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DEEP LEARNING-BASED NOISE REDUCTION PRESERVES QUANTITATIVE 

MRI BIOMARKERS IN PATIENTS WITH BRAIN TUMORS 

 

Abstract  

 

The use of relaxometry and Diffusion-Tensor Imaging sequences for brain tumor assessment 

is limited by their long acquisition time. We aim to test the effect of a denoising algorithm 

based on a Deep Learning Reconstruction (DLR) technique on quantitative MRI parameters 

while reducing scan time. In 22 consecutive patients with brain tumors, DLR applied to fast 

and noisy MR sequences preserves the mean values of quantitative parameters (Fractional 

anisotropy, mean Diffusivity, T1 and T2-relaxation time) and produces maps with higher 

structural similarity compared to long duration sequences. This could promote wider use of 

these biomarkers in clinical setting.  
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Abbreviations 

 

AiCE: Advanced intelligent Clear IQ-Engine  

DLR: denoising approach using Deep Learning-based Reconstruction 

DTI: Diffusion-Tensor Imaging  

FA: Fractional Anisotropy  

FLAIR: Fluid-Attenuated Inversion Recovery 

MAD: Mean Absolute Deviation 

MD: Mean Diffusivity  

MPRAGE: Magnetization Prepared Rapid Acquisition Gradient Echo 

MP2RAGE: Magnetization Prepared 2 Rapid Acquisition Gradient Echoes 

MRI: Magnetic Resonance Imaging  

NAQ: Number of Acquisitions 

RT: Relaxation Time 

ROI: Region-Of-Interest 

SD: Standard Deviation  

SSIM: Structural Similarity Index Measure 
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Introduction  

 

Multiparametric MRI is used to characterize brain tumors.1,2 Advanced techniques, 

like relaxometry and Diffusion-Tensor Imaging (DTI), provide quantitative biomarkers that 

may help brain tumor characterization, gradation, and molecular subtype classification.1,3–5 

Moreover, T2-mapping may improve the delineation of the actual tumor margins beyond 

maximal visible T2/FLAIR signal changes in diffuse gliomas.6 However, the additional 

acquisition time reduces the acceptance of relaxometry and DTI in routine. 

Exceptional progress have been achieved in artificial intelligence and its 

application to neuroimaging, holding promises for optimization of image 

acquisition.7 Denoising using deep learning algorithms during reconstruction improves 

image quality or compensates for the degradation induced by acquisition acceleration.8–14 The 

denoising approach using Deep Learning Reconstruction (DLR), marketed by various 

manufacturers, is based on the detection of the noise’s profile to remove it. DLR 

commercialized as Advanced Intelligent Clear IQ-Engine (AiCE), can potentially be 

applied to various MR sequences as it is independent of the scan type.15 However, its 

effect on multiparametric quantitative MRI is uncertain, since it has been trained on 

conventional T1 and T2-weighted images in healthy volunteers. In phantoms and healthy 

controls, DLR drastically reduced image noise and generated MR brain image (FLAIR, 

T2 and 3D-T1) with sufficient quality to evaluate fine anatomic details in short 

acquisition time.15 DLR was also shown to provide reliable diffusion parameters while 

reducing acquisition time in patients without active brain lesions or with prostate cancer.16,17 

The benefit on other metrics and its feasibility in patients with brain tumors are unknown.  

We hypothesized that DLR would preserve quantitative measurements. We 

therefore compared mean values of fractional anisotropy [FA], mean diffusivity [MD], 

T1 and T2-Relaxation Times [RT] derived from fast and noisy MR sequences denoised 
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with DLR to those of longer sequences without DLR, used as a reference, in patients 

with brain tumors. Compared to a short non-DLR sequence, we also verified that DLR 

reduced the standard deviation (SD) of MR parameters and had higher structural 

similarity index measure (SSIM) with respect to the reference sequence.  

 

Material and Methods 

 

Patients 

 

This prospective study was approved by the ethical committee (NCT05618990) and 

patients gave their written informed consent. From April to June 2021, 22 patients with a 

known or suspected brain tumor were included (Table 1). All were naïve of any oncological 

treatment. The final diagnosis was based on histomolecular analyses when available, or on all 

clinical and imaging information. 

 

MRI acquisition 

 

Before inclusion, all patients had a clinical 3T MRI (GE Healthcare, MR 750) using a 

standardized brain tumor protocol. For this study, additional scans were performed on a 3T 

MRI (Vantage Galan 3T/XGO; Canon Medical Systems) with a 32-channel head coil (Table 

2): 3D T1-magnetization prepared rapid acquisition gradient echo (MPRAGE) for intra-

subject registration; DTI using a single-shot echo-planar imaging sequence with gradients 

applied in 30 directions and phase-encode blip with opposite polarity for susceptibility-

induced distortions correction;  3D T1-magnetization prepared 2 rapid acquisition gradient 

echoes (MP2RAGE) to generate T1-RT maps;  2D T2-fast spin echo sequence to generate T2-
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RT maps. Each quantitative sequences were acquired twice: number of acquisitions equal to 

one (NAQ1, duration≈3min) and equal to three (NAQ3, duration≈9min). NAQ3 served 

as ground truth data for the mean values of quantitative parameters. All sequences were 

acquired without reconstruction filter.  

 

Denoising 

 

NAQ1 data were reconstructed using the vendor-supplied DLR algorithm (AiCE, 

Canon Medical Systems) and termed DLR-NAQ1. Briefly, DLR is a convolutional neural 

network aimed for denoising after learning various noise characteristics using training pairs of 

different noise level images and the corresponding ground-truth images from healthy 

volunteers. Separation of the data in different frequency components using a discrete cosin 

transform maintains the image contrast regardless of the scan type during the process.15,16  

The DLR tools allow to set a denoising level with a blending factor and an edge 

enhancement step. The latter, based on an “unsharp mask”, was not applied to minimize the 

risk of modifying quantitative values at image boundaries. The denoising level was gradually 

increased and final settings determined visually, based on the delineation of the basal ganglia 

and the contrast between cortex and white matter.15,16 The blending factor weighted the 

denoised image with the raw one, aiming to obtain a final output matching clinical 

preferences. The DLR settings are described in Table 2. 

 

Data preparation 

 

T1 and T2-RT maps were generated using the NOVA+ tool (OLEA SPHERE 3.0). 

Data were post-processed using FMRIB Software Library 
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(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki).18 From the pairs of DTI data collected with lrsed phase-

encode blips, the susceptibility-induced off-resonance field was estimated and the two images 

were combined into a single corrected one using topup. Outputs were corrected for eddy 

current and motion-distortions using eddy. FA and MD were computed using the dtifit 

command. The parametric maps (FA, MD, T1 and T2-RT maps) were co-registered onto the 

3D-anatomical scan of each patient using a 3D rigid-registration via FLIRT. 

 

Quantitative biomarkers  

 

Using Mango (http://ric.uthscsa.edu/mango/), regions-of-interest (ROIs) were 

positioned on the anatomical images in the following normal brain areas: cortex and white 

matter of frontal and parietal lobes as well as the putamen. Spherical ROIs (mean, 85 mm3) 

were placed respectively in the enhanced or central portion of the tumor (when enhancement 

was lacking) and the peritumoral edema or at the periphery of the lesion when homogeneous. 

ROIs were copied on the co-registered parametric maps to extract mean ± SD of FA, MD, T1 

and T2-RT values for NAQ1, DLR-NAQ1 and NAQ3 images. 

 

Denoising performance 

 

The SSIM index shows the similarity of signal intensity, contrast and structure of 

each local region, to the reference NAQ3 maps. If denoising is efficient, SSIM increases 

indicating that the NAQ1-DLR maps share more similarity with the reference NAQ3 

than NAQ1. Hence, we computed SSIM with respect to NAQ3 reference for NAQ1 and 

DLR-NAQ1 on each map.  
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Statistical analysis 

 

The effect of the three acquisition-reconstruction methods on the mean and SD of 

quantitative MR parameters across ROI locations was assessed using a factorial design with 

repeated measures. Mean and SD for FA, MD, T1 and T2-RT were considered independent 

for the analyses. Since the mean and SD were not normally distributed, we performed an 

aligned rank transformation, then fitted a multilevel regression model to account for within-

subject repetition.19,20 First, interaction between the two main factors (acquisition-

reconstruction methods; ROI locations) and their main effect were determined. Relevant post-

hoc analyses for significant main effects were performed using pairwise comparisons with 

Hommel correction.21 SSIM were compared using Wilcoxon signed-rank test. Results are 

expressed using median and mean absolute deviation (MAD). P-values were two-sided and 

p<0.05 considered significant.  

 

Results  

 

A total of 22 patients (11 women; mean age 56±14 years) were enrolled. Fig. 1 

shows representative images calculated from NAQ1, DLR-NAQ1 and NAQ3.  

The effect of DLR denoising on SSIM was significant for all maps, with DLR-

NAQ1 being more similar to NAQ3 than NAQ1 (Table 3).  

There was no significant interaction between acquisition-reconstruction methods and 

ROI location for both mean and SD of all studied parameters, except for FA. Leave-one out 

analysis identified the putamen ROI as driving this interaction. FA values were thus analysed 

separately for putamen and other ROIs.  
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The main effect of ROI locations on pooled acquisition-reconstruction methods was 

significant for mean of all quantitative parameters (Supplementary Fig. S1). They differed 

between brain areas, as expected.22–24 For instance, mean FA were higher in healthy white 

matter than in cortex and T2-RT were higher in tumor than in healthy brain.  

Results are presented for each parameter as median ± MAD (Table 4), with 

pooled ROIs across all locations (apart from FA in the putamen) to focus on the main 

effect of acquisition-reconstruction methods. 

 

FA values (Fig. 2-3) 

 

Mean values were significantly higher in NAQ1 than in DLR-NAQ1 or NAQ3 but did 

not differ between DLR-NAQ1 and NAQ3. SDs were significantly higher in NAQ1 than in 

DLR-NAQ1 or NAQ3 SD was significantly lower in DLR-NAQ1 than in NAQ3.  

Putamen ROIs presented similar effects for mean FA, the interaction emerging from a 

wider difference between NAQ1 and DLR-NAQ1 or NAQ3. However, for putamen ROIs, 

SDs in NAQ1 were not significantly different than in DLR-NAQ1 but were higher than in 

NAQ3. SDs were not significantly different in DLR-NAQ1 compared to NAQ3. 

 

MD values (Fig. 4) 

 

Mean values were not significantly different between NAQ1, DLR-NAQ1 and NAQ3. 

SDs were significantly higher in NAQ1 compared with DLR-NAQ1 or NAQ3. SDs were 

significantly lower in DLR-NAQ1 compared to NAQ3.  

 

T1-RT (Fig. 5) 
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Mean values were not significantly different between NAQ1, DLR-NAQ1 and NAQ3. 

SDs were significantly higher in NAQ1 compared with DLR-NAQ1 or NAQ3 but did not 

significantly differ between DLR-NAQ1 and NAQ3. 

 

T2-RT (Fig. 6) 

 

Mean values were not significantly different between NAQ1, DLR-NAQ1 and NAQ3. 

SDs were significantly higher in NAQ1 compared with DLR-NAQ1 or NAQ3 but did not 

significantly differ between DLR-NAQ1 and NAQ3. 

 

Discussion 

 

In a series of 22 consecutive patients with brain tumors, DLR applied to fast and noisy 

quantitative MR sequences preserved mean values of parameters (FA, MD, T1 and T2-

RT) as compared to long duration sequences.  

In line with others, we confirm that DLR does not have adverse effect on the mean 

value of MD17,25 and expand this result to FA and relaxometry. Our findings suggest that 

DLR applied to short sequences could replace long duration acquisitions, given the high 

similarity with the NAQ3 reference maps.  

As expected denoising using DLR decreases SD of most parameters, compared to 

the same non-DLR short sequence. Regarding FA and MD, SDs were smaller in DLR-

NAQ1 than in NAQ3. This unexpected finding might be explained by a stronger noise 

reduction using DLR than using increase signal average as done in NAQ3. It might also 

be due to increased motion artifacts with the longer NAQ3 images that were obtained 
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after NAQ1. However, findings were consistent for all parameters, although sequences 

were always acquired in the same order, suggesting that motion artifacts did not play a 

major role. Overall, the SD reduction we observed reflects noise reduction and likely 

translates into an improvement of quantitative parameters. However, denoising could 

remove physiological variability and attenuate clinically relevant variations. This is 

unlikely because structural similarity to the NAQ3 reference was higher on quantitative 

maps after DLR denoising.  

One could argue that a sequence with short duration without DLR could be sufficient 

to obtain clinical usable values. We, however, found higher FA values with the noisy NAQ1 

sequence compared to those with DLR and the reference sequence, whereas MD values were 

similar. This is not unexpected given that the estimation of eigenvectors is function of signal-

to-noise ratio: increasing λ1 and concurrently decreasing λ3 at low signal-to-noise ratio 

accounts for an upward FA bias. Conversely, as the biases in λ1 and λ3 offset each other, MD 

values remain stable.26 The low signal-to-noise ratio in deep brain region with higher iron 

load and distant to the receiver coil might also explain the variability of FA in the putamen, 

requiring specific adjustments of the denoising level.16 Importantly, the effect of DLR could 

be greater when applied to noisier sequences than the ones understudy. Gradual 

undersampling of MR sequence will help determining to which extent duration can be 

reduced while preserving quantitative values with DLR. 

Our study has limitations. The study sample was small. MRI data and DLR method 

were from a single vendor, precluding generalization. The denoising level was 

determined empirically so may not be optimal. Further studies focused on a comprehensive 

compromise offered by DLR applied to quantitative MRI are needed.  

DLR applied to fast quantitative MR sequences does not have an adverse effect 

on derived quantitative biomarkers in patients with brain tumors. In the context of the ever-
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increasing throughput expectations of radiology departments, reduction of scan time can 

facilitate wider use of techniques that could help with tumor characterization, such as 

relaxometry and DTI.  
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Fig. 1. 65-year-old male with a right occipito-parietal high-grade glioma. Top row: 

Conventional sequences showing the enhancing portion of the tumor on T1-W after 

Gadolinium injection surrounded by peri-tumoral oedema and tumoral infiltration on 

FLAIR. From top to bottom: representative T1, T2, MD and FA maps reconstructed from 

NAQ1, DLR-NAQ1 and NAQ3. FA is displayed as diffusion encoded-color map. DLR: 

denoising approach using Deep Learning Reconstruction; MD: Mean Diffusivity; FA: 

Fractional Anisotropy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  

Fig. 2. Violin plots comparing FA across the different acquisition-reconstruction methods on 

pooled ROI locations. The Y-axis represents the mean FA (left panel) and the SDs (right 

panel) respectively. The middle, upper and lower horizontal bars represent respectively the 

median, lower and upper quartile. Note that the putamen ROI has been removed considering 

the significant interaction effect between the ROI location and acquisition-reconstruction 

methods for FA. AU: Arbitrary Units; DLR: denoising approach using Deep Learning 

Reconstruction; FA: Fractional Anisotropy; MD: Mean Diffusivity; NAQ: Number of 

Acquisitions; *p<0.05; **p<0.01; ***p<0.001. 

 

 

 

 

 

 



 

 

Fig. 3. Interaction plot for mean (a) and SD (b) of FA values, with respect to acquisition-

reconstruction method and ROI location. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Fig. 4. Violin plots comparing MD values (x 10-3mm2/s) across the different acquisition-

reconstruction methods on pooled ROI locations. The Y-axis represents the mean MD (left 

panel) and the SDs (right panel) respectively. The middle, upper and lower horizontal bars 

represent respectively the median, lower and upper quartile. DLR: denoising approach using 

Deep Learning Reconstruction; MD: Mean Diffusivity; NAQ: Number of Acquisitions; 

*p<0.05; ***p<0.001. 

 



 

Fig. 5. Violin plots comparing T1 (ms) across the different acquisition-reconstruction 

methods on pooled ROI locations. The Y-axis represents the mean T1 (left panel) and the SDs 

(right panel) respectively. The middle, upper and lower horizontal bars represent respectively 

the median, lower and upper quartile. DLR: denoising approach using Deep Learning 

Reconstruction; NAQ: number of acquisitions; **p<0.01; ***p<0.001. 

 

 

 

 

 

 

 

 

 



 

Fig. 6. Violin plots comparing T2 values (ms) across the different acquisition-reconstruction 

methods on pooled ROI locations. The Y-axis represents the mean T2 (left panel) and the SDs 

(right panel) respectively. The middle, upper and lower horizontal bars represent respectively 

the median, lower and upper quartile. DLR: denoising approach using Deep Learning 

Reconstruction; NAQ: number of acquisitions; ***p<0.001. 

 



Table 1  

Characteristics of the studied population.  

Characteristics Findings 

Participants, number 22 

Sex (male/female) 11 / 11 

Age (years ± SD) 55.9 ± 14.1 

Lesion type (number of patients) 

Metastasis 

Lung cancer 

Melanoma 

Colorectal cancer 

Breast cancer 

High grade glioma 

Low grade glioma 

DNET 

Lymphoma 

Pseudo tumor  

 

7 

3 

2 

1 

1 

9 

2 

2 

1 

1 

DNET: Dysembryoplastic Neuroepithelial Tumor; Pseudo tumor: toxoplasmosis 
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Table 2  

MR acquisition and DLR parameters. 

Parameters MPRAGE DTI MP2RAGE FSE 

Related images T1-WI Diffusion T1-RT maps T2-RT maps 

Acq. plane 3D 3D 3D 2D 

Coverage Whole brain Whole brain Tumor-centered Tumor-centered 

Image matrix  256×256 120×112 320×448 320×448 

FOV (mm) 256×256 235×219 230×230 230×230 

Slice thickness (mm) 1 2 2.5 2 

Voxel size (mm) 1x1x1 01.95×1.95×2 0.71×0.51×2.5 0.71×0.51×2 

Slice gap (mm) 0 0 0 0.5 

Slices  160 70 29 29 

TR (ms) 6.5 5207 7.5 6043 

TE (ms) 3.0 85 3.3 20/60/100/140 

TI (ms) 950 NA 664/3300 NA 

Intershot (s) 2.5 NA 7 NA 

Flip angle (degree) 9 90 8/9 90 

b values (mm2/s) NA 0/1000 NA NA 

Diffusion directions 

(number) 

NA 30 NA NA 

SPEEDER  

    Phase encoding 

    Slice encoding 

 

1.8 

1.5 

 

2 

NA 

 

2 

1.4 

 

2.5 

NA 

Multi-band NA 2 NA NA 

Number of acq.  1 1/3 1/3 1/3 



Scanning time 

    NAQ1 

    NAQ3 

 

5min 20sec  

NA 

 

2min 58sec 

8min 52sec 

 

3min 09sec 

9min 27sec 

 

2min 44sec 

7min 58sec 

DLR (on NAQ1) 

    Denoising level 

    Blending factor 

 

NA 

NA 

 

9 

0.3 

 

1.5 

0 

 

9 

0.5 

DLR: denoising approach using Deep Learning Reconstruction; DTI: Diffusion Tensor 

Imaging; FOV: Field Of View; FSE: T2-Fast Spin Echo; MPRAGE: T1-Magnetization 

Prepared Rapid Acquisition Gradient Echoes; MP2RAGE: T1-Magnetization Prepared 2 

Rapid Acquisition Gradient Echoes; Multi-band: simultaneous multi-slice imaging; NA: Not 

Applicable; RT: Relaxation Time; TE: Echo Time; TI: Inversion Time; TR: Repetition Time; 

SPEEDER: acceleration factors of in-plane parallel imaging; WI: Weighted-Images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3 

Structural Similarity Index (SSIM) values using NAQ3 as a reference (median ± MAD) 

and results of Wilcoxon signed rank test.  

Parameter maps NAQ1 NAQ1-DLR P-value* 

T1-RT 0.927 ± 0.055 0.932 ± 0.048 0.03 

T2-RT 0.924 ± 0.025 0.938 ± 0.019 4.77 10-7 

FA 0.764 ± 0.033 0.772 ± 0.026 0.01 

MD 0.908 ± 0.021 0.920 ± 0.015 4.77 10-7 

*Wilcoxon signed rank test 

DLR: denoising approach using Deep Learning Reconstruction; FA: Fractional 

Anisotropy; MD: Mean Diffusivity; NAQ: number of acquisitions; T1-RT: T1-

Relaxation Time; T2-RT: T2-Relaxation Time 

 



Table 4 

Mean and SD values of each parameter across the different acquisition-reconstruction methods. 

 Variables Mean SD 

Acq. Reconstruction  NAQ1 DLR-NAQ1 NAQ3 NAQ1 DLR-NAQ1 NAQ3 

FA (excluding Putamen) 0.199 ± 0.095 0.171 ± 0.089 0.175 ± 0.097 0.038 ± 0.019 0.030 ± 0.015 0.032 ± 0.018 

FA (in the Putamen) 0.260 ± 0.034 0.213 ± 0.040 0.191 ± 0.039 0.057 ± 0.016 0.047 ± 0.012 0.037 ± 0.007 

MD 0.862 ± 0.152 0.847 ± 0.166 0.847 ± 0.147 0.061 ± 0.030 0.041 ± 0.023 0.048 ± 0.025 

T1-RT 1484 ± 555 1467 ± 550 1462 ± 536 85.2 ± 60.6 74.6 ± 53.7 74.3 ± 61.3 

T2-RT 98.1 ± 4.5 95.7 ± 24.0 96.5 ± 23.4 8.27 ± 5.14 5.71 ± 4.50 6.59 ± 4.34 

Results are presented as median ± MAD. FA is analyzed separately in the putamen ROI due to the interaction effect between ROI and 

acquisition-reconstruction methods. FA is expressed in Arbitrary Units (AU); MD is expressed in 10-3mm2/s; T1-RT and T2-RT are expressed in 

ms; DLR: denoising approach using Deep Learning Reconstruction; FA: Fractional Anisotropy; MD: Mean Diffusivity; NAQ: number of 

acquisitions; T1-RT: T1-Relaxation Time; T2-RT: T2-Relaxation Time 
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