and 

bevacizumab 

 

 

 

 

Figure captions 

Figure 1: KM curves fit with parametric distributions at full maturity (A), 50% maturity (B) 

and 30% maturity (C) for both treatment arms  

Figure 2: Distribution types for each maturity level 

Figure 3: Proportion of cases with over- and underestimation of LM at 30 and 50% 

maturity 

Figure 4: Mean and median of the absolute error between RMST at 30% and 50% maturity 

versus full (in months) 

Figure 5: Percent error in life months gained between 30% and 50% maturity versus full, 

per study 
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Figure 1: Example of KM curves fit with parametric distributions at full maturity (A), 50% 

maturity (B) and 30% maturity (C) for both treatment arms  

 

 

 

Note: shaded grey line represents conceptualized 95% confidence intervals. 
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Figure 2: Distribution types for each maturity level 
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Figure 3: Proportion of cases with over- and underestimation of LM at 30 and 50% 

maturity 

 

 

 

 

 

 

 

 

 

Figure 4: Mean and median of the absolute error between RMST at 30% and 50% maturity 

versus full (in months) 
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Figure 5: Percent error in life months gained between 30% and 50% maturity versus full, 

per study 
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