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Supplementary Methods  

In UK Biobank (UKB), we first performed a Genome-Wide Association (GWA) analysis to identify 
SNPs associated with TT and SHBG to be used as genetic instruments for our MVMR analyses. 
Subsequently, the SNP-hormone and SNP-lung function estimates were used for our one-sample 
MVMR to investigate the effect of TT and SHBG on lung function. We applied different MVMR 
analyses to test the robustness of the findings, investigated possible effect modification in 
population subgroups, and assessed the effects of TT and SHBG on lung function decline using 
MVMR. Finally, for comparison, we performed conventional linear regression analyses of TT and 
SHBG on lung function. All analyses were performed using UKB data and were stratified by sex. 
Figure S1 describes this workflow with some further details. 

 

UK Biobank data 

We included subjects from the publicly available UKB, which is a large, multicentre, population-
based prospective study across 22 centres in the United Kingdom [1]. At baseline (2006-2010), over 
500,000 participants aged 39-70 were recruited, completed online questionnaires and underwent 
physical measurements as well as blood sampling. UK Biobank has received ethics approval from the 
National Health Service National Research Ethics Service (Ref 11/NW/0382) and all participants 
provided written consent. 

Mid 2019, data became available on a wide range of biomarkers from blood and urine collected at 
baseline, including serum levels of Total Testosterone (TT) and sex hormone-binding globulin 
(SHBG). Serum TT and SHBG levels were measured using a chemiluminescent immunoassay 
(Beckman Coulter Ltd, UK, UniCel Dcl 800) with results expressed in nanomole per litre (nmol/L).  

Three continuous lung function outcomes were investigated: FEV1 (mL), FVC (mL), and FEV1/FVC (%). 
Only white subjects with spirometry data that passed the “best measure” criteria as developed by 
the UK BiLEVE study provided by Professor Martin Tobin at the University of Leicester (UKB data-
fields 20150 and 20151) were included.[2] The highest measure for FEV1 and FVC (Fields 3062 and 
3063) was selected if it was "acceptable" according to corresponding acceptability field (Field 3061). 
A blow was deemed acceptable if recorded as no problems or "USER_ACCEPTED.  

Genotyping was performed in three batches using the UK BiLEVE Axiom Array (first 50,000 subjects) 
and the UK Biobank Axiom Array (data released at two time points). Details on genotyping and 
imputation methods are available elsewhere [3].  

Of the 502,536 participants, we excluded subjects with missing genetic (N=6,678) or biomarker 
(N=11,142) data (Figure 1). The final dataset (N=484,716) was used to create two datasets, which 
were subsequently split based on sex: the hormones and the lung function datasets.  

The hormone dataset was subsequently randomly divided into a “discovery hormone dataset” (2/3 
of the sample: N=323,144) used in the GWA analyses and a “validation hormone dataset” (1/3 of the 
sample: N=161,572) used for the replication of GWA findings and for the multivariable Mendelian 
Randomisation (MVMR) analyses to estimate the effect of the genetic variants on TT and SHBG.  

For the “lung function dataset”, another 124,890 subjects were excluded because of missing good 
quality lung function data (see above), leading to a final dataset with 341,826 subjects. This dataset 
was used for the MVMR analyses to estimate the effect of the genetic variants on lung function and 
for the observational analyses. The “best measure” variables were limited to white participants, and 
therefore only these were included in the “lung function dataset”, while the hormone datasets also 
included a small proportion of participants from other ethnicities (5.4%). In addition, there is about a 
70% overlap between the sex hormone and lung function datasets.  

See appendix 1 for a list of variables and their UKB variable number that were used in this study.  
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GWA analysis for selection of genetic instrument  

To identify genetic instruments for TT and SHBG, we performed GWA analyses in UKB, separately for 
males and females, on natural log-transformed TT and SHBG levels, as the residuals were not 
normally distributed. We used linear mixed-models implemented within BOLT-LMM [4], which 
account for relatedness and fine-scale population structure, and we adjusted for age, genotyping 
batch/array, and centre.  

Independent genome-wide significant SNPs were selected based on the “discovery hormone 
dataset” using the online platform FUMA GWAS [5], with the following settings: p-value lead SNP = 
5x10-8, p-value cut-off = 0.05, r2 threshold = 0.05, reference population = UKB/release2b 10k 
European, minimum MAF = 0, distance between linkage disequilibrium (LD) blocks > 10,000 kb. 
These independent SNPs were considered replicated if in the “validation hormone dataset” the 
direction of effect was the same and their Bonferroni-corrected one-side p-value was statistically 
significant (p< 0.05/number of SNPs per outcome and sex).  

In total, we identified 674 independent SNPs and were able to replicate 450 SNPs (Supplementary 
Table S1 and see Supplementary Figures S2 and S3 for the Manhattan plots). For TT, we replicated 
92 SNPs in males and 63 SNPs in females, which explained about 8.1% and 3.6% of the variance in TT 
levels, respectively. For SHBG, we replicated 213 SNPs in males and 153 SNPs in females, which 
explained about 20.5% and 13.0% of the variance in SHBG levels, respectively. See Supplementary 
Table S2 for details on which SNPs were associated with which trait and the annotated genes. Of the 
replicated 450 SNPs, 43 were associated with both TT and SHBG and there was at least one IV 
associated with both traits in all male and female analyses. 

Interestingly, a larger proportion of SNPs was shared between TT and SHBG in males compared to 
females, and this could both have a statistical and a biological reason.  

First, fewer signals might have been detected for TT in females due lower statistical power, as about 
20% of females had TT levels below the detection limit, compared with only 5% of males (for SHBG, 
12-14% of data were missing for both). Moreover, the variances of the two hormones in the study 
population were larger in females than males, particularly for TT (TT:  0.22 in females vs. 0.11 in 
males; SHBG: 0.25 vs. 0.18), and this would lower the power of the GWAS in females compared with 
males thus again reducing the number of detectable signals. 

Second, a plausible biological reason might be that the sources of TT production and the levels of TT 
and SHBG are different in males and females. In females about 25% of TT is produced in the ovary, 
another 25% in the adrenal gland and the remaining 50% in peripheral tissues. The main precursors 
of TT are androstenedione in ovaries and Dehydroepiandrosterone (DHEA) in the adrenal glands. In 
addition, in post-menopausal women, the production of steroid hormones by the ovaries is severely 
decreased (and >60% of UKB females are post-menopausal). In males, the majority of TT is produced 
in the testes. The major source of SHBG in males and females is the liver. These differences could 
indicate different underlying genetic determinants and a lower overlap between the two in the 
different sexes. 

Lastly, in general, power to detect an effect in MR improves with a higher percentage of the variance 
explained (R2) and a larger sample size.[6] As a reference, SNPs selected as genetic instruments in 
our previous MR studies on age at menarche and age at menopause explained 7.4% and 6%, 
respectively [7,8]. 
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Mendelian Randomisation (MR)  

MR assumptions 

While Mendelian Randomisation (MR) is not affected by traditional confounding or reverse 
causation, its validity relies on assumptions (Figure E1) [9]. The three key assumptions of MR are:  

1) Relevance assumption: SNPs are associated with exposure or factor of interest (TT and SHBG 
levels). In the current study we identified SNPs associated with TT and SHBG levels. 

2) Independent assumption: the association between SNP and outcome is NOT confounded.  

3) Exclusion restriction assumption: SNPs affect outcome (lung function) only through the 
factor of interest and not through independent pathways (i.e. absence of pleiotropy).  

 

 

Figure E1: Schematic overview of Mendelian randomisation (MR). For each genetic variant (SNP), we 
estimated the G-X (association of the SNP with Total Testosterone (TT) and SHBG) and the G-Y 
(association of the SNP with lung function outcomes) associations. MR assumptions: 1) relevance 
assumption; 2) independent assumption; and 3) exclusion restriction assumption. 

 

Pleiotropy 

The most problematic assumption is the absence of ("horizontal") pleiotropy [10]. There are two 
types of pleiotropy, vertical and horizonal pleiotropy (Figure E2).  

Vertical pleiotropy occurs when a genetic variant has a phenotypic effect on a trait (the factor of 
interest), which in turn has its own effect on another trait which increases the risk of 
disease (cascade of events). For example, a SNP in the gene FTO influences BMI, which is associated 
with increased blood pressure and which in turn increases the risk for coronary artery disease. In the 
case of vertical pleiotropy, there is a causal pathway between the factor of interest and the 
outcome.  

Horizontal pleiotropy occurs when a genetic instrument (SNP) affects multiple traits and thereby 
affect the outcome through pathways that are independent from the factor of interest. For example, 
if a SNP associates both with the factor of interest and with an independent risk factor that both 
independently affect the outcome of interest, the MR estimate is the combined effect of these risk 
factors, rather than of the factor of interest alone. This type of pleiotropy can therefore bias the MR 
estimate. For example, smoking, a typical confounder in observational studies, could affect MR 
through pleiotropy if (but only if) the genetic instruments used for TT and SHBG were also associated 
with smoking. 
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Figure E2: Depiction of vertical and horizontal Pleiotropy. A) Vertical pleiotropy: valid MR analysis as 
genetic instrument (SNP) affects the outcome via risk factor of interests (Trait A) in a single pathway. 
B) Horizontal pleiotropy: can cause bias in MR as genetic instrument affects the outcome via 
independent pathways (traits). 

 

G-X and G-Y estimation  

For the MR analyses, we estimated the causal effects of TT and SHBG on lung function derived from 
the SNP-hormone (G-X) and the SNP-lung function (G-Y) association estimates, both derived from 
UKB data. 

As G-X estimates (Figure 1), separately by sex, we used the effect estimates of the SNPs on SHBG and 
TT from the GWA replication analysis in UKB and removed SNPs that were in LD (r2>0.1) between the 
SNP lists for TT and SHBG as they were jointly modelled. In total, 178 independent SNPs (67 for TT 
and 138 for SHBG) were included in the male MVMR analyses, and 174 (55 for TT and 120 for SHBG) 
in the female analyses, all with F-statistic >10 to avoid weak instrument bias.[11]  

To obtain the G-Y estimates (Figure 1), again separately in males and females, we estimated the 
effect of each SNP on FEV1, FVC and FEV1/FVC in UKB using BOLT-LMM and adjusting for age, age2, 
height, genotyping batch/array, and centre in the “lung function dataset”. We adjusted for height as 
height is a strong predictor of lung function, particularly FVC and FEV1, with values standardised for 
height (as well as age and sex) being those of clinical interest.  

The G-X and G-Y estimates for all SNPs separately by sex can be found in Supplementary Table S2. 

 

Multivariable Mendelian Randomisation (MVMR) methods 

As levels of SHBG and TT are partly determined by the same genes (independence assumption), we 
used multivariable MR (MVMR), where TT and SHBG are modelled together to estimate their causal 
effects on lung function (FEV1, FVC and FEV1/FVC), independent of each other. We derived the 
MVMR effect estimate from the SNP-hormone (G-X) and the SNP-lung function (G-Y) association 
estimates. 

As G-X estimates, we used the effect estimates of our GWA replication analysis and removed SNPs 
that were in LD (r2>0.1) between the SNP lists of TT and SHBG. In total, 178 independent SNPs (67 
for TT and 138 for SHBG) were included in the male MVMR analyses, and 174 (55 for TT and 120 for 
SHBG) in the female analyses, all with F-statistic >10. To obtain the G-Y estimates, again stratified by 
sex, we estimated the effect of each SNP on FEV1, FVC and FEV1/FVC in UKB using BOLT-LMM and 
adjusting for age, age2, height, genotyping batch/array, and centre. G-X and G-Y estimates for all 
SNPs and by sex are reported in Supplementary Table S2.  
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Several methods have been developed to detect and control for (horizontal) pleiotropy [12]. We 
applied six MVMR methods that make different assumptions about the pleiotropic effects:  

- Methods assuming no pleiotropy:  

1) Two-Stage Least Squares (2SLS): This is the only method we used that requires individual-
level data, and is the gold standard for a one-sample MR in the absence of pleiotropy. It 
consists of two regression stages: a first-stage regression of the exposures on the 
instrumental variables (SNPs), and a second-stage regression of the outcome on the fitted 
values of each of the exposures from the first stage [13]. In the context of a multivariable 
MR, the first-stage regression is a multivariate multiple regression (multiple dependent 
variables and multiple independent variables), while the second-stage regression is a 
univariate multiple regression (a single dependent variable and multiple independent 
variables) [14]. All 2SLS analyses were performed in the “lung function dataset” which has 
complete data on TT/SHBG, lung function and the genetic variants. 

2) Fixed-effect inverse-variance weighted (FE-IVW) meta-analysis: This is the most powerful 
two-sample MR method, but, similarly to the 2SLS, assumes no pleiotropy [15]. Here G-X and 
G-Y estimates are obtained for each SNP, and SNP-specific MR estimates are then derived 
using the Wald estimator (ratio of G-Y over G-X), with standard error calculated using the 
Delta method [16]. The estimate of the causal effect of interest is obtained by pooling the 
SNP-specific MR estimates using a fixed-effect meta-analysis model [15]. The IVW approach, 
both FE-IVW and RE-IVW (see next paragraph), has been extended to multivariable MR 
[14,17].  

- Methods that account for pleiotropy but make different assumptions: 

3) Random-effects inverse-variance weighted (RE-IVW) meta-analysis: This method is 
performed similarly to the FE-IVW, but with a random-effects, instead of a fixed-effect, 
meta-analysis model to allow for heterogeneity across SNP-specific MR estimates, which 
represents a statistical measure of pleiotropy. RE-IVW assumes that pleiotropic effects 
across SNPs are random (balanced pleiotropy), and that their magnitude is independent of 
the magnitude of the corresponding G-X effects (InSIDE assumption) [15]. This method, 
which has been extended to multivariable MR [17], is sensitive to outliers and directional 
pleiotropy. 

4) Robust regression (MM-estimation): It is a natural extension of IVW performing robust 
regression using MM-estimation along with Tukey’s bisquare objective function [18]. It 
provides robustness to outliers, when there are a relatively small number of invalid 
instruments, by effectively capping residuals of a certain magnitude. This method is easily 
extended to multivariable MR, as described by Koller and Stahel [19]. 

5) Weighted median based estimation: It assumes that more than 50% of the information 
contributing to the analysis comes from genetic variants that are valid (i.e. not pleiotropic) 
[20]. It has been extended to multivariable MR, as described Grant et al. [17]. 

6) MR-Egger regression: G-Y estimates for the individual SNPs are regressed on their G-X 
estimates, with the intercept representing the overall pleiotropy and the slope the adjusted 
MR estimate [21]. This method has been extended for use in multivariable MR by Rees et al. 
[22], who show that this multivariable version has advantages over the original (univariable) 
MR-Egger in terms of both plausibility of the underlying assumptions and statistical power. 

 
All MVMR analyses were performed using R (version 4.0.2). In particular, we used: the AER package 
[23] for method 1 (2SLS); the MendelianRandomization package [24] for methods 2, 3 and 6 (FE-IVW, 
RE-IVW and MR-Egger); and specific R codes provided by Grant et al. [17] for methods 4 and 5. 
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Pleiotropy detection  

To detect possible pleiotropy, we assessed the between-instrument heterogeneity as a marker of 
pleiotropy using the Q test p-value in IVW, the Sargan p-value in 2SLS, and the intercept p-value in 
MR-Egger.  

To assess the validity of our genetic instruments, took two approaches to identify and remove 
potential pleiotropic SNPs which were subsequently excluded in sensitivity analyses; 

1) a statistical approach using MVMR-PRESSO [25] to detect “outliers”. The MVMR-PRESSO 
outlier test evaluates the presence of specific horizontal pleiotropic outlier variants by using 
the observed and expected distributions of the tested variant. It computes an empirical p-
value adjusted for multiple testing using the Bonferroni correction. Outliers were detected 
for each sex and each of the three lung function outcomes. Per sex, we combined all the 
outliers detected per outcome and excluded these in follow-up analyses. 

2) using PhenoScanner [26] to identify SNPs associated with potential sources of pleiotropy 
identified a priori: smoking, weight-related traits, diabetes, insulin, leptin and adiponectin 
(n= 36 SNPs). 

To better understand the relevance of potential pleiotropic pathways, for all detected outliers, we 
searched for association of these SNPs with any other traits in previous GWA studies at genome-
wide significance (p<5x10-8) using PhenoScanner [26]. We also performed the Leave-One-Out RE-
IVW analysis to identify the most influential pleiotropic SNPs [27]. In a Leave-One-Out analysis, one 
variant is removed from the MVMR analysis, and the causal effect is re-estimated. This is done one-
by-one for each of the identified outlier SNPs by MVMR-PRESSO. If there is one genetic variant that 
is particularly strongly associated with the exposure, it can have a particularly large horizontal 
pleiotropic effect, thereby dominating the estimate of the causal effect. 

 

MVMR – Secondary analyses 

Subgroup analyses  

We investigated possible effect modification for both TT and SHBG by:  

1) Obesity, as several studies have reported interactions between sex-hormones and obesity 
on asthma [28] and lung function [8]. Obesity was defined as a body mass index (BMI) 
≥30kg/m². 

2) Physical activity, as randomised controlled trials in COPD patients have suggested that 
testosterone supplementation might be more effective when combined with exercise 
training [29–31]. Moderate physical activity was defined as >=10 minutes of moderate 
physical activity for >=4 days/week based on the question: “In a typical week, on how many 
days did you do 10 minutes or more of moderate physical activities like carrying light loads, 
cycling at normal pace? (Do not include walking)”. 

3) Menopausal status in females and age (below/above 50) in males, as the effects of the SHBG 
and testosterone might vary with age and age-related changes in the hormonal-milieu. 
Menopausal status was based on the question: “Have you had your menopause (periods 
stopped)”. Females who responded “yes” were categorised as post-menopausal and who 
responded “No” and were aged below 60 years were categorised as pre-menopausal. 
Menopausal status broadly classified females in two age groups, <=50 (median age at 
menopause in UKB) and >50; we therefore performed a similar subgroup analysis in males 
by age, below and above 50 years.  
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All subgroup analyses were performed separately by sex; "weak" SNPs (F-statistic ≤10) were 

excluded, and pleiotropy was dealt with as in the main analyses. 

Longitudinal MVMR analyses 

We also performed MVRM to assess the effect of TT and SHBG on lung function decline using 
longitudinal data from UKB. We included 6,812 males and 7,470 females who had data at baseline 
and at second follow-up until March 2019, with a mean time between the two visits of 8.3 years. 
Please see Lenoir et al.[29] for more details on how high-quality longitudinal spirometry was 
obtained in UKB. We obtained the G-Y estimates stratified by sex by estimating the effect of each 
SNP on yearly decline of FEV1, FVC and FEV1/FVC in UKB using the same model as in the main 
analysis. Yearly decline was calculated by subtracting the second lung function reading from the 
reading at baseline and dividing it by the time (years) between the readings. Not all the 450 SNPs 
passed QC (minor allele frequency >1%, missingness per marker <1.5% and Hardy-Weinberg 
equilibrium p < 1x10-6) and therefore less SNPs were included in these MVMR analyses (see 
Supplementary Table S2 for the G-Y estimates of the included SNPs).  

 

Observational analyses 

To compare our MVMR results with finding from observational analyses, we performed multiple 
linear regression to estimate the independent association of natural log-transformed TT and SHBG 
levels (TT and SHBG included in the same model) on the three lung function outcomes, separately 
per sex. The model was adjusted for the same variables as in the UKB study by Lenoir et al.[29]; age, 
age2, height, BMI, smoking status (never/former/current), pack years, Townsend Deprivation Index, 
number of days per week of moderate physical activity, and fresh fruit intake (0-1, 2-3, and ≥4 
portions), as well as time of day of the appointment (before or after 12am) to control for diurnal 
variability of hormone levels. 

 

Results presentation 

To help interpretation of the results and figures (based on log-transformed hormone values, i.e. 
linear-log models), we calculated the average regression coefficient (beta) across MVMR methods 
and multiplied it by ln(1.1) to display the effect of a 10% increase in SHBG or TT on lung function. We 
did not do this for the effect estimates reported in the Supplementary Tables, which represent the 
effect on lung function of a 1-unit increase in log-transformed SHBG and TT. 
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Appendix 1. Variable names and UKB variable numbers used in this study. 

Variable Name UKB Variable number 

Sex 31 

UK Biobank assessment centre 54 

Townsend Deprivation Index 189 

Age Completing Full Time Education 845 

Moderate physical activity 884 

Fresh fruit intake 1309 

Menopause 2724 

Bilateral oophorectomy 2834 

Time of blow measurement 3060 

Ever had hysterectomy 3591 

Qualifications 6138 

Height 12144 

Smoking Status 20116 

FEV1 best measure  20150 

FVC best measure 20151 

Pack years 20161 

Body mass index (BMI) 21001 

Weight 21002 

Age when attended assessment centre 21003 

Array 22000 

Principle Components (PCs) 22009 

Recommended genomic analysis exclusions 22010 

Genetic relatedness pairing 22011 

Genetic relatedness factor 22012 

Doctor diagnosed asthma 22127 

 

The UK Biobank showcase of resources including more information on these variables can be found 
online at: https://biobank.ctsu.ox.ac.uk/crystal/index.cgi  

 

 

https://biobank.ctsu.ox.ac.uk/crystal/index.cgi
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Supplementary Figures 

 

Figure S1. The workflow of the study divided over four main phases.  

In UK Biobank (UKB), we first performed a Genome-Wide Association (GWA) analysis to identify SNPs 
associated with TT and SHBG to be used as instruments in our MVMR analyses. Estimates of the SNP-
hormone effects (G-X) from the replication stage of the GWA, together with estimates of the SNP-
lung function effects (G-Y) obtained in UKB for the identified SNPs, were used for our one-sample 
MVMR to investigate the effect of TT and SHBG on lung function. We applied different MVMR 
analyses to test the robustness of the findings, and we investigated possible effect modification in 
population subgroups. As a secondary analysis, we also performed MVMR to investigate the effects 
of TT and SHBG on lung function decline, using longitudinal data available for a small subsample of 
UKB. Finally, we performed conventional linear regression analysis of lung function on TT and SHBG 
in UKB for comparison with the results of our main MVMR analysis. All analyses were performed 
stratified by sex.  
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Figure S2. Manhattan plots – total testosterone (TT) 

 

A) TT Male 

 

B) TT Female 
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Figure S3. Manhattan plots – sex hormone-binding globulin (SHBG) 

 

A) SHBG Male 

 

B) SHBG Female 
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Figure S4. Leave-One-Out RE-IVW analysis plots in males.  

Possible pleiotropic SNPs identified by MVMR-PRESSO were removed from the analysis one by one. 
* all = original analysis with all SNPs; rs… = analysis without this SNP; all_out = analysis with all 
possible pleiotropic SNPs excluded.  
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Figure S5. Leave-One-Out RE-IVW analysis plots in females. 

Possible pleiotropic SNPs identified by MVMR-PRESSO were removed from the analysis one by one.  
* all = original analysis with all SNPs; rs… = analysis without this SNP; all_out = analysis with all 
possible pleiotropic SNPs excluded. 
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Supplementary Tables 

Overview of Supplementary Tables which are provided as separate documents. 

 

Table S1. Overview of identification and replication of number of SNPs associated with hormone 
levels in UK biobank. 

Table S2: MVMR G-X and G-Y estimates. 

Table S3: Results of the MVMR analysis of the effect of SHBG and testosterone on FVC, FEV1, and 
FEV1/FVC separately in males and females. 

Table S4: Results of the MVMR analysis excluding “outlier” SNPs. 

Table S5: Results from PhenoScanner for the pleiotropic SNPs identified by MVMR-PRESSO. 

Table S6: Results of subgroup MVMR analyses by obesity, physical activity, menopausal status in 
females, and age (>50 years) in males. 

Table S7: Results of the MVMR analysis of the effect of SHBG and testosterone on FVC, FEV1, and 
FEV1/FVC decline separately in males and females. 

Table S8: Results of the observational analyses. 

 


