N
N

N

HAL

open science

Integrating rare genetic variants into DPYD

pharmacogenetic testing may help preventing

fluoropyrimidine-induced toxicity

Romain Larrue, Sandy Fellah, Benjamin Hennart, Naoual Sabaouni, Nihad

Boukrout, Cynthia van der Hauwaert, Clément Delage, Meyling Cheok,
Michagl Perrais, Christelle Cauffiez, et al.

» To cite this version:

Romain Larrue, Sandy Fellah, Benjamin Hennart, Naoual Sabaouni, Nihad Boukrout, et al.. Integrat-
ing rare genetic variants into DPYD pharmacogenetic testing may help preventing fluoropyrimidine-
induced toxicity. Pharmacogenomics Journal, 2024, 24 (1), pp.l.

inserm-04479823

HAL 1d: inserm-04479823
https://inserm.hal.science/inserm-04479823v1
Submitted on 27 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

10.1038/s41397-023-00322-x .


https://inserm.hal.science/inserm-04479823v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

The Pharmacogenomics Journal

ARTICLE

www.nature.com/tpj

W) Check for updates

Integrating rare genetic variants into DPYD pharmacogenetic
testing may help preventing fluoropyrimidine-induced toxicity

Romain Larrue (-2

Clement Delage?, Meyling Cheok

© The Author(s) 2023

3™ Sandy Fellah'?, Benjamin Hennart?, Naoual Sabaouni?, Nihad Boukrout', Cynthia Van der Hauwaert’,
!, Michaél Perrais', Christelle Cauffiez', Delphine Allorge

2 and Nicolas Pottier @2

Variability in genes involved in drug pharmacokinetics or drug response can be responsible for suboptimal treatment efficacy
or predispose to adverse drug reactions. In addition to common genetic variations, large-scale sequencing studies have
uncovered multiple rare genetic variants predicted to cause functional alterations in genes encoding proteins implicated in
drug metabolism, transport and response. To understand the functional importance of rare genetic variants in DPYD, a
pharmacogene whose alterations can cause severe toxicity in patients exposed to fluoropyrimidine-based regimens, massively
parallel sequencing of the exonic regions and flanking splice junctions of the DPYD gene was performed in a series of nearly
3000 patients categorized according to pre-emptive DPD enzyme activity using the dihydrouracil/uracil ([UH,]/[U]) plasma ratio
as a surrogate marker of DPD activity. Our results underscore the importance of integrating next-generation sequencing-based
pharmacogenomic interpretation into clinical decision making to minimize fluoropyrimidine-based chemotherapy toxicity

without altering treatment efficacy.

The Pharmacogenomics Journal (2024) 24:1; 1-9; https://doi.org/10.1038/s41397-023-00322-x

INTRODUCTION

An increasing number of clinically relevant association between
drug response and genomic variation has been reported over the
past years, resulting in evidence-based pharmacogenetic guide-
lines [1, 2]. For instance, the Pharmacogenomics Knowledge base
PharmGKB (https://www.pharmgkb.org) has collected and curated
information for more than 740 drugs and, to date, contains 189
clinical guidelines and 868 drug label annotations approved by
various pharmaceutical regulatory organizations such as the US
Food and Drug Administration (FDA) or the European Medicines
Agency (EMA). Nevertheless, although many patients would
benefit from pharmacogenetics-based prescription policy [3], only
limited applications are observed in clinical practice, especially in
primary care [4-7]. Indeed, genetic testing is in most cases
performed retrospectively when adverse side effects arise or when
a drug lacks efficacy. Main barriers to the implementation of
pharmacogenetics into routine clinical practice are the lack of
awareness and education of physicians and pharmacists, solid
scientific evidence of pharmacogenomic biomarkers, harmonized
and implementable pharmacogenomic guidelines and in some
instances, the absence of a dedicated infra-structure to integrate
pharmacogenetics testing into the workflow of health care
providers [6, 8]. Seminal studies have notably shown the
importance of common genetic variants affecting phase | or
phase Il enzymes in the resistance to various pharmacological
agents or the occurrence of life-threatening side effects [9].
Prominent examples include the association between common
defective TPMT alleles and the risk of hematotoxicity following

6-mercaptopurine exposure [10] or the impact of frequent specific
CYP2C19 polymorphisms on clopidogrel efficacy [11]. Never-
theless, these common genetic variants, while important, only
account for little of the inherited individual variation in drug
response and a substantial fraction of the genetically encoded
variability in drug pharmacokinetics remains to be elucidated.
Interestingly, recent large-scale studies have unveiled that more
than 90% of the genetic variability in genes associated with drug
metabolism and disposition is assigned to rare genetic variants,
but the functional impact of such rare pharmacogenetic variants
on drug response remains poorly documented.
Fluoropyrimidine-based treatment regimens are the standard
therapy for many distinct types of advanced solid tumors
including breast, colorectal as well as head and neck cancers
[12]. Nevertheless, up to 30% of patients will experience
serious adverse drug reactions such as diarrhea, stomatitis,
mucositis, myelosuppression or neurotoxicity, which can be lethal
in 0.5-1% of cases [12, 13]. Dihydropyrimidine dehydrogenase
(DPD), the initial and rate limiting enzyme involved in the
catabolism of 5-fluorouracil (5-FU), is responsible for the elimina-
tion of 80-85% of the administered dose. Plasma concentrations
of uracil ([U]), the endogenous substrate for DPD, or its product
dihydrouracil (UH,) are routinely used as a surrogate marker for
systemic DPD activity [14]. Indeed, pretreatment [U] and [UH,]/[U]
ratio are highly correlated with systemic DPD activity and many
studies have shown a relationship between fluoropyrimidine-
induced toxicity and a DPD phenotype characterized by high [U]
or low [UH,)/[U] ratio [14, 15]. However, the equipment required
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as well as the recommended pre-analytical conditions for the
measurement of [U] and [UH,] are not widely available in many
clinical laboratories [16, 17]. Therefore, implementation of alter-
native approaches such as DPYD-based pharmacogenetic assays
are convenient complementary methods to accurately predict
DPD activity [16]. Indeed, according to PharmGKB, more than 20
loss-of-function DPYD variants have been reported to alter DPD
enzymatic activity, and consequently patients harboring such
variants are exposed to an increased risk of severe toxicity when
receiving standard dose of fluoropyrimidine. For this reason,
international guidelines now recommend pre-emptive DPYD
genotyping for several clinically relevant defective variants: i.e.,
c.1905+1G>A (DPYD*2A), c.1679T>G (DPYD*13), c.2846A>T, and
Haplotype B3 (c.1236G>A or ¢.1129-5923C>G) as well as
genotype-guided prescribing recommendations [17, 18].

In this study, using Next Generation Sequencing (NGS), we
comprehensively assessed the relationship between DPYD geno-
type and DPD phenotype in a series of 2 972 patients and
identified new rare clinically relevant variants associated with DPD
deficiency. Our results also show that rare DPYD genetic variants
account for a significative part of the interindividual variability of
DPD activity. Therefore, comprehensive NGS-based genotyping
instead of candidate SNP interrogation should be considered for
the guidance of personalized fluropyrimidine therapy.

MATERIALS AND METHODS

Studied cohort

All patients included in this study were eligible for an uracil analog-based
chemotherapy (Supplementary Table S1). Only those for which both DPYD
genotype and DPD phenotype were available were included. The protocol
has been certified to be in accordance with French laws by the Institutional
Review Board of Centre Hospitalier Universitaire de Lille (France).
Genotyping analysis and DPD phenotyping were performed as described
in our local regular protocol to identify DPD-deficient patients at increased
risk of severe fluoropyrimidine-induced toxicity. However, information
regarding fluoropyrimidine toxicity was not available. All patients provided
their written informed consent for genetic analysis and to publish this
paper in accordance with institutional guidelines and the Declaration of
Helsinki and Istanbul. The DNA collection was registered by the Ministére
de I'Enseignement Supérieur et de la Recherche (Paris, France) under the
number: DC-2008-642.

DPD phenotyping

Pretreatment Plasma Uracil [U] and dihydrouracil [UH,] were quantified
using a Waters TQD UPLC"-MS/MS System (Waters Corp., Milford, MA, USA)
equipped with an electrospray ionization interface according to the
method described by Coudore et al. [19]. Data acquisition and processing
were performed using MassLynx v.4.0 software. DPD activity was
categorized as normal, partial or complete deficiency based on previous
reports using the [UH,]/[U] ratio [20-26]. Indeed, although no consensual
cut-off values for the [UH,]/[U] ratio has been established yet, a [UH,]/[U]
ratio cut-off below or equal to 10 was chosen for DPD deficiency as it has
been previously demonstrated as a good predictor of fluoropyrimidine
toxicity [15, 27]. Therefore, partial DPD deficiency was defined as [UH,]/
[U] <10 whereas complete DPD deficiency was defined as [UH,]/[U] < 1.
Alternatively, DPD activity can also be estimated by measuring [U] and a
cut-off value over or equal to 16 ug/mL is used to define partial deficiency
and over 150 pg/mL for complete deficiency [15].

DPYD genotyping

All patients gave their written informed consent for genetic testing.
Genomic DNA was extracted from peripheral blood using Chemagic Star
(Chemagen, Baesweiler, Germany) and then quantified using the
NanoDrop® spectrophotometer (ThermoFisher Scientific, Waltham, MA,
USA) according to the manufacturer’s instructions. Genomic sequence of
the DPYD gene was retrieved from the NCBI website and the Reference
Sequence NG_008807.2 was subsequently used. Primers were designed
to include all exonic regions and at least 30 bp of each flanking intron
using Fluidigm D3™ assay design web-based tool. A total of 64 unique
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Table 1. Number of patients according to the uracil plasma
concentration ([U]) and the dihydrouracil/uracil (([UH,]/[U])
plasma ratio.

Phenotype [U] < 16 ng/mL [U]= 16 ng/mL
[UH,]/[U] > 10 2344 48
[UH,)/[U] <10 466 114

primer pairs were created and are listed in Supplementary Table S2.
Custom-designed primer pairs to target DPYD exonic regions and
exon-intron boundaries were designed and optimized for the Fluidigm
Access Array (Fluidigm, South San Francisco, CA, USA). Amplification of
genomic DNA was performed in up to 10-plex PCR reaction wells,
followed by addition of barcode indexes and sequencing adaptors by
further PCR according to manufacturer’s instructions. Pooled amplicons
were harvested and diluted to prepare unidirectional libraries for 150
base-pair (bp) paired-end sequencing on lllumina MiSeq sequencing
platform (lllumina, San Diego, CA, USA). lllumina NGS reads were
trimmed for base Phred quality control (mean quality in a 30 bp sliding
window >20 and 3’ base quality >6) and aligned with Burrows-Wheeler
Aligner (v0.6.1-r112-master) on hg19 human genome reference
sequence. Variant-calling was achieved using MiSeq Reporter v2.6, GATK
v3.7 or GATK v4.1.4.0 (Genome Analysis Toolkit) [28] without down-
sampling or removal of PCR duplicates; variants with quality/depth < 5 or
depth <30 were filtered. All very rare (MAF <0.1%) and novel variants
identified by NGS analysis were validated by Sanger sequencing (Table
S2). The functional consequences of each variant were estimated by in
silico analysis, using bioinformatic prediction tools such as SIFT,
PolyPhen-2 or CADD and on the basis of the ACMG classification.

Statistical analyses

Sample size was chosen empirically based on our previous experiences in
the calculation of experimental variability; no statistical method was used
to predetermine sample size and no samples or data points were excluded
from the reported analyses. Data are described as the medians + standard
deviations, or n (%). Since [U] and [UH,]/[U] values were not normally
distributed, non-parametric tests were performed. Allelic frequencies and
genotype distribution were estimated by gene counting and tested for
Hardy-Weinberg equilibrium. For the comparison of proportions and to
evaluate the Hardy-Weinberg equilibrium, we used the chi-square test. As
in most cases, a low number of individuals carries the alternate allele
homozygote, the influence of the genotypes on DPD activity was assessed
by clustering genotypes into a dominant inheritance model. Then,
genotypes were compared using non parametric Mann-Whitney and
Kruskal-Wallis tests. The level of significance was set at p <0.05. All
analyses were two-sided. Statistical analyses were performed using Prism®
5.0 (GraphPad) and JMP (SAS) software.

RESULTS

Inter-individual variability of pretherapeutic DPD enzyme
activity

This retrospective study included 2972 subjects. Mean patient
age was 65+11 years, and the sex ratio (M/F) was 1.2
(Supplementary Table S1). Using a cut-off value below or equal
to 10 for the [UH,]/[U] ratio, 580 patients (19.7%) were
categorized with partial DPD deficiency, whereas no patient
exhibited complete DPD deficiency. Mean age did not sig-
nificantly differ between the partial DPD deficiency group and
the normal DPD group (Supplementary Table S1). Overall, [U]
and [UH,]/[U] values identified 628 patients (21.1%) with DPD
deficiency, but these parameters were in agreement in only 114
(18.2%) patients (Table 1). Indeed, 466 (15.7%) patients
presented [UH,]/[U1<10 and [Ul<16ng/mL, and 48 (1.6%)
presented [UH,l/[U]>10 and [U] =16ng/mL (Table 1). The
[UH,1/[U] level below which [U] values were all = 16 ng/mL was
4.6, and the [U] level above which [UH,]/[U] values were all <10
was 49 ng/mL, suggesting that a better agreement between
[UH,)/[U] and [U] values to identify DPD deficiency would
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require the use of more restrictive thresholds. Based on these
results, the current cut-off values for [U] and [UH,]/[U] do not
identify DPD deficiency in an equivalent manner, and a [UH,]/[U]
ratio < 10 yields a higher proportion of individuals classified with
partial DPD deficiency than [U] levels > 16 ng/mL.

Genetic variants identified in DPYD

The group of patients with partial DPD deficiency represented a
total of 580 patients, including 134 wild-type patients (DPYD*1/
*1) and 446 patients harboring at least one genetic variant (208
patients carried one genetic variant and 238 patients more than
one). Overall, genetic variants identified in patients with partial
DPD deficiency represent a total of 809 variants. The remaining
2392 patients exhibiting normal DPD activity include 623 wild-
type patients (DPYD*1/*1) and 1769 mutated patients in which a
total of 3183 genetic variants were identified (831 carrying a
single genetic variant and 938 carrying more than one). The
mean coverage (read depth) of the identified genetic variants
was 1130 (range: 33-4995) for the group of patients with DPD
partial deficiency and 1131 (range: 33-7612) for group of
patients whose phenotype was unaltered. 30 distinct genetic
variants were identified in the group of patients exhibiting
partial DPD deficiency (29 single nucleotide polymorphisms and
one indel). Among these genetic variants, 23% (7/30) were
common (MAF = 1%) and 77% (23/30) were considered as rare
/very rare or novel (MAF < 1%), and among these, 58% (13/23)
were classified as deleterious according to variant effect
prediction algorithms (Table 2). In addition, the majority of
variants were missense (77%; 23/30), one was non-sense, one
was categorized as indel and two were located in canonical
splice sites. Among the remaining variants, 10% (3/30) were
synonymous. In the group of patients exhibiting a normal DPD
phenotype, 58 unique genetic variants were identified including
56 single nucleotide polymorphisms and two indel. 12% (7/58)
were common whereas 88% (51/58) were considered as rare/
very rare or novel (MAF < 1%) including 35% (18/51) classified as
deleterious by functional prediction algorithms. In addition, the
majority of variants were missense (55%, 32/58), two were non
sense and six were located in canonical splice sites. Among the
remaining variants, 29% (17/58) were synonymous and 2% (1/
58) were located in the UTR (Untranslated Regions). All rare
genetic variants were heterozygous. Hardy-Weinberg equili-
brium for each common and rare variant and allelic frequencies
are reported in Supplementary Table S3. As the French law of
information and freedom prohibits to collect information on
ethnicity, it was thus impossible to provide data frequency
according to patient ancestry. We thus made the assumption
that our population was mainly European (Supplementary
Table S3).

Association between the most clinically relevant DPYD
defective variants and DPD deficiency

Dose adjustment based on pretreatment screening for the most
clinically relevant DPYD defective variants, ie. c.1679T>G
(DPYD*13, rs55886062), c.1905+1G>A (DPYD*2A, rs3918290) and
C.2846A>T (p.Asp949Val or rs67376798), has been shown to
improve the safety of chemotherapy regimens based on
fluorouracil [29]. Accordingly, international recommendations
now provide indications for drug-related genetic tests and DPYD
genotype-guided dosing in routine clinical practice [17, 18]. As
expected, our data showed a significant association between each
of these genetic variants and low DPD activity (Fig. 1).

Association between common DPYD genetic variants and DPD
deficiency

The association between common DPYD genetic variants (MAF >
1%) and DPD activity is summarized in Fig. 2. Among the seven
genetic variants identified, three variants (c.1236G>A or
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1s56038477 p.Glu412Glu ; c.496A>G or rs2297595 p.Met166Val;
DPYD*6 c.2194G>A or rs1801160 p.Val732lle) were significantly
more frequent in the group of patients exhibiting partial DPD
deficiency. Consistent with previous reports, the c.1236G>A
(rs56038477) which is included in the risk haplotype B3 was
significantly associated with low DPD activity [30, 31]. Never-
theless, compared to the most clinically relevant DPYD defective
variants, the association of these three variants with DPD activity
was rather modest (Fig. 2).

Association between rare, very rare and novel DPYD genetic
variants and DPD deficiency

The list of frequent (MAF > 1%), rare (MAF < 1%) and very rare
(MAF < 0.1%) variants identified in the DPYD gene in the whole
cohort is summarized in Table 2. The number of patients in each
group is summarized in Fig. 3A. Variants with a MAF below 1%
were found to be enriched in patients exhibiting low DPD
activity (9.3% versus 3.2% ; P < 0.00001) (Fig. 3B). This remained
significant when excluding the rare clinically relevant DPYD
defective variants (4.5% versus 2.6% ; P<0.03). As many rare
variants are likely to have little to no impact on DPD activity, a
similar analysis including variants with a MAF below 1% and a
putative deleterious impact on DPYD function according to
CADD score (threshold above 15) was performed after exclud-
ing the rare clinically relevant DPYD defective variants. Indeed, a
CADD score above 15 has been previously shown as a good
prediction tool for pharmacogenetic variants [32]. Not surpris-
ingly, these were more common in the group of patients with
low DPD activity (4.2% versus 1.6% ; P < 0.001) (Fig. 3C). Overall,
our results indicate that rare DPYD genetic variants account for
a significative part of the interindividual variability of DPD
activity.

DISCUSSION

Innovative and collaborative research efforts over the last
decades have substantially improved our understanding of the
role played by inherited genetic changes on the interindividual
variability in drug efficacy or toxicity [33]. Large scale sequen-
cing studies have notably shown that single-nucleotide variants
are the most common form of protein-altering “functional
variants” identified among genes relevant to the drug pharma-
cokinetics and pharmacodynamics, also known as pharmaco-
genes [33, 34]. Of particular interest, results from these studies
have also revealed that rare genetic variants account for a
substantial part of the unexplained interindividual differences in
drug response, but their exact contribution on drug pharmaco-
kinetics has not been systematically evaluated and remains thus
poorly understood [33-36]. In this study, we focused on
dihydropyrimidine dehydrogenase, a key enzyme in the meta-
bolic catabolism of the chemotherapeutic agent 5-FU or its
prodrugs, whose complete deficiency is associated with
impaired clearance of 5-FU, excessive drug accumulation and
severe toxicity.

Various genotyping and phenotyping approaches have been
developed to assess DPD deficiency in order to reduce the
incidence of severe toxicity without affecting treatment efficacy
by dose tailoring fluoropyrimidine-based therapy. Although
various uracil-based methods are routinely used in various
countries to predict DPD deficiency, clinical relevance of
pretreatment DPD phenotyping by these assays remains
controversial [30]. Indeed, optimal cutoff levels that predict
toxicity have not been validated yet and previous studies have
shown extensive variability in uracil measurements when
different cohorts were compared [12, 18, 37, 38]. In line with
this, de With et al. [39]. very recently raised important issues
against the utility of uracil-based assays in clinical practice
given the large inter-center variability observed in measured
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Fig. 1 Association between the most clinically relevant DPYD

defective rare variants and DPD deficiency. Box plot showing DPD
pretreatment activity assessed by the dihydrouracil/uracil ([UH,1/[U])
plasma ratio according to the patient genotype. The box represents
the 25-75% quartiles, the line in the box represents the median,
whiskers represent the range. The red dash line indicates the ratio
threshold used to categorize patients as having partial DPD
deficiency (ratio <10) or normal DPD activity (ratio>10). n = number
of patients; ***P < 0.001; ****P < 0.0001.

pretreatment uracil levels. By contrast, the clinical validity of
genotype-based approaches has been established in multiple
metaanalyses as well as in large prospective studies [39, 40].
Results from these studies have in particular shown that
prediction of DPD enzyme activity by molecular genetic testing
in routine clinical practice is a reliable method that not only
significantly improves patient safety but is also cost-effective
[41]. Consequently, clinical practice guidelines now recommend
pre-emptive DPYD genotyping especially in Europe, where
these four DPYD deficient alleles are relatively common in
individuals of Caucasian ancestry [42]. Nevertheless, even using
this strategy, prediction of fluoropyrimidine-induced toxicity
remains suboptimal to detect all patients at risk of toxicity [43].
In this context, we aimed to assess whether rare genetic
variants significantly contribute to the large interindividual
variability of DPD enzyme characterizing a series of about 3 000
patients using new sequencing technologies.

Next Generation Sequencing (NGS) refers to a wide range of
technologies enabling rapid and high-throughput sequencing
of DNA [44]. In recent years, NGS has been successfully used to
comprehensively interrogate the entire spectrum of genomic
variations in pharmacogenes including rare variants [33]. In line
with this, we applied an NGS-based approach to capture rare
and common genetic variations located either in the coding
sequence of the DPYD gene or its flanking intronic regions.
Specifically, our results confirmed the strong impact of the
three clinically rare variants. Additionally, although a significant
association between DPD activity and three common known
variants including Haplotype B3 was also shown in our
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Fig. 2 Association between common DPYD genetic variants and
DPD deficiency. Box plot showing DPD pretreatment activity
assessed by the dihydrouracil/uracil ([UH,1/[U]) plasma ratio accord-
ing to the patient genotype. The hapB3 haplotype is represented in
yellow whereas the other common variants are in green. The box
represents the 25-75% quartiles, the line in the box represents the
median, whiskers represent the range. The red dash line indicates
the ratio threshold used to categorize patients as having partial DPD
deficiency (ratio <10) or normal DPD activity (ratio >10). n = number
of patients, ns = non-significant; *P < 0.05, **P < 0.01.

large series of patients, their modest effect on DPD activity
raises the question of their clinical relevance. Therefore,
we suggest additional studies to clarify their use in prospective
DPYD genotyping, especially as our study may be biased by
several confounding factors. Of particular interest, our results
also showed the importance of considering rare DPYD genetic
variants to predict the risk of 5-FU toxicity. This is in agreement
with results from sequencing data established in large
distinct populations, which showed that the vast majority of
variants among pharmacogenes are rare (MAF < 1%) or very
rare (MAF < 0.1%) and non-synonymous, with an estimated 30-
40% of functional variability likely attributed to these rare
variants [45]. For example, resequencing of 202 drug target
genes in about 14 000 individuals showed that more than 95%
of the identified variants had a MAF below 0.5% and that 90%
of those were not known [46]. In light of our results, we suggest
that additional studies should be performed to assess the
association between rare DPYD genetic variants and fluoropyr-
imidine toxicity. This point is indeed of importance and
represents one limitation of our study, as we could only assess
the relationship between rare genetic variants and DPD
activity.

In conclusion, our results strongly suggest that integrating rare
genetic variants into routine pharmacogenetic testing can
significantly improve the prediction of DPD enzyme activity.
Therefore, we advocate that pre-emptive screening of DPD
deficiency should be based on a more comprehensive genotyping
approach, combined with phenotyping strategies, to ensure the
safe administration of fluoropyrimidines.
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variant - ;
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Fig. 3 Association between DPYD genetic variant frequency and pretreatment DPD activity. (A) Flow chart showing the distribution of all
identified DPYD genetic variants according to the minor allele frequency (MAF) in the groups of partial DPD deficiency ([UH,]/[U] plasma ratio
below or equal to 10) and normal DPD activity ([UH,)/[U] plasma ratio above 10) (humber of patients are reported) (B) Distribution of DPYD
genetic variants based on minor allele frequency (MAF) below 1% according to pretreatment DPD activity (number of patients and
percentage are reported). (C) Distribution of the DPYD genetic variants with a MAF below 1% and predicted to impact DPD activity (CADD
score > 15) in the group of patients exhibiting normal or low DPD activity (number of patients and percentage are reported).
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