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ABSTRACT
The gut-to-lung axis is critical during respiratory infections, including influenza A virus (IAV) 
infection. In the present study, we used high-resolution shotgun metagenomics and targeted 
metabolomic analysis to characterize influenza-associated changes in the composition and meta
bolism of the mouse gut microbiota. We observed several taxonomic-level changes on day (D)7 
post-infection, including a marked reduction in the abundance of members of the Lactobacillaceae 
and Bifidobacteriaceae families, and an increase in the abundance of Akkermansia muciniphila. On 
D14, perturbation persisted in some species. Functional scale analysis of metagenomic data 
revealed transient changes in several metabolic pathways, particularly those leading to the 
production of short-chain fatty acids (SCFAs), polyamines, and tryptophan metabolites. 
Quantitative targeted metabolomics analysis of the serum revealed changes in specific classes of 
gut microbiota metabolites, including SCFAs, trimethylamine, polyamines, and indole-containing 
tryptophan metabolites. A marked decrease in indole-3-propionic acid (IPA) blood level was 
observed on D7. Changes in microbiota-associated metabolites correlated with changes in taxon 
abundance and disease marker levels. In particular, IPA was positively correlated with some 
Lactobacillaceae and Bifidobacteriaceae species (Limosilactobacillus reuteri, Lactobacillus animalis) 
and negatively correlated with Bacteroidales bacterium M7, viral load, and inflammation markers. 
IPA supplementation in diseased animals reduced viral load and lowered local (lung) and systemic 
inflammation. Treatment of mice with antibiotics targeting IPA-producing bacteria before infection 
enhanced viral load and lung inflammation, an effect inhibited by IPA supplementation. The results 
of this integrated metagenomic-metabolomic analysis highlighted IPA as an important contributor 
to influenza outcomes and a potential biomarker of disease severity.
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Introduction

A growing body of evidence suggests that the gut-to- 
lung axis plays a critical role in respiratory tract 
infections, including influenza A virus (IAV) infec
tions (for reviews,1–3). Germ-free mice and mice 
chronically treated with broad-spectrum antibiotics 
are more susceptible to IAV infection and eventually

develop severe and ultimately fatal disease.4–8 

Mechanistically, various components of the gut 
microbiota (notably metabolites) diffuse into the 
bloodstream and remotely prime the lung to combat 
the virus by promoting interferon-dependent 
immunity (among other actions). Furthermore, 
IAV infection can alter the gut bacterial community,
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as demonstrated in animal models.9–15 These 
changes may have beneficial and/or detrimental 
consequences on the disease outcomes. It is possible 
that the blooming of some bacterial species (such as 
Bifidobacterium animalis and Akkermansia mucini
phila) contributes to host resistance to IAV 
infection.13,14 We and others have shown that dis
ruption of the gut microbiota in mice during IAV 
infection favors local and systemic secondary bacter
ial infections, both of which are major causes of 
death in humans.10–12,16 In humans, influenza also 
alters the composition of the gut microbiota, 
although the precise consequences on disease out
comes are yet to be defined.17–20 To date, changes in 
the gut microbiota during influenza have mostly 
been tracked using 16S rRNA gene sequencing. 
This approach has the limitation of low taxonomic 
resolution (i.e., up to the genus level), mainly due to 
a small amplicon size, and can be biased because of 
the hypervariable region targeted and the primer 
sequences used.21–23 In contrast, shotgun metage
nomics allows for a more accurate estimation of 
changes in bacterial diversity and can identify bac
terial species and sometimes even bacterial strains. 
In addition to taxonomic information, shotgun 
metagenomics provides important clues to the 
gene detection of gut microbiota, allowing the defi
nition of the functional and metabolic potential of 
the microbiota community. To the best of our 
knowledge, the present study is the first to combine 
shotgun metagenomics, targeted systemic metabo
lomics, and measurements of influenza severity. We 
found several correlations among taxon abundance, 
gut microbial metabolites, and markers of disease 
severity. Notably, we identified the microbial trypto
phan metabolite indole-3-propionic acid (IPA, the 
levels of which are markedly reduced during an IAV 
infection) as a potential biomarker of influenza resis
tance and as a target for microbiome-based thera
peutic interventions.

Results

Influenza infection leads to a change in the 
microbiota’s composition, as assessed by shotgun 
metagenomic

Mice were infected with a sublethal dose of IAV, and 
body weight variations were measured during the

course of infection (Supplementary Figure S1(a)). 
Body weight loss peaked at 17–18% of the initial 
body weight between days (D)8 and D10 post- 
infection (Supplementary Figure S1(b)). By D14, 
the mice regained some weight, but did not recover 
their starting weight (minus 3% of the initial 
weight). As expected, IAV infection was associated 
with a marked lung viral load and antiviral response 
at D7, while decreased expression of genes asso
ciated with epithelial integrity was observed 
(Supplementary Figure S1(c,d)). Infection was also 
associated with enhanced systemic concentrations 
of inflammatory cytokines and markers of an altered 
intestinal barrier, such as lipopolysaccharide- 
binding protein (LBP), at D7 (Supplementary 
Figure S1(e)).

To examine changes over time in the gut micro
biota during IAV infection, cecal contents from 
IAV-infected mice were collected at D7 and D14 
post-infection, and extracted DNAs were subjected 
to shotgun sequencing. Non-infected mice sacri
ficed 7 days after PBS inoculation were used as 
controls (henceforth referred to as D0). First, we 
measured the α diversity index of each sample. 
A decrease in the number of species was observed 
on D7 and became significant on D14 (Wilcoxon, 
p < 0.05) (Supplementary Figure S2(a), left panel). 
Analysis of Shannon and Simpson indices indi
cated that α-diversity equitability was significantly 
and transiently diminished on D7 (Supplementary 
Figure S2(a), middle and right panels). The values 
on D14 were close to those observed on D0. This 
indicated that although the number of species was 
reduced on D14 (Supplementary Figure S2(a), left 
panel), the communities recovered their diversity 
evenness at this time point. Next, we determined 
the β-diversity by calculating the Bray-Curtis dis
similarity index between samples. The Bray-Curtis 
distances and non-metric multidimensional scaling 
of all samples revealed clustering at different time 
points, particularly on D0 (Figure 1a, left panel). 
An analysis of similarity and PERMANOVA 
showed that each group was significantly distinct 
from the others in terms of sample groupings and 
the corresponding R/R2 values (Table 1). 
Moreover, the D0 vs. D7 and D7 vs. D14 differ
ences were greater than the D0 vs. D14 differences 
(R = 0.969 and 0.8295; R2 = 0.63357 and 0.47443 
versus R = 0.2963 and R2 = 0.16761). The Bray-
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Figure 1. Altered composition of the gut microbiota during IAV infection. (a), left panel, Bray Curtis based nonmetric multidimensional 
scaling plot of all samples (stress value = 0.09). Each spot represents one sample and each group of mice is denoted by a different 
color (blue: non-infected/Day 0, red: D7, orange, D14). Distance between dots represents extent of compositional difference. right 
panel, Bray Curtis distance among samples at D0 (reference) and between each samples at D7 or D14 and D0. (b and c), relative 
abundance of taxa significantly different between D7 and D0 or D14 at the phylum (b), and species (c) level. Blue represents D0 
samples; red represents D7; orange represents D14. Significant differences were determined using the Kruskal-Wallis test. Significant 
differences were determined using the Kruskal-Wallis test (* p < 0.05, ** p < .01, *** p < .001, **** p < .0001). NMDS, non-metric 
multidimensional scaling plot.
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Curtis distances showed a drift in the cecal micro
biota after infection, with a peak at D7 (Figure 1(a), 
right panel). The change in bacterial diversity on 
D14 was still statistically significant compared to 
that on D0. Taken together, these results show that 
IAV infection is associated with a slight (non- 
significant) and gradual decrease in bacterial rich
ness and reduced community equitability (cer
tainly bacterial dominance), which was most 
prominent on D7.

Differential analyses from shotgun sequencing 
were performed for several taxonomic ranks, that 
is, from the phylum level to the species level. The 
relative abundances were used for each taxon at each 
rank. Wilcoxon’s test with Benjamini-Hochberg cor
rection for parallel multiple testing showed signifi
cant changes in the relative abundance of bacterial 
phyla, families, and species during IAV infection. At 
the phylum level, the median relative abundance of 
Bacteroidota (previously known as Bacteroidetes, up 
to 70% at baseline) decreased transiently on D7, 
although the change was not statistically significant 
(Figure 1b). However, the relative abundance of 
Bacillota (previously known as Firmicutes) mark
edly changed over time. It decreased significantly 
from 22% of the identified bacterial taxa on D0 to 
11% on D7. This decrease was transient because the 
relative abundance increased to 30% on D14. The 
reduced relative Bacillota frequency on D7 was mir
rored by a marked but transient increase in the 
abundance of Verrucomicrobiota from 5% on D0 
to 35% on D7. Notably, the relative abundance of 
Pseudomonadota (Proteobacteria) decreased transi
ently but not significantly on D7. Finally, the relative 
abundance of Actinomycetota (Actinobacteria) 
decreased significantly by D7 and remained low on 
D14. At a lower taxonomic level (family), the groups 
of animals differed with regard to Muribaculaceae

(Bacteroidota), Lachnospiraceae, Lactobacillaceae, 
Bifidobacteriaceae (Bacillota) (drop at D7), and 
Akkermansiaceae (Verrucomicrobiota) (rise on D7) 
(Supplementary Figure S2(b)). At the species level, 
the relative abundances of four species of 
Bacteroidetes, four species of Bacillota, one species 
of Actinomycetota, and one species of 
Verrucomicrobiota significantly changed on D7 
(Figure 1c). The relative proportions of the four 
Bacillota species (mostly Lactobacillaceae family), 
Lactobacillus taiwanensis, Lactobacillus johnsonii, 
Limosilactobacillus reuteri, and Bacillota bacterium 
ASF500 decreased on D7 and rose on D14. The 
relative abundances of Bacteroidales bacterium M6 
and Bacteroides caecimuris (Muribaculaceae) 
decreased, while those of Parabacteroides goldsteinii 
(Tannerellaceae, Bacteroidota) and Bacteroidales 
bacterium M7 (Muribaculaceae) increased on D7, 
and the four relative abundances appeared to have 
returned to baseline values by D14. The relative 
proportion of the Actinomycetota species 
Bifidobacterium animalis spp. strongly decreased 
during infection and did not return to its baseline 
value on D14. Finally, the relative abundance of 
Akkermansia muciniphila (a bacterium usually asso
ciated with good health, leanness, and fitness in 
humans24 increased markedly from 5% on D0 to 
35% on D7 and returned to basal levels on D14. 
Linear discriminant analysis effect size (LEfSe) ana
lyses indicated that Akkermansia muciniphila, 
Parabacteroides goldsteinii, and Bacteroidales bacter
ium M7 were among the species associated with 
changes at D7, whereas Lactobacillus species, 
Bacillota bacterium ASF500 and Bacteroidales bac
terium M1 and M6 were the most discriminant at 
D14 (Supplementary Figure S2(c)). Finally, the 
abundance of Bifidobacterium animalis spp. was 
a distinctive feature of the non-infected group.

Influenza infection is associated with changes in the 
gut microbiota’s metabolic profile

We next analyzed functional markers in the gut 
microbiota of IAV-infected mice. To this end, we 
used KEGG annotations (generated by KEGG 
KofamScan25 in a gene-centric analysis of unas
sembled metagenomes. Principal component ana
lysis (PCA) was performed on the normalized 
KEGG orthology (KO) relative abundance

Table 1. Analysis of similarity (ANOSIM) and dissimilarity 
(PERMANOVA) with associated p values to test sample grouping 
(10,000 permutations).

Statistical test Statistic value P value

3 groups ANOSIM R = 0.4567 0.0000999
PERMANOVA R2 = 0.50938 0.0000999

D0 vs D7 ANOSIM R = 0.6211 0.00039996
PERMANOVA R2 = 0.38746 0.0013

D7 vs D14 ANOSIM R = 0.5608 0.0014999
PERMANOVA R2 = 0.31484 0.0016

D0 vs D14 ANOSIM R = 0.2963 0.0030997
PERMANOVA R2 = 0.16761 0.0042
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(Figure 2(a)). These projections tended to corrobo
rate the conclusions of the taxonomic analyses 
(Figure 1(a)). The D7 group was well separated 
from the other two groups in the first dimension, 
which explained most of the variance (28.93%). 
The confidence ellipses around D0 and D14 over
lapped substantially. This suggests that IAV infec
tion induced a transient change in the functional 
profile on D7 although some differences persisted 
on D14. This is consistent with the community- 
based Bray-Curtis distances shown in Figure 1a. 
Next, we examined whether PCA of KEGG module 
scores would confirm the above observations. 
Modules regroup KOs into functionally meaning
ful biological reactions, providing more relevant 
insights into metabolic reaction potential. 
Differences between the functional profiles of IAV- 
infected and non-infected (D0) mice were still visi
ble (Figure 2(b)). Overall, the confidence ellipses 
were wider (particularly for the D14 group), sug
gesting greater inter-individual variability. To 
assess the significance of the differences between 
experimental groups, we performed 
a PERMANOVA of the KO relative abundances 
and module score levels; both were significant 
and accounted for a high proportion of the var
iance (p < 0.001 for both; R2 = 0.49 and 0.61, 
respectively). Taken together, our results showed 
that IAV-infected mice (on D7) displayed an inher
ently different profile compared to non-infected 
mice (D0) and convalescent mice (D14) at both 
the KO and module levels.

We next searched for KOs with the greatest 
between-group variance in their relative abundances, 
which would explain the previously observed differ
ences (Figure 2(c)). Three models (one for each pair 
of groups) were constructed using the songbird 
algorithm89. However, only two settings were scru
tinized, namely D0 vs. D7 and D7 vs. D14, the D0 vs. 
D14 comparison being ineffective at capturing true 
differences between the groups. Qurro’s log ratios 
were computed for each model coefficient. In each 
case, the log ratio differences were smaller for D0 
versus D14 and greater for D0 versus D7 and D7 
versus D14. 25% of the highest coefficients and 25% 
of the lowest coefficients set by the songbird algo
rithm were then summed at the (metabolic) module 
level (as described in the Materials and Methods 
section). These accounted for 542 and 506 of the

highest coefficients and 460 and 495 of the lowest 
coefficients for D0 versus D7 and D7 versus D14, 
respectively. Of the 159 most-varying modules, 108 
were present in both D0 vs. D7 and D7 vs. D14 
models, which also partly explains the log ratio 
differences in the models discussed above. Most of 
the modules [72 out of 137 (53%) for D0 vs. D7, and 
85 out of 130 (65%) for D7 vs. D14] and their 
associated categories had a sum of coefficients 
above 0, which was greater in the D7 group. 
Figure 2(c) shows that the categories shifted in the 
same direction in both the models. This highlights 
the tendency of the functional profiles to return to 
a D0-like “baseline” state on D14. Interestingly, the 
categories that had increased the most on D7 were 
“ATP synthesis”, “carbohydrate metabolism”, and 
“lipopolysaccharide metabolism” (red arrows in 
Figure 2(c)). In contrast, the categories that had 
decreased the most were “cysteine and methionine 
metabolism”, “methane metabolism”, “short-chain 
fatty acid (SCFA) metabolism”, “serine and threo
nine metabolism”, and “terpenoid backbone bio
synthesis” (blue arrows, Figure 2(c)). Differences 
between D0 and D7 and D7 vs. D14 were noted in 
the categories “aromatic amino acid metabolism” 
(i.e. tryptophan) and, to a lesser extent, “lysine meta
bolism” (lower on D7 and higher on D14) (asterisks, 
Figure 2(c)). In summary, shotgun sequencing 
results indicated that IAV infection modulated the 
functional activity of the gut microbiota.

Influenza is associated with altered abundance of 
genes involved in metabolic pathways

Short-chain fatty acids (SCFAs) are derived from the 
fermentation of dietary fibers and carbohydrates by 
anaerobic bacteria. They play a key role in influenza 
infection.12,16,26 Several bacterial enzymes are critical 
for their production, notably acetate, propionate, 
and butyrate. We searched for genes encoding 
enzymes involved in SCFA biosynthesis and degra
dation, which led to the identification of 18 modules. 
As depicted in Figure 3(a), PCA analysis of these 18 
modules clearly indicated a shift in the D7 group 
relative to the D0 and D14 groups (k-means cluster
ing*, p < 0.01, PERMANOVA). Some modules rele
vant to SCFA production are shown in Figure 3(b). 
Four modules (MF0105A, MF0105B MF0086, and 
MF0075) leading to acetate production had at least
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Figure 2. Functional profiles of the gut microbiota during IAV infection. (a and b), PCA of normalized relative abundances of KOs (a) 
and module scores (b). (c), representation at the category level of the KOs with the most varying songbird coefficients aggregated at 
the module level. For each module, the coefficients of the KOs taking part in it are summed up. Then, modules were grouped into 
categories according to larger biological functions. Each dot on the plot represents the sum of KO coefficients for a module. Red lines 
are medians and boxes represent Q1 and Q3. A positive coefficient means an increase of the module on D7, whereas a negative 
coefficient illustrates a decrease. The higher or lower the coefficient, the greater the change. Red arrows indicate increased categories 
and blue arrows indicate lowered categories. Asterisks denote categories decreased on D7 and increased on D14. The categories not 
shown have modules with KOs with null abundance (not detected) or not selected (not in the top 25% of the KOs with the most 
extreme coefficients).
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one KO with a non-null coefficient (D0 vs. D7 and 
D14 vs. D7). These modules were not altered on D7 
(Figure 3(b) and not shown). For propionate, four 
possible modules were scrutinized: production from 
succinate through propionyl-CoA and 2-methylma
lonyl-CoA (MF0095/3/4), and via an alternative 
route (MF0084, which covers propionyl-CoA:succi
nyl-CoA transferase) from lactate (MF0106) and 
propanediol (MF0107). Only three were captured 
by the models, the module MF0084 had only null 
coefficients (Figure 3(b) and not shown). Both mod
els reported a decrease in the abundance of the 
propanediol module (MF0107) on D7, but no clear 
behavior for the lactate (MF0106) module was 
observed. In contrast, succinyl-CoA (MF0095/3/4) 
module was augmented. All possible modules result
ing in butyrate synthesis were detected by the mod
els. We observed a clear decrease in the MF0102 
(acetyl-CoA) and MF0101 (glutarate) modules at 
D7 in both models (Figure 3(b). For the 4-amino
butyrate/succinate (MF0104) and lysine (MF0103) 
modules, no clear behavior was observed (a ten
dency to decrease for MF0104). Collectively, the 
expression of bacterial enzymes involved in SCFA 
metabolism, more specifically those involved in 
butyrate production, was transiently altered during 
IAV infection.

Next, we focused on modules in the other 
altered functional categories (Figure 2(c)). The 
modules with the strongest differential (with 
most KOs moving away from zero) are shown 
in Figure 3(c–f) and Supplementary Figure S3. 
The most increased metabolic pathway in 
infected mice on D7 was “lipopolysaccharide 
metabolism” (Figure 3c). It is noteworthy that 
several modules involved in lipid metabolism 
(“fatty acid metabolism” and “lipid metabolism”) 
were either stronger (MF00873, M00874, 
M00083, M0082, M00093, M00089) or less 
strongly (M00087) abundant on D7 in both 
models (Supplementary Figure S3(a)). Bacterial 
carbohydrate metabolism provides energy and 
precursors for several biosynthetic pathways. 
Interestingly, modules involved in “carbohydrate 
metabolism” were also identified during infec
tion (Supplementary Figure S3(b) and not 
shown). Modules involved in the generation of 
intermediates, such as oxaloacetate, oxalogluta
rate, ribose- and ribulose-5 phosphate, and

others, had coefficients centered around 0. 
Interestingly, the module involved in the bio
synthesis of the polyamine spermidine 
(MF00133) was more abundant (Figure 3d), 
whereas the opposite effect was observed for 
modules involved in methanogenesis 
(Supplementary Figure S3(c) and not shown). 
With regard to amino acid metabolism, 
M00029, M0084, M00845 (covering the synthesis 
of arginine and the urea cycle more broadly), 
and M00879 (degradation of arginine to gluta
mate) were mostly upregulated in IAV-infected 
mice (Supplementary Figure S3(d), left panel). 
The abundance of modules involved in serine 
and threonine synthesis tended to be lower on 
D7, whereas the module involved in the degra
dation of serine to cysteine was more abundant 
(Supplementary Figure S3(d), middle and right 
panel). Isoleucine biosynthesis, leucine synthesis, 
and degradation modules were upregulated 
(“branched-chain amino acid metabolism”, 
Figure 3e). The valine metabolism was unaf
fected (data not shown). Lastly, most of the aro
matic amino acid modules (including tryptophan 
synthesis and degradation, tyrosine synthesis, 
and phenylalanine synthesis) were affected on 
D7, as was the critical shikimate biosynthesis 
pathway (M00022, for the production of choris
mate, a precursor of tryptophan, phenylalanine, 
and tyrosine) (Figure 3f). The modulation of 
M00038 (downregulated) and M00023 (mostly 
upregulated) suggests that tryptophan metabo
lism was altered during infection. Other path
ways were affected by IAV infection, including 
those leading to the metabolism of cofactors and 
vitamins (data not shown). Overall, IAV infec
tion was associated with many changes in the 
expression of microbial metabolism genes; these 
changes might influence the outcome of 
influenza.

Influenza is associated with changes in the 
concentrations of microbial-associated metabolites

Next, we compared the concentrations of micro
bial-associated metabolites between the non- 
infected and IAV-infected mice. Given the key 
role of the gut-lung axis in influenza,3 we mostly 
focused on the serum metabolome because
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Figure 3. Alteration of specific metabolic compartments during influenza as assessed by shotgun analysis. (a and b), alteration of the 
abundance of genes involved in SCFA synthesis. (a), PCA of normalized relative abundances of modules covering SCFAs metabolism. 
(b), density ridgeline plots of the songbird coefficients of gomixer modules involved in SCFA synthesis and degradation. A positive 
coefficient is associated with an increase of the module’s KOs in D7, whereas a negative coefficient is associated with a decrease. The
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microbial metabolites must diffuse into the blood 
before they can affect lung functions. As the SCFA 
assay requires a large volume of serum, we mea
sured SCFAs in the cecum. We analyzed the small- 
molecule metabolites produced by the gut micro
biota, including SCFAs, tryptophan metabolites, 
polyamines, secondary biliary acids, and branched 
short-chain fatty acids. We also analyzed categories 
known to be modified by the host but from meta
bolites generated by the gut microbiota, such as 
short-chain acylcarnitine and trimethylamine 
N-oxide. Finally, we considered metabolites 
known to be used by the gut microbiota, such as 
dietary amino acids and branched-chain amino 
acids.

As shown in Supplementary Figure S4 and in 
line with our previous results and those from 
others,12,27 influenza was associated with 
a significant decrease in the cecal concentrations 
of SCFAs, including acetate, propionate, and buty
rate. The short-chain acylcarnitines acetylcarnitine 
(C2), propionylcarnitine (C3), and butyrylcarnitine 
(C4) are derivatives of acetate, propionate, and 
butyrate, respectively. Relative to D0, the blood 
concentrations of propionylcarnitine and butyryl
carnitine were lower on D7 (although not signifi
cantly for propionylcarnitine), and that of 
acetylcarnitine was lower on D14 (Figure 4(a)). 
Notably, the blood concentration of acylcarnitine 
was stable on D7 and fell on D14. The gut micro
biota can transform various dietary nutrients (e.g., 
choline and l-carnitine) into trimethylamine, 
which is subsequently oxidized to trimethylamine 
N-oxide (TMAO) by liver enzymes.28 Relative to 
D0, the concentration of TMAO decreased signifi
cantly on D7 but recovered on D14 (Figure 4(b)). 
These data suggest that IAV infection influences 
the trimethylamine-forming gut bacteria. The diet
ary amino acid tryptophan can be metabolized into 
various indole-containing metabolites by gut bac
teria via tryptophanase. Interestingly, the blood

concentration of indole-3-propionic acid (IPA), 
a major indole-containing tryptophan metabolite 
produced by the commensal microbiota,29 

decreased dramatically by D7 and regained steady- 
state levels by D14 (Figure 4(c)). To a lesser extent, 
the concentration of indole-3-acetic acid (IAA), 
another microbiota-derived tryptophan metabo
lite, reduced on D7. Given that circulating trypto
phan levels were not strongly affected during 
infection (Supplementary Figure S5(a)), the 
changes in IPA indicated that the microbial tryp
tophan-indole pathway was altered during IAV 
infection (Figure 3f). Polyamines (including 
putrescine, spermidine, and spermine) are pro
duced by the gut microbiota from arginine as part 
of the urea cycle. As shown in Figure 4d and in line 
with Figure 3d, the concentrations of putrescine, 
spermidine, and spermine were transiently elevated 
on D7. Primary bile acids (produced by the liver as 
conjugates) are transformed into secondary bile 
acids by gut microbiota.30 The levels of secondary 
and primary bile acids did not change during IAV 
infection, suggesting that this pathway was unaf
fected (Supplementary Figure S5(b)). The gut 
microbiota modulates branched-chain amino acid 
levels in the blood because it can both produce and 
consume them. Blood concentrations of the 
branched-chain amino acids valine, leucine, and 
isoleucine did not vary significantly during IAV 
infection (Supplementary Figure S5(c)). Branched 
amino acids are fermented by the gut microbiota 
into isobutyrate and isovalerate, i.e. branched 
SCFAs.31 As shown in Figure 4e, the cecal concen
tration of isobutyrate significantly decreased on 
D7, whereas that of isovalerate remained constant. 
Similarly, gut microbiota can decrease the avail
ability and metabolism of some dietary amino 
acids (such as tryptophan and arginine) by increas
ing the production of microbial proteins and var
ious metabolites. The level of arginine (but not 
tryptophan) tended to decrease transiently during

coefficients/differentials of the KOs computed by songbird are plotted on the x-axis (thin bars). The thick bar is the origin of the x-axis. 
(c–f), density ridgeline plots of the songbird coefficients of gomixer modules involved in LPS (c), fatty acid (b), polyamine (c), amino 
acid (arginine, proline, serine, threonine, cysteine and methionine) (d), branched- amino acid (d), branched chain amino acid (e), and 
aromatic amino acid (f) synthesis and degradation. A positive coefficient is associated with an increase of the module’s KOs in D7, 
whereas a negative coefficient is associated with a decrease. The coefficients/differentials of the KOs computed by songbird are 
plotted on the x-axis (thin bars). The thick bar is the origin of the x-axis.
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Figure 4. Alteration in blood metabolite production during an IAV infection. (a–e), L-carnitine and short-chain acetylcarnitines (a), 
TMAO (b), indole derivative (c), polyamine (d), and branched short-chain fatty acids (e) were measured in blood samples from each 
animal and at each time point, using targeted quantitative metabolomics (mean ± SD). Values for individual animal are presented 
(n = 7–8/time point) (µM). Significant differences were determined using one-way ANOVA test followed by Tukey’s multiple 
comparison test to parametric data. Nonparametric data was analyzed by Kruskal – Wallis ANOVA with Dunn’s posttest (*p < .05, 
**p < .01, ***p < .001). TMAO, trimethylamine N-oxide; IPA, indole-3-propionic acid; IAA, indole-3-acetic acid.
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infection (Supplementary Figure S5(a)). Taken 
together, these data fit with the apparent functional 
(metabolic) alterations in the gut microbiota 
revealed by the shotgun sequencing analysis. 
Rearrangements in these microbial metabolic path
ways may influence influenza outcomes.

Alterations in taxon abundance and 
microbiota-associated metabolites are correlated 
with markers of influenza severity

We next investigated the significance of the differ
ences in taxa abundance and bacterial metabolite 
levels between non-infected and infected (D7 and 
D14) animals. Putative associations between taxo
nomic and metabolomic features were evaluated 
using pairwise Spearman correlation tests, hierarch
ical clustering, and the identification of densely asso
ciated blocks on a heatmap (Figure 5(a)). The 
statistically significant blocks included SCFAs (buty
rate, acetate, and/or propionate), which were posi
tively correlated with Limosilactobacillus reuterii 
(block 2), Lactobacillus taiwanensis (block 6, propio
nate only), and Bifidobacterium animalis spp. (block 
9, acetate only) (Figure 5(a) and Table 2). 
Lactobacilli species were also positively correlated 
with butyrylcarnitine (C4) and TMAO levels 
(block 1). Changes in the abundance of Dorea Sp. 
5–2 were positively correlated with the levels of 
propionylcarnitine (C3, block 4), butyrylcarnitine 
(C4), and TMAO (cluster 1). In contrast, histidine 
was negatively correlated with Bacteroidales bacter
ium M1 (block 3) and Ruminococcaceae bacterium 
D16 (block 7). Moreover, Bacteroidales bacterium 
M7 was negatively correlated with IPA (block 5) and 
Bacteroidales bacterium M6 was negatively corre
lated with spermidine (block 8). Finally, the 
Lactobacillaceae and Bifidobacteriaceae species 
Limosilactobacillus reuteri, Lactobacillus taiwanen
sis, Lactobacillus animalis, Lactobacillus johnsonii 
positively correlated with IPA.

Next, we attempted to measure correlations 
between the gut microbiota composition, metabo
lite levels, and indices of influenza severity (body 
weight loss, viral load, and systemic and pulmonary 
markers of inflammation; Supplementary Figure 
S1). We found that several bacterial metabolites 
and (to a lesser extent) several gut microbiota 
taxa were strongly correlated with indices of

influenza severity (Figure 5(b,c)). For instance, 
SCFAs, propionylcarnitine (C3), butyrylcarnitine 
(C4), IPA, TMAO, and some amino acids were 
negatively correlated with pulmonary viral load, 
while spermine, spermidine, and putrescine (all 
polyamines) were positively correlated with these 
markers (blocks 1, 2, 4, and 13) (Figure 5(b) and 
Table 3).

The above-mentioned metabolites showed 
a similar trend toward a correlation with local 
inflammatory markers (transcripts) and systemic 
inflammatory markers (proteins). At the genus 
level, the lower relative abundance of Lactobacilli 
species Limosilactobacillus reuteri, Lactobacillus tai
wanensis and Lactobacillus johnsonii was negatively 
correlated with lung viral load, systemic inflamma
tion, and leaky gut markers (Figure 5(c) and 
Table 4). Similar (but weaker) correlations were 
observed for Bacteroidales bacterium M11 (Il1b). In 
contrast, Bacteroidales bacterium M7 and 
Parabacteroides goldsteinii were positively associated 
with viral load and systemic inflammation.

We integrated various correlations into the net
work. The viral load and inflammatory markers 
occupied central positions, indicating their links 
with many metabolites (including SCFAs, short- 
chain acylcarnitines, polyamines, some amino 
acids, IPA, and TMAO) (Figure 5(d)). In periph
eral positions, some of the taxa (such as Lactobacilli 
and Bacteroidales species) were linked primarily to 
metabolites but also to markers of disease severity. 
The network contained some relatively discon
nected components, such as the negative correla
tion between histidine on one hand and 
Bacteroidales bacterium M1 and Ruminococcaceae 
bacterium D16. Among the centrally positioned 
metabolites, IPA was negatively correlated with 
the viral load, inflammatory markers, and 
Bacteroidales bacterium M7 (Figure 5(d), inset). 
Overall, the changes in some gut microbiota taxa 
and metabolites correlated with the indices of 
influenza severity.

Supplementation of IPA reduces the severity of 
influenza

In view of the massive drop in IPA level on D7 
(Figure 4(c)), its correlation with most of the infec
tion parameters (Figure 5(d)), and the reported
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Figure 5. Associations between taxonomic and metabolomic features from non-infected and IAV-infected animals. (a), Hallagram 
representation for metabolites associations with microbial taxa. Metabolites shown in figure 6 were analyzed. Spearman correlation 
was used as similarity metric, with negative values represented in blue and positive values represented in red. Significant blocks were 
numbered in descending order of significance. (b and c), correlations between bacterial metabolites (b) and taxa (c) and infection- 
related variables. a–c, only taxa differentially represented between mock-infected and IAV-infected mice were taken into account. The 
false discovery rate (FDR) was controlled using the Benjamini-Hochberg method with alpha 0.05 and the expected false negative rate
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beneficial effects of this compound in many disease 
settings (ranging from inflammatory to metabolic 
disorders32,33), we hypothesized that IPA could be 
important during influenza. To do so, animals were 
supplemented with IPA (oral gavage, 40 mg/kg/ 
day) or vehicle, as a control. Treatment started 
one day after IAV infection and then daily during

infection (Figure 6(a), left panel). Animals were 
sacrificed at the peak of the acute inflammatory 
phase (day D7). Targeted liquid chromatography

(FNR) for block associations was the default 0.2. (d), network of correlations between metabolites, taxa, and infection parameters. The 
shape and color of nodes indicate the group of data (metabolites, taxa, or infection parameters). Edges colors indicate the correlation 
coefficient (blue for negative and red for positive), whereas edge thickness is proportional to significance (thicker lines indicate lower 
adjusted p-values). Only associations with adjusted p-value ≤0.05 and correlation coefficient ρ ≥ |0.15| were included. Inset, 
Subnetwork of direct associations with IPA. Arg, arginine; his, histidine; Tyr, tyrosine; Trp, tryptophan; C0, carnitine; C3, propionyl
carnitine; IPA, indole-3-propionic acid; C4, butyrylcarnitine; TMAO, trimethylamine N-oxide.

Table 2. Significative clusters identified with HAllA for taxonomy and metabolomics data. Shifts in species abundances 
are indicated inside parenthesis.

Cluster rank Cluster X Cluster Y Best adjusted p-value

1 Dorea sp. 5–2 (down at D7) 
Lactobacillus johnsonii (down at D7) 
Lactobacillus animalis (down at D7) 
Lactobacillus taiwanensis (down at D7) 
Lactobacillus reuteri reuteri (down at D7)

C4; 
TMAO

0.001918

2 Lactobacillus reuteri reuteri (down at D7) Butyrate (cecum); 
Acetate (cecum); 
Propionate(cecum)

0.008292

3 Bacteroidales bacterium M1 (down at D7) His 0.009811
4 Dorea sp. 5–2 (down at D7) C3 0.009811
5 Bacteroidales bacterium M7 (up at D7) 3-IPA 0.026983
6 Lactobacillus taiwanensis (down at D7) Propionate(cecum) 0.028723
7 Ruminococcaceae bacterium D16 (down at D7) His 0.03179
8 Bacteroidales bacterium M6 (down at D7) Spermidine 0.03179
9 Bifidobacterium animalis (down at D7) Acetate (cecum) 0.037395

Table 3. Significative clusters identified with HAllA for taxonomy 
and infectious diseases parameters data. Shifts in species abun
dances are indicated inside parenthesis.

Cluster rank Cluster X Cluster Y

Best 
adjusted 
p-value

1 IL-12p40 
IL-6 
LBP 
IFNγ 
Viral load

Bacteroidales bacterium M7  
(up at D7)

0.0021

2 IFNγ Lactobacillus johnsonii  
(down at D7)

0.0021

3 IFNγ Lactobacillus reuteri  
(down at D7)

0.0021

4 IFNγ Lactobacillus taiwanensis  
(down at D7)

0.004

5 LBP Lactobacillus johnsonii  
(down at D7)

0.024

6 Il1b Bacteroidales bacterium M11 
(down at D7)

0.033

7 LBP Lactobacillus taiwanensis  
(down at D7)

0.033

8 LBP Lactobacillus reuteri (down at D7) 0.043
9 IFNγ Parabacteroides goldsteinii  

(up at D7)
0.048

Table 4. Significative clusters identified with HAllA for infection 
parameters and metabolomics data.

Cluster rank Cluster X Cluster Y
Best adjusted 

p-value

1 IL-12p40 
IL-6 
LBP 
IFNγ 
Viral load

Butyrate 
Acetate 
Propionate 
C3 
3-IPA 
C4 
TMAO 
Arg 
Spermidine 
Spermine

0.005

2 IL-12p40 
IL-6 
LBP 
IFNγ 
Viral load

Putrescine 0.005

3 IL-6 
LBP

Tyr 0.005

4 Viral load Tyr 0.005
5 Ifng Spermine 0.008
6 Ifng Butyrate 0.013
7 Tnfa Spermidine 

Spermine
0.013

8 Tnfa 3-IPA 0.016
9 Tnfa TMAO 0.017
10 Il6 C0 0.017
11 Ocln Arg 0.017
12 IL-6 Trp 0.020
13 Viral load Trp 0.045
14 Tnfa Butyrate 0.045
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coupled with tandem mass spectrometry (LC-MS 
/MS) revealed that IPA treatment partially restored 
the systemic concentration of IPA in IAV-infected 
mice (Figure 6(a), right panel). IPA supplementa
tion did not significantly alter gut microbiota’s 
composition during infection, as revealed by Bray 
Curtis-based PCA (Supplementary Figure S6a).

LEfSe analyses revealed that IPA supplementation 
altered the relative abundance of few bacterial spe
cies (Supplementary Figure S6b). In term of clinical 
index, IPA supplementation significantly attenu
ated body weight loss due to infection 
(Figure 6(b)). This effect associated with 
a reduced decline in body temperature

Figure 6. Effect of IPA treatment on viral load and inflammation during influenza infection. (a), left panel, schematic procedure. Mice 
were daily treated by oral gavage with vehicle (0.5% methyl cellulose in sterile water) or IPA (40 mg/kg/day) on D1 until D6. Mice were 
sacrificed on D7. right panel, systemic concentration of IPA in vehicle-treated and IPA-treated IAV-infected mice. Non-infected (mock) 
mice were used as controls. Errors indicate mean ± SD (n = 8). (b), percentage loss relative to initial body weight. Errors indicate mean  
± SD (n = 22–24, pool of three independent experiments). (c), body temperature (n = 8). (d), left panel, quantification of viral load in 
the whole lung using specific TaqMan RT-qPCR. Data are expressed as genome copy number (M1 protein)/μg RNA. right panel, viral 
protein labelling (immunofluorescence) was performed on lung sections collected at 7D. Bars: 25 μm. (e and f), mRNA copy numbers 
were quantified by RT-qPCR. The data are expressed as the mean of change relative to average gene expression in non-infected 
animals. (g), serum proinflammatory cytokines and markers of altered intestinal barrier were quantified by ELISA. (d-g). Errors indicate 
mean ± SD (n = 7–16, two pooled experiments). Significant differences were determined using using the Kruskal-Wallis test (a) or the 
Mann Whitney U test (b-g) (*p < 0.05; ** p < .01, *** p < .001).
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(Figure 6(c)), suggestive of the clinical benefit 
afforded by treatment. Interestingly, relative to 
vehicle-treated controls, mice treated with IPA 
showed a more rapid recovery, evident in both 
body weight and temperature regain 
(Supplementary Figure S6(c,d)). The potential 
effect of IPA supplementation on viral load was 
then assessed. Interestingly, IPA administration 
was associated with a significantly lower viral load 
in the lungs, as assessed by quantification of M1 
protein transcripts in RT-qPCR assays 
(Figure 6(d), left panel). Immunofluorescence 
staining of lung sections confirmed a lower viral 
load in the IPA-treated animals (Figure 6(d), right 
panel). The mRNA expression of interferon- 
stimulated genes, such as Mx1 and Gbp2 (which is 
proportional to the viral load at D7), was lower in 
IPA-treated animals than in non-supplemented 
animals (Figure 6(e)). We then investigated the 
effects of IPA supplementation on lung inflamma
tion. The levels of inflammatory gene transcripts 
(such as cytokines and chemokines: Il1b, Il6, Ifng, 
Ccl2 and Cxcl2) were significantly lower in IPA- 
treated animals than in controls (Figure 6(f)). 
Treatment with IPA was also associated with 
lower serum levels of IL-6 and IFN-γ, recognized 
markers of systemic inflammation, as well as LBP, 
an indicator of altered intestinal barrier integrity 
(Figure 6(g)). Overall, IPA supplementation during 
the course of influenza partially reversed the detri
mental disease outcomes (body weight loss, viral 
load and inflammation), which confirmed the 
results of the correlation analysis shown in 
Figure 5d.

IPA-producing bacteria are important during 
influenza

IPA is produced exclusively by the microbiota.29 To 
confirm that the natural production of IPA by the 
gut microbiota is important in the control of influ
enza, mice were exposed to vancomycin and ampi
cillin 5 days prior to the onset of infection until D2. 
Mice were sacrificed on D4 (Figure 7(a), left panel). 
These antibiotics have been shown to target IPA- 
producing bacteria.34,35 As expected, antibiotic 
treatment profoundly altered the gut microbiota’s 
composition as revealed by LEfSe analysis 
(Supplementary Figure S7). In line with the above

findings,34,35 targeted LC-MS/MS revealed that the 
systemic concentration of IPA was dramatically 
reduced upon antibiotic treatment (Figure 7(a), 
middle panel). In contrast, there was no change in 
IAA levels (Figure 7(a), right panel for the metabolic 
pathway). Furthermore, the circulating concentra
tion of indole-3-lactic acid, which gives rise to the 
IPA precursor indole-2-acrylic acid, was unaffected 
by antibiotic treatment. We then assessed the effects 
of antibiotic treatment on viral load and lung 
inflammation. Compared with control mice, anti
biotic-treated mice had a higher viral load and 
expressed enhanced levels of inflammatory cyto
kines in the lungs (Figure 7(b)). IPA supplementa
tion in antibiotic-treated mice restored the systemic 
level of IPA (Figure 7(b)). Interestingly, this was 
associated with reduced viral load and inflammatory 
transcript levels in the lungs (Figure 7(d)). These 
data suggest that gut microbiota’s production of 
IPA reduces viral loads and mitigates inflamma
tion during influenza infection. We then inves
tigated whether IPA could function as 
a prophylactic factor against influenza under 
normal antibiotic-free conditions. To this end, 
mice were gavaged with IPA one day before 
infection and then daily during infection. As 
depicted in Figure 7(e), IPA treatment resulted 
in a lower virus load. Consistent with this, the 
expression of pulmonary ISGs was reduced. 
Collectively, these data demonstrate that the 
microbiota-derived metabolite IPA plays an 
important role in IAV infection.

Discussion

The present study is the first to use shotgun meta
genomics and targeted metabolomics to analyze 
the gut microbiota during experimental influenza. 
We believe that such an integrated multi-omics 
approach can provide a better understanding of 
the relationship between microbial changes and 
disease outcome. These analyses led us to identify 
IPA as an important metabolic modulator of the 
severity of influenza. In line with the results of 
previous studies of 16S rRNA amplicon sequencing 
in mouse,9–14 IAV infection induced alterations in 
the composition of the gut microbiota. Bacterial 
diversity diminished on D7, the peak of the acute 
phase. With some exceptions (see below),

GUT MICROBES 15



Figure 7. Role of IPA-producing bacteria in the control of viral load and inflammation. (a), left panel, schematic procedure. Mice were 
treated with vancomycin and ampicillin 5 days prior to the onset of infection until D2. Mice were sacrificed on D4. middle panel, 
systemic concentration of IPA, ILA and IAA in antibiotic-treated mice. right panel, schematic showing the conversion pathway of 
tryptophan into different bioactive indole metabolites including those that require the gut microbiota for conversion. (b), quantifica
tion of viral load in the whole lung using specific TaqMan RT-qPCR. Data are expressed as genome copy number (M1 protein)/μg RNA. 
(c and d), the same parameters (a and b) were measured by this time after supplementation, or not, with IPA (oral gavage, 40 mg/kg/ 
day, from one day before infection to D3). (e), left panel, experimental procedure. Mice were daily treated or IPA one day before 
infection until D3. Mice were sacrificed on D4. middle and right panels, viral load and gene expression were quantified by RT-PCR. For 
all graphs, errors indicate mean ± SD. a-d and e, right panel, one experiment out of two is depicted (n = 6–8). e, left panel, a pool of 
two experiments is depicted (n = 13–14). Significant differences were determined using the Mann Whitney U test (*p < .05; ** p < .01).
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microbial variables returned to basal levels on D14. 
In IAV-infected mice (D7), the relative abundance 
of Bacillota and Actinomycetota was low (relative 
to controls), whereas that of the 
Verrucomicrobiota was considerably higher. It is 
noteworthy that although low abundances of 
Bacillota and Actinomycetota have been observed 
previously in patients with severe influenza,18 no 
such change has been reported for 
Verrucomicrobiota in humans. In the present 
study, more than 10 species were identified as 
being either significantly enriched or depleted dur
ing IAV infection. Strikingly (and in line with the 
16S rRNA sequencing data12,13), Akkermansia 
muciniphila was the most enriched species on D7 
and displayed normal levels on D14. A. muciniphila 
has recently emerged as a genus of major interest in 
health and disease.36 As A. muciniphila is a mucin 
degrader,37 one possible explanation for the 
observed enrichment is that influenza increased 
the levels of colonic mucin (as observed 
previously38), thus stimulating the growth of 
A. muciniphila. Notably, a reduction in oral feeding 
(a situation observed during experimental 
influenza12) is associated with an enhanced fre
quency of A. muciniphila in mice.39 The greater 
abundance of A. muciniphila during influenza 
infection is somewhat counterintuitive because 
this bacterium tends to be depleted in inflamma
tory settings and displays various beneficial anti- 
inflammatory and metabolic effects in both mice 
and humans.24,40 Although changes in 
A. muciniphila were not significantly correlated 
with the infectious and inflammatory markers 
examined in the present study, the transient 
bloom of this bacterium might have been 
a measure selected by the host to counter acute 
inflammation.13 Accordingly, supplementation 
with A. muciniphila during influenza (H7N9) 
reduced disease severity in mice.13 Given the 
known detrimental role of A. muciniphila in colitis 
and gut barrier functions,39,41 the bloom of this 
species might also contribute to some of the harm
ful effects associated with influenza, including 
intestinal inflammation and altered gut barrier 
properties9,16; this hypothesis requires further 
investigation (e.g. selective antibiotic treatment39). 
The most highly depleted species during the IAV 
infection belonged to the phylum Bacillota. We

observed that the abundance of species, such as 
L. taiwanensis, L. johnsonii and L. reuteri 
(Lactobacillaceae and Bifidobacteriaceae families), 
was very low on D7. These bacterial species are 
considered beneficial to health and are currently 
used as probiotics.42–44 These species modulate 
local immune responses, enhance barrier function, 
and exert antibacterial activity against a broad 
spectrum of pathogenic bacteria. Notably, the rela
tive abundance of these species was high on D14 
(relative to D0), which suggests a long-term effect 
on disease outcomes. The levels of the acetate pro
ducer B. animalis spp. were low on D7 and D14. 
This probiotic species is positively associated with 
longevity in mice and negatively correlated with 
inflammation and obesity in humans.45,46 Our 
data are in line with Zhang et al.’s report of 
a positive association between B. animalis spp. 
levels and survival of IAV-infected mice.14 Of 
note, although the Bacteroidota species 
Bacteroidales bacterium M7 (a Gram-negative obli
gate anaerobe) was found to be enhanced on D7, 
shotgun sequencing did not reveal significant 
enrichments in the so-called “pathobionts” - 
including members of the Alphaproteobacteria 
and Gammaproteobacteria (Escherichia genus) 
classes. The latter result appears to contradict 
observations (including our previous work) of 
enrichment of these opportunistic bacteria during 
influenza.9–12,18,20 This disparity might be due to 
inter-study differences in experimental design, in 
the endogenous microbiota composition of the 
mice used, and the technique employed to study 
the composition of the gut microbiota:16S rRNA 
taxonomic profiling (with possible PCR-related 
bias and lower resolution) in previous studies and 
shotgun sequencing in the present study.

The metabolism of the gut microbiota plays 
a critical role in host physiology and immunity, 
including during infection.12 The effect of influenza 
on gut microbiota metabolism has not yet been fully 
characterized. To investigate this question, we com
bined a functional scale analysis of metagenomic data 
and targeted metabolomic analysis. Functional scale 
analysis predicted some interesting metabolic path
ways affected by the virus, including those leading to 
the production of SCFAs. We have previously shown 
that IAV infection in mice is associated with 
a decrease in SCFAs production; however, the latter
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could not be attributed to a reduced number of reads 
for genes specifically involved in SCFA pathways.12 

Indeed, our data suggest that changes in SCFA pro
duction were related to a lack of fiber intake by 
diseased animals (loss of appetite). Here, we observed 
changes in the pathways involved in SCFA metabo
lism, specifically those involved in butyrate produc
tion, an important metabolite in the context of 
influenza.26,47,48 Notably, these changes were asso
ciated with a decrease in the relative frequencies of 
the acetate producer B. animalis spp. (see the correla
tion analysis in Figure 5(d)) and the butyrate produ
cer Intestinimonas butyriciproducens (with a decrease 
from 0.66% to 0.22% on D7), although the difference 
was not statistically significant (not shown). Notably, 
other typical SCFA producers, including 
Lachnospiraceae (Lachnospiraceae bacterium Spp 
and Dorea spp.) and Ruminococcaceae 
(Pseudoflavonifractor capillosus), had low abundance 
on D7, as previously observed in IAV-infected 
patients (not shown).18,20 “Lipopolysaccharide meta
bolism” was one of the most strongly enhanced meta
bolic pathway in infected animals. The apparent 
increase in LPS synthesis may be related to the greater 
abundance of gram-negative bacteria, such as mem
bers of the phylum Bacteroidetes. The intestinal bar
rier is disrupted during influenza,16 which suggests 
that LPS can diffuse into the blood and induce sys
temic inflammation and/or organ dysfunction. Other 
modules involved in lipid metabolism were altered 
during infection. We previously observed alterations 
in the metabolism of gut microbiota-derived glyco
sphingolipids, which are important in innate immu
nity during IAV infection.49 A change in the lipid 
metabolism of the gut microbiota during influenza 
was also observed in mice by Groves et al.50 who 
hypothesized that this was indirectly due to a loss of 
appetite. Other prominent metabolic pathway cate
gories on D7 were “ATP synthesis” and “carbohy
drate metabolism”. Bacterial genes involved in 
glycolysis and gluconeogenesis were also affected. 
Carbohydrate metabolism is known to provide 
energy (e.g. ATP) and precursors for many biosyn
thetic pathways, including SCFA synthesis. Hence, 
the low SCFA synthesis observed in IAV-infected 
mice is unlikely to be due to low levels of carbohy
drate precursors. The enhancement of “carbohydrate 
metabolism” during infection might be due to greater 
mucus degradation by A. muciniphila (which uses

mucus as an energy source) and might compensate 
for the lower food intake caused by loss of appetite. 
Furthermore, we observed influenza-related differ
ences in metabolic pathways associated with amino 
acid synthesis. Although these changes did not trans
late into differences in blood amino acid concentra
tions (apart from non-significant trends for arginine 
and tryptophan), they might have consequences. In 
the gut, tryptophan is metabolized to several indole 
derivatives with important functions.51,52 Our shot
gun metagenomic analysis also revealed a potential 
enhancement in the biosynthesis of polyamines dur
ing infection; the latter might be a reaction to the loss 
of appetite.53

Targeted metabolomic analysis confirmed 
changes in the predicted metabolic pathways. 
Major changes in blood metabolite concentrations 
were observed on D7, whereas most variables 
returned to basal levels on D14. We found that 
the metabolism of polyamine (on D7) and TMAO 
(on D14) was significantly increased during infec
tion, whereas the synthesis of SCFAs and the tryp
tophan metabolite IPA was low. Low SCFA 
production was positively associated with 
a decrease in the abundance of Lactobacilli and 
B. animalis spp. and negatively associated with 
disease severity markers (e.g., pulmonary viral 
load). This finding is in line with those of other 
studies showing that SCFAs influence the host 
response to respiratory viruses.26,47,48,54–56 It is 
noteworthy that low SCFA production during 
influenza augments susceptibility to secondary 
bacterial infections in the lungs and gut.12,16 

Given the pleiotropic functions of SCFAs, the 
decrease in SCFA levels during influenza may 
have other effects (e.g., systemic inflammation, 
metabolism, adipose tissue functions, and neuro
protection). Disruption of gut microbiota can alter 
the production of bacterial tryptophan metabolites. 
In particular, the level of the anti-inflammatory 
component IPA was very low on D7, which was 
concomitant with a reduction in the abundance of 
Lactobacillus species (including L. reuteri, a well- 
known commensal producer of indole 
derivatives).57 It is noteworthy that Clostridium 
and Peptostreptococcus species also produce tryp
tophan metabolites, including IPA (for a review58). 
Importantly, the decrease in IPA levels correlated 
with the viral load and inflammation markers. The
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level of TMAO was low on D7, likely due to low 
food intake.59 In contrast, the TMAO levels were 
significantly elevated on D14. Given that the serum 
TMAO concentration is associated with many dis
eases ranging from inflammatory diseases (e.g., 
pneumonia) to metabolic and cardiovascular 
diseases,28,60 one can reasonably expect an elevated 
TMAO level can have negative consequences in 
IAV-infected hosts. Lastly, polyamines are anti- 
inflammatory and beneficial to human health. 
However, their role in lung diseases (including air
way hyperresponsiveness) is less clear.61,62 The ele
vated concentration of polyamines (including 
spermidine) on D7 may be related to injury to the 
airway epithelium.62 Interestingly, the levels of 
putrescine, spermine, and spermidine were posi
tively correlated with the viral load and inflamma
tory marker expression. Further functional 
analyses are required to establish a direct causal 
relationship between polyamine levels and disease 
severity in this influenza model. Taken together, 
the results of our integrated metagenomic and 
metabolomic analyses revealed major changes in 
the functional capacity of the gut microbiota dur
ing influenza and suggested that these changes 
have important consequences on disease outcomes.

Our metabolomics data showed that IPA was 
one of the most depleted microbiota-derived 
metabolites on D7 post-IAV infection. 
Therefore, we evaluated the functional conse
quences of IPA depression on influenza severity. 
Although the role of IPA during bacterial infec
tions has been studied (mainly protection 
against sepsis),63,64 the putative effects of the 
compound during viral infections are more elu
sive. In a recent study, it was shown to abrogate 
the pathogenic effect of virus-specific cytotoxic 
T lymphocytes in certain strains of mice 
infected with lymphocytic choriomeningitis 
virus clone 13.65 The potential role of IPA in 
other viral infections, notably respiratory infec
tions, remains unclear. This is a relevant ques
tion regarding the drop in IPA in HIV-infected 
people, a phenomenon usually associated with 
a change in the functional status of the gut 
microbiome.66 In our setting, IPA supplementa
tion improved influenza outcomes (e.g., body 
weight, temperature) and translated into lower 
viral load and lower levels of local and systemic

inflammation. As IPA supplementation had 
a low effect on the gut microbiota’s composition 
in our setting (at least at D7), it is unlikely that 
altered gut microbiota’s functionality due to IPA 
supplementation is causally linked with the ben
eficial effects described in this report.

In our settings, narrow-spectrum antibiotics 
and IPA supplementation suggest the involve
ment of IPA producers in influenza virus replica
tion and inflammation. We are now intensively 
investigating IPA’s mode of action and strategies 
to optimize its beneficial effects on influenza out
comes. For instance, IPA mimetics67 may have 
enhanced beneficial effects during infection and 
decreased off-target effects relative to IPA. 
Modulation of gut microbiota and metabolites 
might be a potentially valuable strategy for the 
prevention and treatment of acute viral respira
tory infections, including IAV and SARS-CoV-2 
infections (for reviews68,69). Therefore, the use of 
prebiotics, probiotics, and postbiotics that can 
modulate the production of IPA and related 
metabolites is of potential interest. For example, 
supplementation with bacteria that produce IPA 
or with bacteria that modulate its production may 
limit the severity of influenza. Interestingly, 
Clostridium sporogenes, a bacterial species that 
produces IPA,29 has been used as a probiotic to 
reduce muscle cell inflammation.70 In conclusion, 
our results showed that IAV infection is asso
ciated with major changes in the functional status 
of the gut microbiota and highlighted IPA as an 
important contributor to influenza outcomes and 
potential biomarker of disease severity.

Materials and methods

Animals and ethics

Specific pathogen-free C57BL/6J mice (8-week-old, 
male) were purchased from Janvier (Le Genest-St- 
Isle, France). Mice were maintained in a biosafety 
level 2 facility at the Animal Resource Center at the 
Institut Pasteur de Lille for at least two weeks prior 
to use to allow appropriate acclimatization. Mice 
were fed standard rodent chow (SAFE A04) (SAFE, 
Augy, France) and water ad libitium. This diet 
contained 11.8% fiber, including 10% water- 
insoluble fiber (3.6% cellulose) and 1.8% water-
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soluble fiber. All experiments complied with 
current national and institutional regulations and 
ethical guidelines (Institut Pasteur de Lille/B59– 
350009). Protocols were approved by the regional 
Animal Experimentation Ethics Committee 
(Comité d’Ethique en Expérimentation Animale, 
Hauts de France, CEEA 75) and the French 
Ministry of Higher Education and Research 
(Ministère de l’Education Nationale, de 
l’Enseignement Supérieur et de la Recherche) 
(authorization numbers : 00357.03 and APAFIS 
13,743–2018022211144403).

Infection, supplementation with IPA and 
quantification of systemic cytokines

For infection, mice were anesthetized by intramuscu
lar administration of 1.25 mg of ketamine and 0.25  
mg of xylazine in 100 µl of phosphate buffered saline 
(PBS), and then intranasally (i.n.) infected with 50 μl 
of PBS containing 50 pfu of the H3N2 IAV strain A/ 
Scotland/20/1974.71,72 Mice treated i. n. with PBS 
served as controls (non-infected mice). To study the 
impact of IPA treatment, mice were supplemented 
daily with IPA (Sigma-Aldrich, 40 mg/kg/day) or 
vehicle (0.5% methyl cellulose in sterile water) by 
oral gavage one day after infection with IAV and 
until D6 (sacrifice at D7 post-infection) or until D10 
(sacrifice at D16 post-infection). The dose of IPA was 
chosen based on previous publications.64,73 

Alternatively, mice were treated by oral gavage with 
IPA or vehicle one day before IAV infection until D3 
(sacrifice at D4 post-infection). Each gavage dose 
volume was 200 μl. Body weight was monitored 
daily after IAV infection. To measure body tempera
ture, mice were implanted subcutaneously with 
TAM-MT radio transmitters capable of monitoring 
body temperature through receivers (ReadStation, 
Intellebio innovation, Seichamps, France). Blood 
samples were collected at sacrifice, and cytokine levels 
were determined by enzyme-linked immunosorbent 
assay (ELISA) using kits provided by Invitrogen 
(Waltham, MA) and MyBioSource (San Diego, CA).

Quantification of viral load by quantitative RT-PCR 
and immunofluorescence

Viral load in the lungs was determined by quanti
fying viral RNA encoding the M1 protein (segment

7).67 Briefly, after treatment with RNAse OUT 
(Invitrogen, Carlsbad, CA), RNA was reverse- 
transcribed with SuperScript® II Reverse 
Transcriptase (Invitrogen) using primers specific 
for M1 (5ʹ-TCT AAC CGA GGT CGA AAC 
GTA-3ʹ). qPCR was performed using TaqMan 
Universal PCR Master Mix (Applied Biosystems, 
Waltham, MA), using the following primers for M1 
(forward:5ʹ-AAG ACC AAT CCT GTC ACC TCT 
GA-3ʹ; reverse:5ʹ-CAA AGC GTC TAC GCT GCA 
GTC C-3ʹ and M1 specific TaqMan probe (FAM) 
5ʹ-TTT GTG TTC ACG CTC ACC GTG CC-3ʹ 
(TAMRA), and amplification was performed 
using the QuantStudio™ 5 K Flex Real-Time PCR 
System (Applied Biosystems). A synthetic gene 
containing the IAV M1 gene (segment 7) was 
used to construct a plasmid that was used to con
struct a standard curve. To analyze virus load by 
immunofluorescence, lung tissue sections (7 μm 
thick) were dried for 48 h at 42°C. The slides were 
rehydrated with toluene (AnalaR NORMAPUR 
ACS, VWR) at decreasing concentrations of etha
nol in water. The rehydrated tissue sections were 
first treated with an antigen-unmasking solution 
(Tris EDTA buffer, pH 9). The sections were then 
rinsed and blocked for 1 h at room temperature in 
a blocking solution (PBS containing 5% BSA and 
0.3% Triton X-100). Sections were incubated over
night at 4°C with a goat polyclonal anti-influenza 
A H3N2 (#PA1–7222, 1:1000, Invitrogen, 
Waltham, MA) antibody diluted in blocking solu
tion. Sections were then washed and incubated at 
room temperature for 1 hour with Alexa Fluor- 
conjugated secondary antibodies (A-11037, 1:500) 
in the blocking solution. The coverslips were then 
mounted on slides using fluorescence mounting 
medium conjugated with DAPI (DAPI 
Fluoromount-G® #0100–20, SouthernBiotech, 
Birmingham, Al). Mounted slides were stored in 
the dark and at 4°C until image acquisition.

Narrow spectrum antibiotic administration and 
supplementation of IPA

Depletion of IPA-producing bacteria was per
formed as described.34,35 Vancomycin (0.2 mg/ml) 
and ampicillin (0.5 mg/ml) were administered in 
drinking water five days prior to the onset of
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infection until D2. To study the impact of IPA 
treatment, mice were supplemented daily with 
IPA (40 mg/kg/day in 0.5% methyl cellulose) or 
vehicle by oral gavage one day before infection 
with IAV and until D3. To analyze the conse
quences of antibiotic treatment, with or without 
IPA supplementation, on viral load, mice were 
sacrificed at D4.

Determination of gene expression using 
quantitative RT-PCR

Gene expression in the lungs was analyzed by 
quantitative RT-PCR, using standard procedures. 
RNA was reverse-transcribed using a High- 
Capacity cDNA Archive Kit (Life Technologies, 
Carlsbad, CA, USA). The resulting cDNA was 
amplified using SYBR Green-based real-time PCR 
and the QuantStudio™ 5 K Flex Real-Time PCR 
System (Applied Biosystems), according to the 
manufacturer’s protocol.12 The primers used are 
listed in Table 5. Relative mRNA levels were deter
mined according to the 2−ΔΔCt (cycle thresholds) 
method by comparing (i) the PCR Ct for the gene 
of interest and the housekeeping gene (ΔCt) and 
(ii) the ΔCt values for the treated and control 
groups (ΔΔCt). Data were normalized against the 
expression of the Gapdh gene and expressed as 
fold-change over the mean gene expression level 
in mock-treated mice.

Genomic DNA extraction and shotgun sequencing

To study the impact of IAV infection on the gut 
microbiota, cecal samples were collected from differ
ent sets of animals, including non-infected mice

(sacrificed 7 days after PBS inoculation and termed 
D0) and IAV-infected mice (sacrificed 7 days and 14  
days after virus inoculation, D7 and D14, respec
tively). Cecum homogenates were stored at −80°C 
until further analysis. Genomic DNA was extracted 
from cecal sample according to.12 Briefly, microbial 
DNA was extracted from approximately 150 mg of 
cecal samples (QIAamp Fast DNA Stool Mini Kit, 
QIAGEN, Stadt, Germany). Genomic DNA was pur
ified using Agencourt AMPure XP magnetic beads 
(Beckman Coulter, Brea, CA, USA) and quantified 
according to GenoScreen protocol. The library pre
paration protocol was performed from 1ng of DNA 
(Nextera XT DNA Sample Prep Kit, Illumina, San 
Diego, CA, USA). The libraries were mixed with an 
equimolar amount of 2 nM. Shotgun sequencing was 
performed using a 250-bp paired-end sequencing 
protocol on an Illumina HiSeq 4000 platform 
(Illumina). The trimming and quality control of the 
data were performed using Fastp (version 0.20).74 The 
following default Fastp options were used: phred qual
ity higher than or equal to Q15, percentage of bases 
allowed to be less than or equal to 40%, maximum 
number of N bases equal to 5. The argument “detec
t_adapter_for_pe” was used to allow adapter sequence 
trimming of paired-end reads, and the minimum read 
length (after adapter trimming) was 50 bp. 
Subsequent high-quality (HQ) reads were aligned to 
the mouse Mus musculus C57BL/6J genome assembly 
(NCBI assembly accession: GCF_000001635.26). The 
alignment was performed using Bowtie2 (version 
2.3.5.1)75 with “–very-sensitive” and “–dovetail” para
meters. Unaligned reads were retrieved using sam
tools (“-f 12 -F 256”). Unaligned HQ reads were 
used for downstream analyses. The total number of 
raw reads was between 119.846.552 and 50.895.518

Table 5. Sequences of the oligonucleotides usedin this study
Gapdh Forward 5’-GCAAAGTGGAGATTGTTGCCA-3’ Zo1 Forward 5’-AGGTCTTCGCAGCTCCAAGAGAAA-3’

Reverse 5’-GCCTTGACTGTGCCGTTGA-3’ Reverse 5’-ATCTGGCTCCTCTCTTGCCAACTT-3’
Mx1 Forward 5’-AGAAGGTGCGGCCCTGTATT-3’ Foxj1 Forward 5’-CCACCAAGATCACTCTGTCGG-3’

Reverse 5’-TGAACTCTGGTCCCCAATGACA-3’ Reverse 5’-AGGACAGGTTGTGGCGGAT-3’
Gbp2 Forward 5’-AGGTTAACGGAAAACCCGTCA-3’ Cc10 Forward 5’-CATCTGCCCAGGATTTCTTCAA-3’

Reverse 5’-CAGTCGCGGCTCATTAAAGCT-3’ Reverse 5’-CGCATTTTGCAGGTCTGAGC-3’
Il1b Forward 5’-TCGTGCTGTCGGACCCATA-3’ Ve-cadherin Forward 5’- −3’

Reverse 5’-GTCGTTGCTTGGTTCTCCTTGT-3’ Reverse 5’- −3’
Il6 Forward 5’-CAACCACGGCCTTCCCTACT-3’ Claudin-1 Forward 5’-GGGGACAACATCGTGACCG-3’

Reverse 5’-CCACGATTTCCCAGAGAACATG-3’ Reverse 5’-AGGAGTCGAAGACTTTGCACT-3’
Cxcl2 Forward 5’- GAAGTCATAGGCACTCTCA −3’ Ifnb Forward 5’-TGGGTGGAATGAGACTATTGTTG-3’

Reverse 5’- TTCCGTTGAGGGACAGCA −3’ Reverse 5’-CTCCCACGTCAATCTTTCCTC-3’
Ifng Forward 5’-CAACAGCAAGGCGAAAAAG-3’ Tnfa Forward 5’-CATCTTCTCAAAATTCGAGTGACA-3’

Reverse 5’-GTGGACCACTCGGATGAGCT-3’ Reverse 5’-TGGGAGTAGACAAGGTACAACCC-3’
Ccl2 Forward 5’-GCAGCAGGTGTCCCAAAGAA-3’ Ocln Forward 5’-AGCAGCCCTCAGGTGACTGTTATT-3’

Reverse 5’-TCATTTGGTTCCGATCCAGGT-3’ Reverse 5’-ACGACGTTAACTCCTGAACAAGCA-3’
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(mean: 82.613.385; standard deviation 
(SD):18.227.130). The number of high-quality reads 
after decontamination ranged between 111.853.264 
and 47.995.678 (mean:76.078.829, SD:16.762.266). 
The number of reads mapped on the iMGMC catalog 
ranged from 88.176.658 to 37.146.184 
(mean:59.354.271; SD:13.281.256).

Microbial community and taxonomic analyses

Alpha and beta diversity, multivariate analyses, and 
differential analysis were performed using the Vegan 
package (v2.5–7) in the R statistical environment 
(3.6.1). Alpha and beta diversities and multivariate 
analyses were performed up to the strain level. 
A Non-metric MultiDimensional Scaling plot 
(NMDS) using the Bray Curtis distance was con
structed to assess beta diversity. A total of 10,000 per
mutations were performed for similarity and 
dissimilarity analysis76 and PERMANOVA. 
Differential analysis was performed separately from 
species to phylum taxonomic rank. Moreover, 
Kruskal-Wallis and Wilcoxon-Mann-Whitney tests 
were performed to highlight group effects. Statistical 
tests with p-values <0.05 were considered significant. 
The p-values were corrected using the Benjamini- 
Hochberg procedure to control for the false discovery 
rate. For differential abundance analysis, the 
R package Deseq2 v1.34.0. Taxonomic abundance 
was estimated using mOTUs v2.6.0 with default 
parameters.77 In short, mOTUs2 is based on univer
sal, reference-independent, phylogenetic marker gene 
(MG)-based operational taxonomic units (i.e., called 
mOTUs), enabling profiling of microbial species in 
shotgun sequencing data. LEfSe was used to identify 
the organisms most likely to explain differences 
between days of infection.78 LEfSe was executed in 
its Galaxy module, with an alpha value for the factor
ial Kruskal-Wallis test among classes of 0.05, and 
a threshold on the logarithmic LDA score of 2.0 * *. 
The results are visualized in a bar plot of the descend
ing LDA score per class.

Functional analysis and estimation of KOs counts 
and abundances

Functional analysis was performed using the mur
ine gut microbiome catalog, iMGMC.79 Reads were 
mapped against the 4.9 M genes of the iMGMC

catalog. Alignments were considered valid when 
the forward and reverse reads were mapped to the 
same gene catalog with the correct orientation. The 
resulting raw gene counts were normalized and 
translated into relative abundance in a sample- 
wise manner. Normalization factors were com
puted using the function calcNormFactors, with 
the trimmed mean of M-values (TMM) method 
from edgeR. TMM normalization has been shown 
to perform well on shotgun metagenomic data with 
a low false positive rate.80 Raw counts were divided 
by the product of the library size and the normal
ization factor and then by gene length (RPKM). 
Relative abundances were determined by dividing 
by the sample-wise sum of all normalized counts. 
Relative abundances of iMGMC genes were trans
lated into KOs abundances-like using the 
KofamScan results available from the iMGMC 
GitHub repository. Genes lacking KO correspon
dence were summed into a single non-annotated 
feature. KOs counts were computed similarly, but 
from raw gene counts.

Computation of KEGG modules abundances

KEGG module definitions were used to estimate 
their abundance in each sample. Briefly, KEGG 
modules are subdivided into steps, each defined as 
a sequence of AND (e.g., protein complexes) and 
OR (e.g. several KOs can perform the same reaction) 
operations. To estimate the abundance of modules 
from the rules, the AND and OR operations were 
replaced by MIN and MAX, respectively, resulting 
in a single abundance-like metric for each step. The 
pseudo-abundances of the modules were then com
puted as the mean of the abundances across all 
module steps. If more than half of a module’s steps 
harbored a null abundance, the abundance of the 
module was set to 0. To test for differential abun
dance of modules between groups, Wilcoxon and 
Kruskal-Wallis tests (R, package rstatix) were per
formed. The resulting p-values were adjusted using 
the Benjamini-Hochberg procedure.

Computation of GOmixer modules abundances for 
short-chain fatty acids

To compute the module abundances of metabolic 
pathways involved in short-chain fatty acid
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synthesis and degradation, GOmixer v1.7.5.0 (Raes 
Lab, Ghent, Belgium) was used. GOmixer is 
a human gut-specific metabolic pathway analysis 
tool (available as an online tool and downloadable 
software package at http://www.raeslab.org/ 
gomixer/). It quantifies human gut metabolic path
way modules by mapping KOs abundance on 
a database of predefined gut-specific modules. 
A module is a set of highly related enzymatic func
tions that represents a cellular process with defined 
input and output metabolites. The modules used in 
the GOmixer database were manually compiled 
based on literature searches.

Detection of inter-group varying KOs and 
aggregation at the pathway level

The KOs varying between the groups were esti
mated using the Songbird multinomial 
algorithm.81 Raw KO counts (including non- 
annotated features) were used as the inputs. 
A different model was computed for each com
bination of groups (namely D0-D7, D0-D14 and 
D7-D14 albeit we only present the results for 
the D0-D7 and D7-D14 models). KOs with 
fewer than 10 counts for any combination 
were excluded from the input table for song
birds. The parameters’ epochs“and differential- 
prior” were set to 5000 and 0.5, respectively. In 
each model, a coefficient (also called the differ
ential in GitHub) was computed for each KO. 
To present the songbird results at the pathway 
level (Figure 3(c)), 1000 KOs (25% of the 
roughly 4000 KOs) with the most extreme coef
ficients were selected in each model indepen
dently. Then, for each module, the coefficients 
of the KOs taking part were summed to obtain 
an overview of the global trend in the module. 
The modules were then grouped into categories 
according to their biological function. Thus, 
each point in the plot represents the sum of 
the coefficients in the module. The lines are 
the medians and boxes Q1 and Q3, respectively.

Metabolomic analysis

A targeted quantitative approach was implemen
ted to analyze the mouse serum samples. This 
method was based on the MxPⓇ Quant 500 kit

(Biocrates, Innsbruck, Austria) using Flow 
Injection Analysis (FIA) and LC-MS/MS. The 
assay kit enabled quantification of 630 metabo
lites. FIA was used for the semi-quantitative 
measurement of 523 hydrophobic molecules 
such as acylcarnitines. A total of 107 metabolites 
(amino acids, indoles, etc.) were measured by 
high-performance liquid chromatography. This 
technique uses isotope-labeled internal stan
dards and provides quantitative results based 
on calibration curves and rigorous quality con
trol analysis (QCs). Briefly, 10 μL of serum sam
ples were loaded onto a filter paper and dried in 
a stream of nitrogen for derivatization with 
a solution of 5% phenyl isothiocyanate. 
Subsequently, the dried residues were extracted 
with methanol containing 5 mM ammonium 
acetate. The analysis was performed on 
a QTRAP 5500 System (Sciex, Framingham, 
MA, USA) with an FIA method or coupled to 
a UFLC-20XR (Shimadzu, Kyoto, Japan) using 
a column provided in the kit. Multiple reaction 
monitoring was used for the quantification. 
MetIDQ software (Biocrates) was used to calcu
late the concentrations of individual metabolites. 
The experiments were validated using calibra
tion curves and quality-control protocols. For 
each metabolite, the peaks were quantified 
using the area under the curve. Metabolites con
taining more than 10% of missing values per 
group (< LLOQ, < LOD) were discarded. 
Missing values (one value maximum out of 
eight) were replaced with the median of the 
respective groups.

Quantification of tryptophan metabolites by LC-MS/ 
MS

An analytical protocol based on targeted LC-MS 
/MS was developed to measure tryptophan meta
bolites. The latter (with tryptophan) includes 
5-hydroxytryptophan, serotonin, kynurenin, 
3-hydroxy kynurenin, 3-hydroxy anthranilic acid, 
xantherunic acid, kynurenic acid, quinaldic acid, 
8-hydroxy quinaldic acid, anthranilic acid, indol- 
3-acetic acid, tryptamine, indole-3-lactic acid, 
5-hydroxy indole-3-acetic acid, quinolinic acid, 
picolinic acid, indole-3-carboxaldehyde, and 
indol-3-propionic acid. Serum or cecal content
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(50 µL) was mixed with 50 µL pure acetonitrile (for 
protein precipitation) containing deuterated com
pounds at 50 μ µM as an internal standard (CDN 
isotopes, Pointe-Claire, QC, Canada). The super
natant (50 µL) was then added to deionized water 
(600 µL). Ten microliters of this mixture were 
injected onto an UPLC-MS/MS system (Acquity 
TQ-XS Detector, Waters, Milford, MA) equipped 
with a C18-XB column (1.7 µm-100Å-150 × 2.1 mm 
from Phenomenex®, Torrance, USA). The ions of 
each analyzed compound were detected in positive 
ion mode using multiple reaction monitoring. The 
Masslinks software (Waters) was used for data 
acquisition and processing.

Correlation analysis

For metabolites, missing values were replaced by 
the median of the respective groups (one value 
maximum on 8). Table preparation and filtering 
of the results were conducted using Python’s 
library Pandas.82,83 The tables were then passed 
in a pairwise manner as input for Hierarchical 
All-against-All association (HAllA),84 

a framework for the calculation of pairwise cor
relation, hierarchical clustering, and the identifi
cation of densely associated blocks. For HAllA 
execution, the parameters were specified as fol
lows: Spearman similarity metric, false discovery 
rate (FDR) control using the Benjamini- 
Hochberg method with alpha 0.05, and the 
default expected false negative rate (FNR) for 
detection of densely associated blocks of 0.2. 
The heatmap-based representation hallagram 
provided by HAllA was used for the visualization. 
The associations calculated by HallA were inte
grated into a single table, filtered for an adjusted 
p-value ≤0.05, and correlation coefficient ρ ≥ | 
0.15| and visualized.

16S rRNA sequencing and gut microbiota analysis

To determine the impact of IPA and vancomycin and 
ampicillin supplementation during influenza, the gut 
microbiota’s composition was analyzed by 16S rRNA 
sequencing. Briefly, a set of 12 primers (forward) and 
3 primers (reverse) were used to amplify the V3 and 
V4 hypervariable region of the 16S rRNA gene frag
ment using an optimized 16S-amplicon-library

preparation protocol (Biomnigene, Besançon 
France). 16S rRNA gene PCR was performed using 
5 µl of 1/40 diluted genomic DNA using GoTaq® 
Rapid PCR Master Mix (Promega, Madison, WI) 
using 15 barcoded primers at final concentrations of 
0.2 μM and an annealing temperature of 55°C for 38 
cycles. The PCR products were multiplexed at equal 
concentrations and purified using a PippinHT system 
(Sage Science, Beverly, MA). Sequencing was per
formed using a 250-bp paired-end sequencing proto
col on an Illumina MiSeq platform (Illumina, San 
Diego, CA). A step of removal of low-quality reads 
from the raw paired-end reads were performed using 
Fastp. Remaining sequences were assigned to samples 
based on barcode matches using cutadapt (version 
4.4). Data were then imported in Qiime2 (2023.7) and 
forward and reverse primer sequences were removed 
using the cutadapt plugin. The sequences were 
denoized using the DADA2 method, and reads were 
classified using the GTDB database (release 214). For 
the determination of the impact of IPA supplementa
tion during influenza, a total of 449,106 paired-end 
reads were analyzed, with an average of 17,964 per 
sample (range: 6,162 to 27,728). For the determina
tion of the impact of ampicillin and vancomycin 
supplementation during influenza, a total of 225,000 
paired-end reads were analyzed, with an average of 
7,300 per sample (range: 1625 to 18,181). Beta diver
sity was computed using Qiime2. Bray Curtis-based 
PCA was performed to assess beta diversity. 
Differences between groups were tested using 
PERMANOVA analysis. Raw sequence data (effect 
of IPA) are accessible in the National Center for 
Biotechnology Information (project number 
PRJNA1054515), biosample accession numbers 
SAMN38923322 to SAMN38923345 (https://data 
view.ncbi.nlm.nih.gov/object/PRJNA1054515? 
reviewer=s9vludrl2tgbq9smpruea58tu2). Differential 
analysis was performed using the LEfSe pipeline.

Statistical analyses

For infectious markers, results are expressed as 
mean ± SD unless otherwise stated. Statistical ana
lyses were performed using GraphPad Prism v8.0.2 
and R v4.0.2 softwares. The Mann-Whitney U test 
was used to compare the two groups, unless other
wise stated. Comparisons of more than two groups 
were analyzed using the one-way ANOVA Kruskal-
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Wallis test (nonparametric), followed by Dunn’s 
posttest. *p < 0.05; ** p < 0.01, *** p < 0.001.
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