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ABSTRACT

Metagenomics can be used to monitor the spread
of antibiotic resistance genes (ARGs). ARGs found
in databases such as ResFinder and CARD primar-
ily originate from culturable and pathogenic bacteria,
while ARGs from non-culturable and non-pathogenic
bacteria remain understudied. Functional metage-
nomics is based on phenotypic gene selection
and can identify ARGs from non-culturable bacte-
ria with a potentially low identity shared with known
ARGs. In 2016, the ResFinderFG v1.0 database was
created to collect ARGs from functional metage-
nomics studies. Here, we present the second ver-
sion of the database, ResFinderFG v2.0, which
is available on the Center of Genomic Epidemi-
ology web server (https://cge.food.dtu.dk/services/
ResFinderFGY/). It comprises 3913 ARGs identified by
functional metagenomics from 50 carefully curated
datasets. We assessed its potential to detect ARGs
in comparison to other popular databases in gut,
soil and water (marine + freshwater) Global Micro-
bial Gene Catalogues (https://gmgc.embl.de). Res-
FinderFG v2.0 allowed for the detection of ARGs
that were not detected using other databases.
These included ARGs conferring resistance to beta-
lactams, cycline, phenicol, glycopeptide/cycloserine
and trimethoprim/sulfonamide. Thus, ResFinderFG
v2.0 can be used to identify ARGs differing from
those found in conventional databases and therefore
improve the description of resistomes.
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INTRODUCTION

Antimicrobial resistance (AMR) is recognized as a global
threat possibly leading to the lack of efficient treatment
against deadly infections (1). From a genetic perspective,
AMR is driven by mutational events (e.g. fluoroquinolone
resistance is driven by mutations in the topoisomerase-
encoding genes) and the expression of antibiotic resis-
tance genes (ARGs). ARGs are widespread in human- and
animal-associated microbiomes, and in the environment (2).
Hence, these microbial niches are now considered in a One
Health manner (3). Although not every ARGs represents
a direct risk for human health (4), genes are able to travel
from one environment to another by strain dissemination
and then to pathogenic bacteria by horizontal gene transfer
(5).

Identifying ARGs and assessing this risk is essential
to better understand and putatively find means to pre-
vent their dissemination in pathogenic bacteria. To iden-
tify ARGs, culture-based methods, PCR, qPCR (6), ge-
nomic and metagenomic sequencing have been used.
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Metagenomics makes it possible to sequence all the DNA
from a sample. Then with the help of alignment (e.g.
BLAST (7)) or Hidden Markov Models (e.g. HMMER
(8))—based tools, ARGs can be identified based on their
sequence identity with known ARGs. To this end, sev-
eral ARG databases (9) exist such as CARD (10) or Res-
Finder (11). However, their sensitivity and specificity are
highly dependent on which database is used and on the
parameters used for the search. Moreover, methods using
databases of known ARG cannot detect truly novel ARG
i.e. not described to date. Pairwise Comparative Modelling
(PCM), combining sequence and structure homology to de-
tect ARGs, showed good performances to detect ARGs dis-
tantly related to known ARGs in the human gut micro-
biota, yet some predictions were not all functionally vali-
dated (12).

Although culturable and/or pathogenic bacteria only
represent a small fraction of microbial diversity, their genes
make up the vast majority of the ARGs present in exist-
ing databases. Thus, the description of the resistome can
be biased in environments where non-culturable or non-
pathogenic bacteria dominate. In order to detect ARGs
distantly-related to known ARGs or ARGs from novel
ARG families, functional metagenomics has been used (13).
This method is based on phenotypic detection by expressing
exogenous DNA in an antibiotic-susceptible host. Metage-
nomic DNA is sheared and cloned into an expression vec-
tor used to transform a host strain susceptible to antibi-
otics. Transformant strains are then selected with culture
media supplemented with antibiotics. If growth is observed,
it implies that the DNA cloned into the expression vector
is responsible for the resistance phenotype observed. DNA
inserts can then be amplified, sequenced and annotated to
identify ARGs (14). Using functional metagenomics, ARGs
sharing low amino acid identity to their closest homologue
in NCBI (15), or even not previously classified as ARGs
(16), could be detected in human (16-26), animal (22,27-
33), wastewater (34-41) and other environmental samples
(5,15,42-64). Despite being a laborious technique, genes de-
scribed by functional metagenomics are mainly absent in
classical ARG databases. Two databases listing specifically
functionally identified ARGs were created: ResFinderFG
v1.0 (65) and FARME DB (66). ResFinderFG v1.0 (https:
/lcge.food.dtu.dk/services/ResFinderFG-1.0/) was based on
the data coming from 4 publications, while FARME DB in-
cludes data from 30 publications, mainly reporting environ-
mental genes which were not necessarily curated to include
only ARG sequences (67). Here, we report a new version
of the ResFinderFG database, ResFinderFG v2.0, provid-
ing well-curated data from functional metagenomics publi-
cations available until 2021 that include environmental and
host-associated samples.

MATERIALS AND METHODS

Construction of ResFinderFG v.2.0

To retrieve publications using functional metagenomics for
the identification of antibiotic resistance genes, the four
publications used to construct ResFinderFG v1.0 were first
considered. Then, all the publications which were cited by

these four publications and all the publications that cited
one of these publications were collected. In addition, publi-
cations found with the following terms on PubMed: ‘func-
tional metagenomics’ AND ‘antibiotic resistance’, were
added to this pool. After filtering out all the reviews, pub-
lications were screened one by one. First, the use of func-
tional metagenomics to detect ARGs, meaning the expres-
sion of exogenous DNA thanks to an expression vector into
a host selected on an antibiotic containing medium, was
checked. Second, the accessibility to the insert sequences
was also checked. Database construction and curation was
then performed as follows (Figure 1). The accession num-
bers describing insert DNA sequences functionally selected
using antibiotics were included and DNA sequences were
retrieved using Batch Entrez. CD-HIT (68) was used to re-
move redundant DNA sequences and annotation of the re-
maining was done using PROKKA v.1.14 (69). To specifi-
cally select insert DNA sequences with ARG annotations,
a representative pool of ARG annotations was obtained
by applying the PROKKA annotation process to the Res-
Finder v4.0 database. Resulting annotations were used as a
reference to specifically select insert DNA sequences con-
taining an ARG annotation. Metadata (sample origin and
antibiotic used for selection) associated with each insert
were collected. Then, several curation steps were added.
First, a curation based on the consistency between the
ARG and the antibiotic family used for selection (e.g. beta-
lactamase-encoding gene selected with a beta-lactam an-
tibiotic). Second, we apply a filter on the size in amino acids
of the predicted protein: 260 for beta-lactamase, 378 for
tetracycline efflux genes, 641 for tetracycline resistance ri-
bosomal protection genes, 178 for chloramphenicol acetyl-
transferase, 247 for methyltransferase genes and 158 aa
for dihydrofolate reductase genes). Finally, insert sequences
containing more than one ARG annotation (consistent with
the antibiotic used for selection) were discarded as we could
not know which one was responsible for the observed phe-
notype. The database also includes metadata retrieved in the
GenBank metadata retrieval process and ARO annotation
for each gene for comparability with other databases us-
ing ARO ontologies(10). Besides, we provide in the supple-
mentary material the access numbers of inserts (n = 5310)
containing a single ORF among which potential ARG
from new families can be characterized (Supplementary
Table S1).

Comparison between ResFinderFG v1.0 and ResFinderFG
v2.0

To assess the update of the ResFinderFG database
and compare v2.0 to v1.0, the number of ARGs in
each ARG family and regarding the sample sources
was evaluated in both versions. ARG families were
categorized according to the antibiotic families they
conferred resistance to:  glycopeptides/cycloserine,
sulfonamides/trimethoprim,  beta-lactams, aminogly-
cosides, macrolides/lincosamides/streptogramins, tetra-
cyclines, phenicols and quinolones. Sample sources were
categorized as follows: aquatic, animal-associated, human-
associated, plant-associated, polluted environment and
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Figure 1. ResFinderFG v.2.0 construction workflow. (A) The insert sequences filtering step consists of concatenating all the insert sequences and selecting
only those containing an ARG annotation. (B) ARG annotations filter construction was done by annotating the ResFinder v4.0 database using PROKKA
to have a pool of ARG annotations. (C) Metadata was retrieved using GenBank files to get the origin of the samples and the antibiotic used for selection
of each insert sequence. d. Specific curation was done to discard false positives and include only ARGs.

soil. Then, to detect the presence of ARGs in several gene
subcatalogs (human gut, soil and marine + freshwater)
coming from the Global Microbial Gene Catalog (GMGC,
https://gmgc.embl.de/download.cgi (2)), ABRicate (70)
was run using default parameters with different databases
(ResFinderFG v2.0, ResFinder v4.0, CARD v3.0.8,
ARG-ANNOT v5, NCBI v3.6).

RESULTS
Construction of ResFinderFG v2.0

A total of 50 publications using functional metagenomics to
analyse ARG content were selected, resulting in 23 776 ac-
cession numbers (Supplementary Table S2). CD-HIT iden-
tified 2629 perfectly redundant insert sequences (100% se-
quence identity). PROKKA identified 41 977 open read-
ing frames (ORFs). Among them, 7787 ORFs had an an-
notation matching with an ARG annotation of ResFinder

v4.0 (228 unique ARG annotations). Then, we did not con-
sider the following ARGs: (i) inconsistency between the pre-
dicted ARG and the antibiotic used for selection (n = 1165),
(i1) ARGs with excessively small size with respect to the
ARG family (n = 1064) and ARGs colocating on an in-
sert (n = 398). A second round of CD-HIT was used to
remove redundancy (100% nucleic acid sequence identity),
which resulted in 3913 unique ARGs which were finally in-
cluded in the database which can be used on the Center
of Genomic Epidemiology website (https://cge.food.dtu.dk/
services/ResFinderFG/; Supplementary Figure S1).

Comparison with ResFinderFG v1.0

First, the ARGs present in ResFinderFG v.2.0 were com-
pared to the ones present in ResFinderFG v1.0 (Figure
2). A total of 1631 new ARGs were present in ResFind-
erFG v.2.0, mainly due to new glycopeptide/cycloserine
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Figure 2. (A) Number of ARGs in the ResFinderFG v.1.0 and v.2.0 databases depending on a. the antibiotic families involved; (B) the sample sources.

(+906 genes) and beta-lactam (+333 genes) resistance
genes. The glycopeptide/cycloserine resistance genes were
mostly annotated as homologues of D-Ala-D-X lig-
ase. New beta-lactams antibiotics used for functional
selection compared to v1.0 were cefepime, meropenem
and tazobactam. Regarding the sources of ARGs, new
ARGs mostly originated from human-associated samples
(+1333 genes).

ARG detection in several GMGC gene subcatalogs using Res-
FinderFG v.2.0 and other databases

ABRicate (default parameters) was used to detect ARGs
in GMGC human gut (Figure 3), soil (Supplementary Fig-
ure S2a.) and aquatic (marine and freshwater) subcatalogs
(Supplementary Figure S2b.). Using ResFinderFG v2.0,
3025, 211 and 129 unigene hits were obtained analyzing
human gut, soil and aquatic subcatalogs respectively. The
three most frequently detected ARG families in all gene cat-
alogs were glycopeptide/cycloserine resistance genes (20.9
to 39.7% of detected ARGs), sulfonamides/trimethoprim
resistance genes (21.8% to 58.1% of detected ARGrs)
and beta-lactamase encoding genes (7.9 to 25.6% of de-
tected ARGSs). Phenicols (up to 6.0% of detected ARGs),
aminoglycosides (up to 5.3%), cyclines (up to 6.2%) and
macrolide/lincosamide/streptogramin resistance genes (up
to 0.03%) were also detected. Also, ResFinderFG v2.0
provides habitat information on where a given ARG was
first identified by functional metagenomics. A majority of
ARGs identified in the gut subcatalog (90.2%) were in-
deed initially identified in the human gut by functional
metagenomics (Supplementary Table S3). In the soil gene
subcatalog, 62.6% of ARGs detected were also genes
identified initially in soil with functional metagenomics.

However, ARGs detected in the aquatic gene subcatalog
were primarily first identified by functional metagenomics
in soil.

To compare ResFinderFG v2.0 to other databases, we
ran the same ABRicate analysis of GMGC gene subcata-
logs using ResFinder v.4.0, CARD v3.0.8, ARG-ANNOT
v5 and NCBI v3.6. ResFinderFG v2.0 identified a compa-
rable or even greater number of ARGs compared to other
databases. We observed that the most frequently observed
ARG family depended on the database used. In the hu-
man gut gene subcatalog, glycopeptide/cycloserine resis-
tance gene was the most frequent ARG family found by
ResFinderFG v2.0 (39.7% of all unigene hits obtained with
ResFinderFG v2.0). In contrast, the beta-lactamase fam-
ily was the top ARG family with ARG-ANNOT (21.2%).
NCBI and ResFinder detected mostly tetracycline resis-
tance genes (20.4% and 23.8% respectively). Finally, mul-
tidrug efflux pump unigene hits were the most frequent us-
ing CARD (39.4%).

ResFinderFG v2.0 was the database with the highest
fraction of database-specific hits, with 89.1% of specific
unigene hits composed mainly by glycopeptide/cycloserine
resistance genes (D-alanine-D-alanine ligase; Supplemen-
tary Table S4) and sulfonamides/trimethoprim resistance
genes (dihydrofolate reductase). By comparison, CARD
had 73.7% of specific unigene hits, mostly composed by
gene encoding multidrug efflux pumps. Of note, 16.2% of
unique CARD specific multidrug efflux pump unigene hits
found in the human gut were regulatory genes (Supplemen-
tary Table S4).

Between 2.6% and 4.2% of all unigene hits, depend-
ing on the gene subcatalog analyzed, were shared by all
the databases used. Beta-lactamase encoding genes were
the most prevalent among them (ranging from 38.1% to
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Figure 3. Proportion of antibiotic family unigene hits obtained analyzing GMGC human gut subcatalog using ResFinderFG v2.0 and number of unigene
hits obtained analyzing GMGC human gut subcatalog using several databases (ResFinder v4.0, NCBI v3.6, ARG-ANNOT v5, ResFinderFG v2.0 and
CARD v3.0.8) annotated by their antibiotic family. Others: bicyclomycin, beta-lactams, bleomycin, disinfectant and antiseptic agents, fosfomycin, fusidic
acid, multidrug, mupirocin, nitroimidazole, nucleoside, peptide, rifampicin, streptothricin.

51.3% of the shared unigene hits), followed by, phenicols,
aminoglycosides and tetracyclines resistance genes. How-
ever, 25.1%, 23.2% and 46.3% of beta-lactamases, amino-
glycosides and phenicols resistance genes respectively, were
only detected using ResFinderFG v2.0 (Figure 3; Supple-
mentary Figure S2).

DISCUSSION

ResFinderFG v2.0 contains 3913 ARGs which were
described with functional metagenomics in 50 pub-
lications. Here, we showed that using ResFinderFG
v2.0 enabled us to describe the resistome with ARGs
that were not detected by other databases. Notably,
ResFinderFG v2.0 permitted a better description of
sulfonamide/trimethoprim, glycopeptide/cycloserine resis-
tant genes and beta-lactamase encoding genes.
ResFinderFG v2.0 includes more ARGs coming from
human-associated samples (16-26). For example, charac-
terization of the gut resistome with functional metage-
nomics showed that its ARGs were not well described in
ARG databases (18). Inclusion of these ARGs is there-
fore important for future metagenomic characterization of

resistomes. Regarding the ARG family concerned, most
of the new ARGs included compared to ResFinderFG
v1.0 are glycopeptide/cycloserine or beta-lactam resistance
genes. Glycopeptide/cycloserine resistance genes were se-
lected using cycloserine, an antibiotic used in the ther-
apy of tuberculosis caused by multi resistant mycobacteria
(71). Beta-lactam resistant genes are of high concern be-
cause beta-lactam antibiotics are widely used against pri-
ority pathogens (72).

Using ResFinderFG v2.0, sulfonamide/trimethoprim,
glycopeptide/cycloserine, beta-lactam, phenicol, cycline,
quinolone, macrolide/lincosamide/streptogramin  and
aminoglycoside resistance genes were evidenced studying
three GMGC gene subcatalogs (human gut, soil and
aquatic). As expected, regarding their representation
in the database, the most frequent unigene hits were
glycopeptide/cycloserine and sulfonamide/trimethoprim
resistance genes. Analogous analyses performed with
other databases showed that ResFinderFG v2.0 de-
tected a comparable or higher number of ARGs de-
pending on the other database used. Beta-lactamase
encoding genes were the most represented ARGs in
unigene hits shared by all databases. Yet, ResFinderFG
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v2.0 allowed the detection of beta-lactamase encoding
genes which were not detected with other databases.
It was expected since many publications using func-
tional metagenomics reported beta-lactamase encoding
genes distant from the ones described in ARG databases
(15,18,35,38,50,58,63) and a distant one has been evidenced
recently from soil samples (43). Other antibiotic families
were even more specifically associated with ResFinderFG
v2.0, such as sulfonamide/trimethoprim, phenicol and
glycopeptide/cycloserine resistance genes.

Our study has limitations, though. The strength of func-
tional metagenomics is its ability to identify ARGs without
relying on their DNA sequence and to provide phenotyp-
ical data associated with ARGs. This makes it possible to
identify new resistance mechanisms from new families of
ARGs. However, to properly identify the latter and avoid
false positives, substantial laboratory work is required and
is not done for most inserts in functional metagenomics ex-
periments. In order to characterise an ARG, further cloning
is required to study which part of the insert is important for
the observation of the phenotype and also to what extent
this may modify the associated MICs. Consequently, Res-
FinderFG v2.0 includes ARGs belonging to known families
as opposed to truly novel ARGs from new families which
would require further experiments to be identified. We are
also aware that some genes included in ResFinderFG v2.0
require overexpression to confer resistance to an antibiotic.
This is the case for example for D-alanine-D-alanine ligase
or dihydrofolate reductase encoding genes which confer re-
sistance to cycloserine or trimethoprim respectively when
they are overexpressed. Yet, these genes are also described in
other ARG databases and they fit the operational definition
of an ARG (4). Finally, since the original accession num-
bers are available in each ARG sequence header, researchers
can easily obtain the complete insert DNA sequence to
investigate.

DATA AVAILABILITY

All the computational steps and data used in the construc-
tion of the ResFinderFG v2.0 database and the database
itself are available on the following public repository: https:
/lzenodo.org/badge/latestdoi/470536952. The database was
also deposited on the Center of Genomic Epidemiology
(CGE) web server, where it can be used online https://cge.
food.dtu.dk/services/ResFinderFG/. Supplementary Fig-
ure S1 describes how to use the web server. Analysis pro-
cesses for the description of ResFinderFG v2.0 are accessi-
ble on the following public repository: https://zenodo.org/
badge/latestdoi/507027650.
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