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ABSTRACT

In neuroimaging and functional Magnetic Resonance Imaging (fMRI), many derived data are made
openly available in public databases. These can be re-used to increase sample sizes in studies and thus,
improve robustness. In fMRI studies, raw data are first preprocessed using a given analysis pipeline
to obtain subject-level contrast maps, which are then combined into a group analysis. Typically,
the subject-level analysis pipeline is identical for all participants. However, derived data shared on
public databases often come from different workflows, which can lead to different results. Here, we
investigate how this analytical variability, if not accounted for, can induce false positive detections
in mega-analyses combining subject-level contrast maps processed with different pipelines. We
use the HCP multi-pipeline dataset, containing contrast maps for N=1,080 participants of the HCP
Young-Adult dataset, whose raw data were processed and analyzed with 24 different pipelines. We
performed between-groups analyses with contrast maps from different pipelines in each group and
estimated the rates of pipeline-induced detections. We show that, if not accounted for, analytical
variability can lead to inflated false positive rates in studies combining data from different pipelines.

Keywords neuroimaging, analytical variability, pipelines, validity, data re-use

1 Introduction

Over the past few years, concerns have been raised regarding the lack of reproducibility of neuroimaging findings [1, 2, 3].
In particular, the low statistical power of studies was criticized, as effectively leading to low probabilities of identifying
true effects but also to high probabilities of reporting false positive findings in the literature [1]. Researchers proposed
different approaches to increase sample sizes, and thus statistical power, for instance with the development of large-scale
studies [4, 5]. However, acquiring such an amount of data is costly and due to the challenge of finding participants,
these studies often contain a few number of data per participant. In functional Magnetic Resonance Imaging (fMRI), a
brain imaging technique in which brain activity is studied under different conditions, these datasets cover a limited
subset of brain functions, limiting the flexibility of research questions that can be explored. A potential solution to
increase sample size while avoiding these challenges is to reuse the data already acquired in other studies into meta- or
mega-analyses [6].
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With the increased adoption of open science practices [7, 8, 9] and the development of dedicated research infrastruc-
tures [10, 11, 12], such as NeuroVault [10], OpenNeuro [11], more and more neuroimaging data from various studies
have been made available to the scientific community. This includes raw data at the subject level, that can be re-analyzed
using the same processing steps and combined in a mega-analysis, but also derived data (i.e. already processed) at the
subject or group level. At the group level, derived data can be used in meta-analyses to build consensus results across
multiple studies [6], but there are several limitations to this method due to publication bias [13].

At the subject level, individual contrast maps (after the subject-level processing) from different studies can be combined
using mega-analyses (also known as individual patient data (IPD) meta-analysis). Their reuse is more optimal compared
to raw data, not only because sharing of statistic maps is easier due to reduced privacy requirements, but also because it
avoids having to perform costly re-computations. Indeed, fMRI studies require multiple processing steps on the data,
both at the subject level (preprocessing of the raw fMRI data to prepare them for statistical analysis, and first-level
analysis for each participant) and at the group level (second-level statistical analysis using the subject-level contrast maps
resulting from first-level analysis). However, it is unlikely that derived data available on public databases come from the
same pipeline. In addition, derived fMRI datasets can come from adaptable pipelines that apply different processing
steps depending on which data is available (see for example fMRIprep [14]). In practice, in those mega-analyses,
confounds (such as differing pipelines) are typically accounted for by adding a nuisance covariate to the model [15].
This approach is useful to remove any detections that are induced by those confounds yet when it comes to the pipeline
it is sometimes not straightforward to identify which aspect of the pipeline constitutes a nuisance factor and should be
modeled.

Multiple studies have shown that different implementations of a processing pipeline can lead to different results in
neuroimaging. These changes can arise from different levels of variations: different software packages [16] or software
packages version [17], different algorithms and processing steps [18, 19, 20], different software environment [21], etc.
In [19], 70 teams analyzed the same task-fMRI dataset, each with their usual pipeline, leading to 70 different analytical
conditions. They found substantial differences in the results obtained across teams, in terms of statistic maps but also
answers to binary hypotheses. This variability resulting from the processing and analysis protocol used on the data is
also known as analytical variability.

Here, we systematically investigate how analytical variability impacts the results of fMRI mega-analyses with data from
different pipelines (when no additional measures are taken to account for that variability). Previous studies have focused
on how analytical variability affects the reproducibility of existing results in neuroimaging, by using different pipelines
to complete a similar analysis in which the processing applied on all subject data is the same and comparing the results
obtained across pipelines using different processing pipelines. In addition, dedicated frameworks for optimizing the
choice of pipelines have been proposed based on an estimation of reproducibility performance [22, 23]. Notably,
solutions to use different subject-level processing pipelines have been suggested in this context [24].

We explore the impact of pipeline-based differences on the results of between-group analyses that compare populations
whose data were processed differently at the subject level. While, currently, this is not common practice, this setup
could be useful in order to compare healthy versus pathological populations using processed data from different datasets
(for example data of healthy participants from the minimally processed dataset of the Human Connectome Project
(HCP) compared to patient data from another dataset). We carry out a series of between-groups analyses, with each
group corresponding to subject-level contrast maps randomly sampled from the Human Connectome Project (HCP)
Young Adult dataset [5] and processed with different pipelines (1 pipeline in each group). Since participants in all
groups are sampled from the same dataset, we expect no population-based differences, and therefore all observed
differences are attributable to the differing pipelines.

2 Material and Methods

The goal of this study is to test the validity of between-group analyses using subject-level contrast maps processed
with different pipelines (when differences in pipelines are not accounted for in the statistical model). In the following
sections, the term “pipeline” is used to refer to the subject-level pipeline.

The steps performed to estimate this validity are presented in Figure 1. First, we randomly sampled subject-level contrast
maps processed through different pipelines from the HCP multi-pipeline dataset [25] (see section 2.1). Then, for each
pair of pipelines, we performed a between-group analysis (see section 2.2). This group comparison was repeated 1,000
times in order to estimate the empirical rate of (pipeline-induced) significant differences. In the following, we denote
this as the “false positive rate”, considering that those may be equivalently seen as false detections in a between-group
analysis using a simple statistical model in which differences in pipelines are not accounted for.
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Figure 1: Overview of the method: 1) sampling of n=50 subject-level contrast maps for each group (i.e. one group =
one pipeline) from the HCP multi-pipeline, 2) between-group analyses “Group 1 > or < Group 2”, 3) running 1,000
iterations of step 1 and step 2, and 4) estimation of the empirical rate of pipeline-induced significant differences referred
to as the false positive rate.

All the scripts used to perform the study (group-level analysis and false positive rate estimation) are available on
Software Heritage [26]: swh:1:snp:585d3a0a3388a928ab3c6211c1826702aa618190.

2.1 HCP multi-pipeline

This study was performed using derived data from the HCP Young Adult [5]. Written informed consent was obtained
from participants and the original study was approved by the Washington University Institutional Review Board. We
agreed to the HCP Young Adult Open Access Data Use Terms available at: [27].

Subject-level contrast and statistic maps from 1,080 subjects of the HCP Young Adult S1200 release [5] for the motor
task were obtained with 24 different pipelines. In brief, the pipelines implemented in the dataset varied on the following
set of parameters:

• Software package: SPM (Statistical Parametric Mapping, RRID: SCR_007037) [28] or FSL (FMRIB Software
Library, RRID: SCR_002823) [29].

• Smoothing kernel: Full-Width at Half-Maximum (FWHM) of 5 mm or 8 mm.

• Number of motion regressors included in the General Linear Model (GLM) for the first-level analysis: 0, 6
(3 rotations, 3 translations) or 24 (3 rotations, 3 translations + 6 derivatives and the 12 corresponding squares).
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• Presence (1) or absence (0) of the derivatives of the Hemodynamic Response Function (HRF) in the first-level
GLM. The temporal derivative was added in FSL and both the temporal and dispersion derivatives in SPM.

These variations were chosen in particular due to the lack of consensus in the research community on their selection. In
a many-analyst study [19], 70 teams analyzed the same task-fMRI dataset using their usual pipeline, and final statistic
maps were compared to explore potential differences between results across pipelines and the source of these differences.
A complementary evaluation of the source of pipeline-based differences was also performed across 3 reproductions of
published fMRI studies [30]. Within the varying parameters, smoothing kernel size, number of motion regressors, and
design of the statistical analysis were all identified as impactful. Since there is a lack of consensus on the values of
these parameters, they can easily vary from one pipeline to another. Therefore shared derived data are likely obtained
with pipelines for which these parameters are different.

In total, this led to 24 different subject-level pipelines (2 software packages × 2 smoothing kernels × 3 numbers of
motion regressors × 2 HRF). Together those contrast and statistic maps are referred to as the HCP multi-pipeline
dataset. More details about the analysis and its implementation can be found in [25]. Briefly, the preprocessing steps
included motion correction, coregistration of the functional images onto structural data, segmentation, registration
into the MNI space, and smoothing. For subject-level statistical analysis, both SPM and FSL used a GLM to model
experimental tasks, convolving event data with a Double Gamma HRF.

2.2 Between-group analyses

In this study, we explored the false positive rates induced by pipeline differences of between-group studies with
subject-level contrast maps from different pipelines in three settings: within-pipeline (baseline), within-software (i.e.
pipeline implemented in the same software package with different parameters) and between-software (i.e. pipeline
implemented in different software packages with similar parameters).

2.2.1 Contrast post-processing

As FSL and SPM use different MNI templates [31] (i.e. MNI152NLin6Sym for FSL, IXI549Space for SPM), subject-
level contrast maps from different software packages had the same resolution (2 mm) but different dimensions. We used
the following post-processing to harmonize the dimensions of the images. We used Nilearn [32] (RRID: SCR_001362)
to resample all subject-level contrast maps to the dimensions of the MNI152Asym2009 brain template with a 2 mm
resolution using third-order spline interpolation (continuous interpolation in Nilearn, and the default parameter of the
resampling function in the library). We masked the contrast maps using the intersection of all subject-level brain masks
(all pipelines).

FSL and SPM contrast maps are also scaled differently (see [33]). In both software packages, contrast maps are
theoretically expressed in percent BOLD change but there are important differences in how this percent BOLD change
is computed that effectively lead to scaling differences. Hence, in SPM, contrast maps units are closer to 2.5 times
percent BOLD change due to the mask used to compute the global in-brain mean intensity. On the other hand, FSL
contrast maps are scaled to 10,000 (i.e. 100 times percent BOLD change). We applied a factor to each contrast map to
make them closer to percent BOLD change. Contrast maps in SPM and FSL were therefore rescaled by multiplying by
100/250 = 0.4 and 100/10, 000 = 0.01 respectively.

All between-group analyses were performed on resampled, masked, and re-scaled subject-level contrast maps. As
a sanity check, we also computed the between-group same-pipeline analyses on the original contrast maps (i.e. be-
fore post-processing). As expected, the estimated false positive rates were consistent with the results obtained on
post-processed data (see Supplementary Table 1).

2.2.2 Analysis setup

For each between-group analysis, we randomly sampled 100 participants without replacement among the full set of
1,080 participants and split them into two groups (N = 50 in each group. This sample size is larger than typical sample
size in fMRI studies (around 30 participants) [34]), but limiting atypical behaviors induced by small sample sizes. In
each group, subject-level contrast maps were obtained using a different pipeline. This process was repeated for different
groups and pairs of pipelines. We performed a one-tailed two-sample t-test with unequal variance and computed the
statistic maps associated with H0: “no mean difference of activation between groups”. We used a voxelwise p < 0.05
FWE-corrected with Random Field Theory [35, 36], with approximately 130,000 comparisons (or 300-1000 resels, i.e.
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independent comparisons) per between-group analysis. All between-group analyses were performed in SPM in order to
have consistent conditions in all the second-level analyses.

2.3 False positive rates

For a given pair of pipelines, the between-group analysis was repeated 1,000 times with different sets of participants.
The empirical false positive rate was estimated as the proportion of between-group analyses, across the repetitions (see
section 2) with at least one significant detection (see Figure 1).

If the rate exceeds the nominal α-level of 0.05 (95% confidence interval [0.037; 0.064]), we can conclude that pipeline-
based differences impact the validity of results (towards invalidity) and if the rate is lower we can conclude that the
analysis is conservative. Of note, we use throughout the manuscript the term validity (resp. invalidity) only in relation to
type I error (i.e. specificity) as per the definition of this term in Statistics. Measuring the effect of pipeline differences
on type II error (i.e. sensitivity) is beyond the scope of the current manuscript.

2.4 Statistical distributions and P-P plots

P-P plots are usually used to observe how a given set of statistical values diverge from an expected distribution by
plotting, for each kth ordered statistical value, the expected associated p-value on the x-axis and the obtained p-value on
the y-axis. Here, under the null hypothesis, p-values were expected to follow a uniform distribution U(0, 1). Thus, for a
set of N statistical values, the kth ordered p-value follows a Beta distribution B(k,N − k + 1) with expected value
k/(N + 1) [37, 38]. Confidence bounds on the p-values were computed using the Beta distribution.

Here, we used a Bland-Altman [39] variant of P-P plots. Bland-Altman plots provide a visual representation of the
difference between two measurements on the y-axis and the average of the two measurements on the x-axis. Here we
adapted those plots to p-values, as follows:

• on the x-axis: the expected p-value in −log10

• on the y-axis: the difference between the −log10 obtained and the −log10 expected p-values.

This update made it easier to observe the behavior in the tails of the p-value distribution (which is of interest here).
High statistical values (right tail of our sample) are associated to low p-values, i.e. to high −log10 p-values. We also
looked at the distributions of the statistical values for multiple between-group analyses, and compared them with a
Student distribution T98.

3 Results

3.1 Analyses using the same pipeline (baseline)

Table 1 shows the false positive rates obtained for all analyses with the same pipeline in both groups, separately for
SPM and FSL. For all combinations, the false positive rates were below the expected value of 0.05, ranging between
0.012 and 0.028 for SPM and between 0.013 and 0.024 for FSL. These results, obtained with the same pipeline in both
groups, are used as a baseline in the following.

3.2 Analyses using pipelines with different parameters

The following subsections present the results obtained with pipelines using different set of parameters (within software).
In each case, we looked at the false positive rate (Figure 2), the statistical distributions (Supplementary Figures 3
and 11) and the associated P-P plots (Figure 4, Figure 5 and Supplementary Figures 6 and 9). To present the results, we
chose a default value for each studied parameter – smoothing 5 mm FWHM, HRF with derivatives, and 24 motion
regressors – and compared our results to those obtained with the default.

3.2.1 Different HRF

Adding derivatives to model the HRF was the most impactful of all three varying factors in both software packages.
The false positive rates obtained with different HRF (i.e. canonical HRF > or < HRF with derivatives) are presented in
Figure 2 (A) for the six analyses performed (i.e. with varying levels of smoothing and numbers of motion regressors –
with the same setting in both pipelines).
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SPM
Smooth 5mm Smooth 8mm

No derivatives Derivatives No derivatives Derivatives
0 motion regressors 0.012 0.013 0.016 0.023
6 motion regressors 0.015 0.006 0.024 0.013

24 motion regressors 0.023 0.016 0.025 0.028

FSL
Smooth 5mm Smooth 8mm

No derivatives Derivatives No derivatives Derivatives
0 motion regressors 0.014 0.013 0.015 0.023
6 motion regressors 0.018 0.014 0.018 0.018

24 motion regressors 0.015 0.013 0.016 0.024

Table 1: False positive rates for between-groups analyses with the same pipeline in both groups, with SPM and FSL and
for all possible sets of parameters (number of motion regressors, smoothing kernel FWHM, and presence or absence of
HRF temporal derivatives). The rates were always under 0.05.

Figure 2: False positive rates for pipelines with a single differing parameter in SPM: A) HRF derivatives, B) smoothing
and C and D) motion regressors. For each, we provide the false positive rates obtained for: 1/ Default > Variation and
Default < Variation (Red) and 2/ baseline analysis with default parameters, used as a reference (Green, first column).
The grey dashed line corresponds to the alpha level (0.05), and the grey band to the corresponding confidence interval
at 95%.

In SPM, the comparison canonical HRF > HRF with derivatives (Figure 2 - A) showed invalid false positive rates (above
the theoretical 0.05 threshold) for all pipeline combinations. Similarly, in FSL, all combinations gave invalid results for
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Figure 3: False positive rates for pipelines with two differing parameters in SPM: A) Smoothing and HRF, B) Smoothing
and motion regressors. For each studied parameter, we provide the rates obtained for: 1/ Default > Variation and Default
< Variation (Red) and 2/ baseline analysis with default parameters, used as a reference (Green, first column). The grey
dashed line corresponds to the alpha level (0.05) and the grey band to the corresponding confidence interval at 95%.

this same comparison except two combinations: 5 mm or 8 mm smoothing FWHM and 24 motion regressors. These
two analyses led to values that were within the confidence bounds of the 0.05 threshold or slightly conservative (0.032
and 0.061 respectively). For the opposite comparison (i.e. canonical HRF < HRF with derivatives) all combinations
resulted in valid results with false positive rates under 0.05.

Figures 4 and Supplementary Figure 6 show the corresponding Bland-Altman P-P plots for comparisons with different
HRF and otherwise default parameters. In both software packages, consistently with what we observed for the false
positive rates, the comparison canonical HRF > HRF with derivatives led to values that were outside of the 95%
confidence interval (grey area). In SPM, values were further away from the 95% confidence interval than in FSL.

The same observations could be made on the statistical distributions for both SPM and FSL (Supplementary Figures 3
and 11): both showed a shift in mean and variance, but this was smaller for FSL. The combination of pipeline parameters
used in this Figure (i.e. pipelines with 5 mm FWHM and 24 motion regressors, with different HRF derivatives) showed
nearly valid false positive rates, as stated in the previous paragraph (see Figure 2), which could explain why the shift
seemed smaller in FSL compared to SPM. We also observed the P-P plots for a different combination of FSL pipelines
with other parameters (5 mm, 0 motion regressors) in Supplementary Figure 8 and found a similar shift as the one
observed for SPM.

3.2.2 Different smoothing

The false positive rates obtained with different levels of smoothing (5 mm or 8 mm) in the pipelines are presented in
Figure 2 (B) for the six analyses performed (i.e. with varying HRF models and number of motion regressors – with the
same setting in both pipelines).

The false positive rates obtained with different levels of smoothing (5 mm > or < 8 mm) in the pipelines were above the
0.05 theoretical rate in FSL (ranging from 0.07 to 0.16) and within the confidence interval around the theoretical rate in
SPM (ranging from 0.03 to 0.05). Compared to the baseline analyses using the same pipelines, the false positive rates
were always inflated and were slightly higher for the tail 5 mm > 8 mm.

The Bland-Altman P-P plots (Figure 4 and Supplementary Figure 6) are consistent with the observations made on the
false positive rates. Between-group analyses using pipelines with different smoothing gave results outside of the 95%
confidence interval in FSL and within the interval in SPM, with only a small positive difference in the direction 5 mm >
8 mm.

The behaviors observed on the P-P plots can be explained by the positive shift in mean values and standard deviations
observed on the statistical distribution for 5 mm > 8 mm for FSL (Supplementary Figure 11), which is less pronounced
for SPM (Supplementary Figure 3).

3.2.3 Different number of motion regressors

The false positive rates obtained with different numbers of motion regressors (0, 6, and 24) are presented in Figure 2 (C -
D) for the six analyses performed (i.e. with varying levels of smoothing and different HRF – with the same setting in

7



PRIME AI paper

Figure 4: Bland-Altman P-P plots for pipelines with a single differing parameter in SPM. The grey shade corresponds to
the 0.95 confidence interval. A curve above (respectively below) the confidence interval indicates invalidity (respectively
conservativeness). Default parameters: 5 mm smoothing, 24 motion regressors and no HRF derivatives.

Figure 5: Bland-Altman P-P plots for pipelines with two differing parameters in SPM. The grey shade corresponds to
the 0.95 confidence interval. A curve above (respectively below) the confidence interval indicates invalidity (respectively
conservativeness). Default parameters: 5 mm smoothing, 24 motion regressors and no HRF derivatives.

8



PRIME AI paper

both pipelines). We studied the combinations 24 motion regressors > or < 6 motion regressors (third column) and
24 motion regressors > or < 0 motion regressors (fourth column).

In SPM, false positive rates were below the 0.05 theoretical rate for all comparisons of 24 motion regressors > or < 6
motion regressors. For the comparison with no motion regressors, the false positive rates were higher and above 0.05
for 24 motion regressors > 0 motion regressors and slightly below for the opposite. In FSL, the results were dependent
on the other pipeline parameters. All combinations led to invalid results (i.e. above the theoretical 0.05 threshold)
except for 24 motion regressors > 0/6 motion regressors when using the canonical HRF (i.e. no HRF derivatives) in
both pipelines.

In Section 3.2.1), we showed that all combinations of pipelines with varying HRF models led to invalid results except
those with 5 mm or 8 mm smoothing and 24 motion regressors. Here, we also observe invalid results for all combinations
of pipelines with 24 motion regressors > or < 0/6 motion regressors, except those with 5 mm or 8 mm smoothing and no
HRF derivatives. We can suppose that in FSL, when using 24 motion regressors, the use of HRF derivatives in the GLM
has a low impact on the results and similarly, when using the canonical HRF, using 0, 6 or 24 motion regressors does
not change the results much, and thus has a low impact on the validity of the mega-analyses combining subject-level
data obtained from pipelines with different parameters.

In the Bland-Altman P-P plot for SPM (Figure 4), we observed more extreme values in the P-P plots for the comparisons
“24 motions regressors > or < 0 motion regressors” than for those of “24 motions regressors > or < 6 motion regressors”,
which is consistent with our observations on the false positive rates. The Bland-Altman P-P plot (Supplementary
Figure 6) for FSL with 5 mm smoothing and an HRF with derivatives, the comparison 24 motion regressors > or
< 0 motion regressors were consistent with the invalid false positive rates found with such parameters: we found
conservative results for the comparison 24 motion regressors > 0 motion regressors (plain line) and invalid results in
the opposite direction (dashed line).

Statistical distributions (Supplementary Figures 3 and 11) also show a shift in mean and variance for the comparison
“24 motion regressors > or < 0 motion regressors”, for both SPM and FSL. This shift is not as important for the
comparison “24 motion regressors > or < 6 motion regressors”. The comparison “6 motion regressors > or < 0 motion
regressors” was also showed for comparison, and showed similar results as the “24 motion regressors > or < 0 motion
regressors” comparison.

3.2.4 Combined effects of parameters

We observed the combined effects of:

• differences in smoothing and in HRF model

• differences in smoothing and in motion regressors

The false positive rates obtained with different smoothing and different HRF models or different motion regressors in
the pipelines are presented in Figure 3 for the different analyses performed.

In both SPM and FSL, the first set of between-group analyses (5 mm smoothing, canonical HRF) > (8 mm smoothing,
HRF with derivatives) led to invalid results with false positive rates largely above the 0.05 theoretical threshold (around
0.60). The opposite test provided conservative results.

In SPM, the results for (5 mm smoothing, canonical HRF) > (8 mm smoothing, HRF with derivatives) were close to
those obtained for the analyses with a single varying parameter canonical HRF > HRF with derivatives (from 0.46
to 0.63 in the combined effect analysis and from 0.32 to 0.52 in the exploration of HRF derivatives effect only, see
Figure 2 - A). In the isolated analyses, the effect of changing the smoothing kernel FWHM was not very important in
SPM (“5mm vs 8mm smoothing kernel FWHM”), which might explain why the false positive rates did not increase
much in the combined effect analyses.

Under FSL, the previous analyses on the effect of each of these parameters separately (changing smoothing kernel
FWHM and changing HRF model separately) both gave inflated false positive rates, and their combined effect largely
increased the false positive rates (up to 0.77) compared to the effect of changing the use HRF derivatives alone (up to
0.49).

Similar observations can be made on the P-P plots on Figure 5 and Supplementary Figure 9.

In both SPM and FSL, the second set of analyses (5 mm smoothing, 24 motion regressors) > or < (8 mm smoothing,
0 motion regressors), we found invalid results for nearly all combinations. In SPM, the false positive rates were only
slightly above the theoretical threshold of 0.05 (0.081 and 0.11), which is consistent with our previous observation:
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Figure 6: False positive rates for pipelines with different software packages. We provide the false positive rates obtained
for: “FSL > SPM” and “FSL < SPM” (Red), and for the corresponding analyses within-pipelines, i.e. the baseline
(Green, first column). The grey dashed line corresponds to the alpha level (0.05) and grey band to the corresponding
confidence interval at 95%..

Figure 7: Bland-Altman P-P plots for pipelines with different software packages. The grey shade corresponds to the
0.95 confidence interval. A curve above (respectively below) the confidence interval indicates invalidity (respectively
conservativeness). Default parameters: 5 mm smoothing, 24 motion regressors, and no HRF derivatives.

initially, changing smoothing kernel FWHM and number of motion regressors separately led to false positive rates close
to 0.05, consistently, their combination led to rates that were only slightly invalid.

For both SPM and FSL, we observed shifts in the distributions of statistical values (Supplementary Figures 3 and 11).
These shifts were similar to those obtained for changes in motion regressors only.

3.3 Analyses using pipelines with different software packages

We also explored the ability to use in a same between-group analysis subject-level data obtained with different software
packages (here FSL and SPM). We performed the analyses for all possible combinations SPM > or < FSL: 2 smoothing
kernels × 3 numbers of motion regressors × 2 HRF models, corresponding to 12 between-software comparisons –
with the same setting for both SPM and FSL pipelines. The false positive rates are displayed in Figure 6. For all
between-software analyses, the false positive rates were above 0.05. We obtained lower values for SPM > FSL (between
0.10 to 0.32), than for the opposite test (between 0.56 to 0.95). In all cases, false positive rates were largely increased
compared to the reference analyses (i.e. using the same software in both groups). This observation was consistent with
the P-P plot, which showed a large deviation from the 95% confidence interval for the direction SPM < FSL (Figure 7).
Figure 8 shows the distribution of statistical values for the between-software comparison with all other parameters set
with default values (i.e. 5mm smoothing kernel, 24 motion regressors and no HRF derivatives). We can see a shift in
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Figure 8: Distribution of statistical values for between-software analyses, compared to the expected distribution.

terms of mean and standard deviation of values. This shift was larger than those observed, for instance, for the effect of
HRF derivatives, which was the most impacting factor on within-software comparisons.

4 Discussions

In this study, we showed that between-group analyses that use data generated by different pipelines can lead to
invalidity when differences in pipelines are not properly accounted for. In almost all cases, combining data processed
with different pipelines led to false positive rates above the theoretical 0.05 threshold. These results, obtained when
combining subject-level contrast maps processed differently, suggest that it is necessary to consider how analytical
variability may affect the results when combining data.

When performing analyses using the same pipeline on all participants’ data (as traditionally done in the literature)
results were valid for all analyses. Although the false positive rates obtained were lower than the 5% rate, the results
were similar to those obtained in [40]. The level of smoothing, combined with the thresholding method that we chose
(i.e. voxelwise FWE-corrected based on random field theory in SPM), may be responsible for these lower rates [41].

Our results for different pipeline analyses suggest that some factors have a larger impact than others. We saw that for
differences regarding the size of the smoothing kernel and number of motion regressors (6 > or < 24 motion regressors)
within SPM software package, results were similar to those obtained with identical pipeline analyses, suggesting that
participant data can be combined without having to consider the differences in pipelines, if this is the only difference.
This is not the case for differences in the use of HRF derivatives and use of motion regressors (0 motion regressors > or
< 6 or 24 motion regressors), which gave invalid results.

We also saw that combining multiple differences in parameters could result in bigger effects, depending on the effect of
each parameter alone. The combination of two parameters that both have a high effect on the results led in our case to
inflated false positive rates, while the combination of parameters that had a limited effect did not lead to higher false
positive rates (e.g. smoothing and motion regressors in SPM). This suggests that it may be possible to model the effect
caused by specific variations in the subject-level pipelines. To enable this in the future, it is essential that the pipelines
used is shared with enough details to allow a reproduction of the exact processing applied on the data.

However, the ability to model the effect of parameters is limited to specific variations. For example, for each variation of
parameter, we saw different effects across the two software packages under study (SPM and FSL). Overall, observations
were similar, but false positive rates were often increased in FSL compared to SPM for the same comparison. This
suggests that some parameters values are more robust to changes when combined together, here, in FSL, when using 24
motion regressors, combining data with different use of HRF derivatives led to false positive rates close to the baseline
analysis (i.e. same pipeline in both groups).

The most important source of invalidity was found when studying the effect of differences in software packages. SPM
and FSL both implement similar pipeline steps with different settings. While we tried to align some parameters between
the two software packages by changing the software package default values (e.g. smoothing kernel, type of HRF, etc.),
some steps are specific to each software and cannot be changed by the user, causing potential differences between the
results. We tried to correct some of these differences, in particular for the unit scale of subject-level contrast maps. But,
even with these corrections, we still found highly inflated false positive rates when comparing pipelines with the same
values for the parameters under study and different software packages. We suppose that differences in how software
packages scale the data were not compensated by our simple rescaling approach and that more work will be needed to
be able to combine subject-level data from two different software packages in the same analysis.
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In this study, we focused on between-group analyses in which each group of participants was processed with a different
pipeline. While this an extreme setup (in which the effect of interest is perfectly confounded with differences in
pipelines), in practice, other combinations may be observed, for example with multiple pipelines used within a group.
Our setup – in which processing pipelines varied depending on the group – was justified by the use-case in which data
from various public datasets are used in the same analysis. For example, specific datasets have been created to study
various neurological disorders, usually associated with a minimal processing pipeline dedicated to the study, and the
corresponding minimally processed data (Alzheimer’s Disease Neuroimaging Initiative (ADNI) [42] for Alzheimer’s
disease, Autism Brain Imaging Data Exchange (ABIDE) [43] for autism, etc). Researchers may want to use these
minimally processed data and compare groups of participants with one group composed of participants with a specific
conditions from one of these processed datasets, and the other group composed of healthy participants from another
processed dataset (e.g. from the Human Connectome Project [5]).

We chose to study variations induced by 4 types of parameters (software package, HRF, smoothing and number of
motion regressors), within each software package based on their widespread use in the neuroimaging community [44].
Yet, in practice, there are many more variations: researchers might use different software versions, perform or not
specific sub-steps in the analysis (for example, the use or not of slice-timing correction), use different HRF models etc.
Therefore, in real conditions, the differences observed between pipelines will likely be more important. In future works,
other analyses may be done for other varying parameters using the same framework.

For other types of confounds such as imaging site, scanner effect or age and sex, harmonization or mitigation methods
have been proposed to take these into account. Several studies [45, 46, 47, 15] proposed to remove confounds by
incorporating them as additional regressors in the analysis, or by estimating batch-specific parameters (such as mean and
variance) and then using these to standardize the data with frameworks such as ComBat [46]. Alternative approaches
have also been proposed, such as restriction, where the study is limited to participants with specific characteristics.
In [48], authors employed this method in a cohort study focused on males of the same age and nationality. In practice,
pipeline-based differences may be accounted for by adding a confound in the statistical analysis (see for instance [15]),
or using harmonization techniques such as ComBat [46]. However, the specific impact of pipeline-based differences
remained unexplored. Our results can be used to understand in which cases differences in analytical pipelines must be
accounted for.

Recently, deep learning frameworks, and in particular generative models used for style transfer [49], showed their
potential for such task in converting data between different domains (e.g. acquisition site) [50, 51]. Currently, the most
widespread practice is to include a covariate in the statistical model for pipeline-based confounds. We envision that
other methods such as style transfer may provide additional solutions to mitigate analytical variability in such analyses
(see for instance [52].

5 Conclusion

Our study shows that between-group analysis using subject-level data which have been processed differently can be
affected by pipeline-based differences. While some parameters did not have significant effects, others produced invalid
results, suggesting that it is necessary to model those pipeline-based confounds.

6 Code availability

All analysis pipelines were executed in Python v3.8. The executions require the installation of SPM and FSL software
packages. To facilitate reproducibility, we provide a NeuroDocker image that can be pulled from Dockerhub and
that contains all necessary software packages. The Docker image is available at: https://hub.docker.com/r/
elodiegermani/open_pipeline.

6.1 HCP Multi-pipeline

Python scripts to run the pipelines and create the dataset were made available publicly in the Software Heritage public
archive:swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b [53].
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6.2 Between-group analyses, figures and tables

Python and Matlab scripts to run the experiments and to create the figures and tables of this article are available in the
Software Heritage public archive: swh:1:dir:4381210db83c93bca14cf685be0ec293128412c8 [26].

• Programming language: Python3.8, Matlab

• Licence: MIT

• Requirements: multiple Python libraries, available in the Docker container open_pipeline

7 Data availability

This study was performed using derived data from the HCP Young Adult [5], publicly available at ConnectomeDB. Data
usage requires registration and agreement to the HCP Young Adult Open Access Data Use Terms available at: [27].

The HCP multi-pipeline dataset [25] is in the process of being made publicly available on Public-nEUro [54] (we are
currently pending approval from Data Protection Officers at our institute).

8 Ethics

This study was performed using derived data from the HCP Young Adult [5]. No experimental activity involving the
human participants was made by the authors. Only publicly released data were used.

Written informed consent was obtained from participants and the original study was approved by the Washington
University Institutional Review Board.

We agreed to the HCP Young Adult Open Access Data Use Terms available at: [27].

9 Authors contributions

All authors participated to the conceptualization of the project. E.G. and X.R. developed the project (wrote the code,
performed the experiments, and analyzed results) and wrote the original draft of the manuscript. C.M. and P.M.
supervised the project and provided feedback on the manuscript (writing: review and editing).

10 Competing interests

The authors declare that they have no competing interests.

11 Acknowledgements

Data were provided by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van
Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint
for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Xavier Rolland was supported by Region Bretagne (ARED Varanasi) and by EU H2020 project OpenAIRE-Connect
(Grant agreement ID: 731011). Elodie Germani was supported by Region Bretagne (ARED MAPIS) and Agence
Nationale pour la Recherche for the programm of doctoral contracts in artificial intelligence (project ANR-20-THIA-
0018).

References
[1] Katherine S Button, John PA Ioannidis, Claire Mokrysz, Brian A Nosek, Jonathan Flint, Emma SJ Robinson, and

Marcus R Munafò. Power failure: why small sample size undermines the reliability of neuroscience. Nature
reviews neuroscience, 14(5):365–376, 2013.

[2] Russell A Poldrack, Chris I Baker, Joke Durnez, Krzysztof J Gorgolewski, Paul M Matthews, Marcus R Munafò,
Thomas E Nichols, Jean-Baptiste Poline, Edward Vul, and Tal Yarkoni. Scanning the horizon: towards transparent
and reproducible neuroimaging research. Nature reviews neuroscience, 18(2):115, 2017.

13

https://hub.docker.com/r/elodiegermani/open_pipeline


PRIME AI paper

[3] Rotem Botvinik-Nezer and Tor D. Wager. Reproducibility in Neuroimaging Analysis: Challenges and Solutions.
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 8(8):780–788, 2023. ISSN 2451-9022.
doi:10.1016/j.bpsc.2022.12.006.

[4] Cathie Sudlow, John Gallacher, Naomi Allen, Valerie Beral, Paul Burton, John Danesh, Paul Downey, Paul
Elliott, Jane Green, Martin Landray, Bette Liu, Paul Matthews, Giok Ong, Jill Pell, Alan Silman, Alan
Young, Tim Sprosen, Tim Peakman, and Rory Collins. UK biobank: An open access resource for identi-
fying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine, 12, 2015.
doi:https://www.doi.org/10.1371/journal.pmed.1001779.

[5] David C Van Essen, Stephen M Smith, Deanna M Barch, Timothy EJ Behrens, Essa Yacoub, Kamil Ugurbil,
Wu-Minn HCP Consortium, et al. The wu-minn human connectome project: an overview. Neuroimage, 80:62–79,
2013.

[6] Gholamreza Salimi-Khorshidi, Stephen M Smith, John R Keltner, Tor D Wager, and Thomas E Nichols. Meta-
analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. Neuroimage,
45(3):810–823, 2009.

[7] Jean-Baptiste Poline, Janis L. Breeze, Satrajit S. Ghosh, Krzysztof Gorgolewski, Yaroslav O. Halchenko, Michael
Hanke, Karl G. Helmer, Daniel S. Marcus, Russell A. Poldrack, Yannick Schwartz, John Ashburner, and David N.
Kennedy. Data sharing in neuroimaging research. Frontiers in Neuroinformatics, 6, 2012. ISSN 1662-5196.
doi:10.3389/fninf.2012.00009.

[8] Russell A Poldrack and Krzysztof J Gorgolewski. Making big data open: data sharing in neuroimaging. Nature
neuroscience, 17(11):1510, 2014.

[9] Guiomar Niso, Rotem Botvinik-Nezer, Stefan Appelhoff, Alejandro De La Vega, Oscar Esteban, Joset A. Etzel,
Karolina Finc, Melanie Ganz, Rémi Gau, Yaroslav O. Halchenko, Peer Herholz, Agah Karakuzu, David B.
Keator, Christopher J. Markiewicz, Camille Maumet, Cyril R. Pernet, Franco Pestilli, Nazek Queder, Tina
Schmitt, Weronika Sójka, Adina S. Wagner, Kirstie J. Whitaker, and Jochem W. Rieger. Open and repro-
ducible neuroimaging: From study inception to publication. NeuroImage, 263:119623, 2022. ISSN 1095-9572.
doi:10.1016/j.neuroimage.2022.119623.

[10] Krzysztof J Gorgolewski, Gael Varoquaux, Gabriel Rivera, Yannick Schwarz, Satrajit S Ghosh, Camille Maumet,
Vanessa V Sochat, Thomas E Nichols, Russell A Poldrack, Jean-Baptiste Poline, et al. Neurovault. org: a
web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Frontiers in
neuroinformatics, 9:8, 2015.

[11] Christopher J Markiewicz, Krzysztof J Gorgolewski, Franklin Feingold, Ross Blair, Yaroslav O Halchenko,
Eric Miller, Nell Hardcastle, Joe Wexler, Oscar Esteban, Mathias Goncavles, Anita Jwa, and Russell Pol-
drack. The OpenNeuro resource for sharing of neuroscience data. eLife, 10:e71774, 2021. ISSN 2050-084X.
doi:10.7554/eLife.71774.

[12] Christian Barillot, Elise Bannier, Olivier Commowick, Isabelle Corouge, Anthony Baire, Ines Fackfack, Justine
Guillaumont, Yao Yao, and Michael Kain. Shanoir: Applying the Software as a Service Distribution Model to
Manage Brain Imaging Research Repositories. Frontiers in information and communication technologies, 2016.
doi:10.3389/fict.2016.00025.

[13] John PA Ioannidis, Marcus R Munafo, Paolo Fusar-Poli, Brian A Nosek, and Sean P David. Publication and other
reporting biases in cognitive sciences: detection, prevalence, and prevention. Trends in cognitive sciences, 18(5):
235–241, 2014.

[14] Oscar Esteban, Christopher J. Markiewicz, Ross W. Blair, Craig A. Moodie, A. Ilkay Isik, Asier Erramuzpe,
James D. Kent, Mathias Goncalves, Elizabeth DuPre, Madeleine Snyder, Hiroyuki Oya, Satrajit S. Ghosh, Jessey
Wright, Joke Durnez, Russell A. Poldrack, and Krzysztof J. Gorgolewski. fMRIPrep: a robust preprocessing
pipeline for functional MRI. Nature Methods, 16(1):111–116, 2019. ISSN 1548-7105. doi:10.1038/s41592-018-
0235-4.

[15] Fidel Alfaro-Almagro, Paul McCarthy, Soroosh Afyouni, Jesper L. R. Andersson, Matteo Bastiani, Karla L. Miller,
Thomas E. Nichols, and Stephen M. Smith. Confound modelling in UK Biobank brain imaging. NeuroImage,
224:117002, 2021. ISSN 1053-8119. doi:10.1016/j.neuroimage.2020.117002.

[16] Alexander Bowring, Camille Maumet, and Thomas E Nichols. Exploring the impact of analysis software on task
fmri results. Human brain mapping, 40(11):3362–3384, 2019.

[17] Ed HBM Gronenschild, Petra Habets, Heidi IL Jacobs, Ron Mengelers, Nico Rozendaal, Jim Van Os, and
Machteld Marcelis. The effects of freesurfer version, workstation type, and macintosh operating system version
on anatomical volume and cortical thickness measurements. PloS one, 7(6):e38234, 2012.

14

https://doi.org/10.1016/j.bpsc.2022.12.006
https://doi.org/https://www.doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.3389/fninf.2012.00009
https://doi.org/10.1016/j.neuroimage.2022.119623
https://doi.org/10.7554/eLife.71774
https://doi.org/10.3389/fict.2016.00025
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1016/j.neuroimage.2020.117002


PRIME AI paper

[18] Xinhui Li, Lei Ai, Steve Giavasis, Hecheng Jin, Eric Feczko, Ting Xu, Jon Clucas, Alexandre Franco, Anibal
Sólon Heinsfeld, Azeez Adebimpe, et al. Moving beyond processing and analysis-related variation in neuroscience,
2021.

[19] Rotem Botvinik-Nezer, Felix Holzmeister, Colin F Camerer, Anna Dreber, Juergen Huber, Magnus Johannesson,
Michael Kirchler, Roni Iwanir, Jeanette A Mumford, R Alison Adcock, et al. Variability in the analysis of a single
neuroimaging dataset by many teams. Nature, pages 1–7, 2020.

[20] Stephen C. Strother. Evaluating fMRI preprocessing pipelines. IEEE engineering in medicine and biology
magazine: the quarterly magazine of the Engineering in Medicine & Biology Society, 25(2):27–41, 2006. ISSN
0739-5175. doi:10.1109/memb.2006.1607667.

[21] Tristan Glatard, Lindsay B Lewis, Rafael Ferreira da Silva, Reza Adalat, Natacha Beck, Claude Lepage, Pierre
Rioux, Marc-Etienne Rousseau, Tarek Sherif, Ewa Deelman, et al. Reproducibility of neuroimaging analyses
across operating systems. Frontiers in neuroinformatics, 9:12, 2015.

[22] Stephen LaConte, Jon Anderson, Suraj Muley, James Ashe, Sally Frutiger, Kelly Rehm, Lars Kai Hansen, Essa
Yacoub, Xiaoping Hu, David Rottenberg, and Stephen Strother. The Evaluation of Preprocessing Choices in
Single-Subject BOLD fMRI Using NPAIRS Performance Metrics. NeuroImage, 18(1):10–27, January 2003. ISSN
1053-8119. doi:10.1006/nimg.2002.1300. URL https://www.sciencedirect.com/science/article/
pii/S1053811902913005.

[23] Stephen Strother, Stephen La Conte, Lars Kai Hansen, Jon Anderson, Jin Zhang, Sujit Pulapura, and David
Rottenberg. Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance
metrics: I. A preliminary group analysis. NeuroImage, 23 Suppl 1:S196–207, 2004. ISSN 1053-8119.
doi:10.1016/j.neuroimage.2004.07.022.

[24] Nathan W. Churchill, Robyn Spring, Babak Afshin-Pour, Fan Dong, and Stephen C. Strother. An Automated,
Adaptive Framework for Optimizing Preprocessing Pipelines in Task-Based Functional MRI. PLoS ONE, 10(7):
e0131520, July 2015. ISSN 1932-6203. doi:10.1371/journal.pone.0131520. URL https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4498698/.

[25] Elodie Germani, Elisa Fromont, Pierre Maurel, and Camille Maumet. The HCP multi-pipeline dataset: an
opportunity to investigate analytical variability in fMRI data analysis. working paper or preprint, December 2023.
URL https://inserm.hal.science/inserm-04356768.

[26] Elodie Germani, Xavier Rolland, Pierre Maurel, and Camille Maumet. Software heritage archive for the gitlab
repository "hcp_pipelines_compatibility", 2024. URL https://archive.softwareheritage.org/swh:1:
dir:4381210db83c93bca14cf685be0ec293128412c8;origin=https://gitlab.inria.fr/egermani/
hcp_pipelines_compatibility;visit=swh:1:snp:579fb7e69702ce1f9f7192b5e73772a213a35c29;
anchor=swh:1:rev:7979bf2d392a0c37c22615c1a4c826735c0b49e8.

[27] Human connectome project: Data usage agreement. https://www.humanconnectome.org/study/
hcp-young-adult/document/wu-minn-hcp-consortium-open-access-data-use-terms, 2013.

[28] William D Penny, Karl J Friston, John T Ashburner, Stefan J Kiebel, and Thomas E Nichols. Statistical parametric
mapping: the analysis of functional brain images. Elsevier, 2011.

[29] Mark Jenkinson, Christian F Beckmann, Timothy EJ Behrens, Mark W Woolrich, and Stephen M Smith. Fsl.
Neuroimage, 62(2):782–790, 2012.

[30] Alexander Bowring, Thomas E. Nichols, and Camille Maumet. Isolating the sources of pipeline-variability
in group-level task-fMRI results. Human Brain Mapping, 43(3):1112–1128, 2022. ISSN 1097-0193.
doi:10.1002/hbm.25713. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25713.

[31] Alan C. Evans, Andrew L. Janke, D. Louis Collins, and Sylvain Baillet. Brain templates and atlases. NeuroImage,
62(2):911–922, 2012. ISSN 10538119. doi:10.1016/j.neuroimage.2012.01.024.

[32] Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, Andreas Mueller, Jean Kossaifi,
Alexandre Gramfort, Bertrand Thirion, and Gael Varoquaux. Machine learning for neuroimaging with scikit-learn.
Frontiers in Neuroinformatics, 2014. doi:10.3389/fninf.2014.00014.

[33] Thomas Nichols. SPM plot units, 2012. URL https://web.archive.org/web/20230606094719/https:
//blog.nisox.org/2012/07/31/spm-plot-units.

[34] Jérôme Dockès, Kendra Oudyk, Mohammad Torabi, Alejandro I de la Vega, and Jean-Baptiste Poline. Mining
the neuroimaging literature. eLife Sciences Publications, Ltd, 2024. doi:10.7554/elife.94909.1. URL http:
//dx.doi.org/10.7554/eLife.94909.1.

[35] Matthew Brett, Will Penny, and Stefan Kiebel. An Introduction to Random Field Theory. 2003.

15

https://doi.org/10.1109/memb.2006.1607667
https://doi.org/10.1006/nimg.2002.1300
https://www.sciencedirect.com/science/article/pii/S1053811902913005
https://www.sciencedirect.com/science/article/pii/S1053811902913005
https://doi.org/10.1016/j.neuroimage.2004.07.022
https://doi.org/10.1371/journal.pone.0131520
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498698/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498698/
https://inserm.hal.science/inserm-04356768
https://archive.softwareheritage.org/swh:1:dir:4381210db83c93bca14cf685be0ec293128412c8;origin=https://gitlab.inria.fr/egermani/hcp_pipelines_compatibility;visit=swh:1:snp:579fb7e69702ce1f9f7192b5e73772a213a35c29;anchor=swh:1:rev:7979bf2d392a0c37c22615c1a4c826735c0b49e8
https://archive.softwareheritage.org/swh:1:dir:4381210db83c93bca14cf685be0ec293128412c8;origin=https://gitlab.inria.fr/egermani/hcp_pipelines_compatibility;visit=swh:1:snp:579fb7e69702ce1f9f7192b5e73772a213a35c29;anchor=swh:1:rev:7979bf2d392a0c37c22615c1a4c826735c0b49e8
https://archive.softwareheritage.org/swh:1:dir:4381210db83c93bca14cf685be0ec293128412c8;origin=https://gitlab.inria.fr/egermani/hcp_pipelines_compatibility;visit=swh:1:snp:579fb7e69702ce1f9f7192b5e73772a213a35c29;anchor=swh:1:rev:7979bf2d392a0c37c22615c1a4c826735c0b49e8
https://archive.softwareheritage.org/swh:1:dir:4381210db83c93bca14cf685be0ec293128412c8;origin=https://gitlab.inria.fr/egermani/hcp_pipelines_compatibility;visit=swh:1:snp:579fb7e69702ce1f9f7192b5e73772a213a35c29;anchor=swh:1:rev:7979bf2d392a0c37c22615c1a4c826735c0b49e8
https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-consortium-open-access-data-use-terms
https://www.humanconnectome.org/study/hcp-young-adult/document/wu-minn-hcp-consortium-open-access-data-use-terms
https://doi.org/10.1002/hbm.25713
https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.25713
https://doi.org/10.1016/j.neuroimage.2012.01.024
https://doi.org/10.3389/fninf.2014.00014
https://web.archive.org/web/20230606094719/https://blog.nisox.org/2012/07/31/spm-plot-units
https://web.archive.org/web/20230606094719/https://blog.nisox.org/2012/07/31/spm-plot-units
https://doi.org/10.7554/elife.94909.1
http://dx.doi.org/10.7554/eLife.94909.1
http://dx.doi.org/10.7554/eLife.94909.1


PRIME AI paper

[36] K. J. Worsley, S. Marrett, P. Neelin, A. C. Vandal, K. J. Friston, and A. C. Evans. A unified statistical approach for
determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1):58–73, 1996. ISSN
1065-9471. doi:10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O.

[37] Tian Ge, Jianfeng Feng, Derrek P. Hibar, Paul M. Thompson, and Thomas E. Nichols. Increasing
power for voxel-wise genome-wide association studies: The random field theory, least square kernel ma-
chines and fast permutation procedures. NeuroImage, 63(2):858–873, November 2012. ISSN 1053-8119.
doi:10.1016/j.neuroimage.2012.07.012. Publisher: Elsevier BV.

[38] Herbert A. David and Haikady N. Nagaraja. Order statistics. John Wiley, Hoboken, N.J, 3rd ed edition, 2003.
ISBN 978-0-471-72216-8 978-0-471-65401-8 978-0-471-38926-2. doi:10.1002/0471722162.

[39] Davide Giavarina. Understanding Bland Altman analysis. Biochemia Medica, 25(2):141–151, 2015. ISSN
18467482. doi:10.11613/BM.2015.015.

[40] Anders Eklund, Thomas E Nichols, and Hans Knutsson. Cluster failure: Why fmri inferences for spatial extent
have inflated false-positive rates. Proceedings of the national academy of sciences, 113(28):7900–7905, 2016.

[41] Thomas Nichols and Satoru Hayasaka. Controlling the familywise error rate in functional neuroimaging:
a comparative review. Statistical Methods in Medical Research, 12(5):419–446, 2003. ISSN 0962-2802.
doi:10.1191/0962280203sm341ra.

[42] Clifford R Jack Jr, Matt A Bernstein, Nick C Fox, Paul Thompson, Gene Alexander, Danielle Harvey, Bret
Borowski, Paula J Britson, Jennifer L. Whitwell, Chadwick Ward, et al. The alzheimer’s disease neuroimaging
initiative (adni): Mri methods. Journal of Magnetic Resonance Imaging: An Official Journal of the International
Society for Magnetic Resonance in Medicine, 27(4):685–691, 2008.

[43] Adriana Di Martino, Chao-Gan Yan, Qingyang Li, Erin Denio, Francisco X Castellanos, Kaat Alaerts, Jeffrey S
Anderson, Michal Assaf, Susan Y Bookheimer, Mirella Dapretto, et al. The autism brain imaging data exchange:
towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular psychiatry, 19(6):659–667,
2014.

[44] Joshua Carp. On the plurality of (methodological) worlds: estimating the analytic flexibility of fmri experiments.
Frontiers in neuroscience, 6:149, 2012.

[45] Anil Rao, Joao M. Monteiro, and Janaina Mourao-Miranda. Predictive modelling using neu-
roimaging data in the presence of confounds. NeuroImage, 150:23–49, 2017. ISSN 1053-8119.
doi:https://doi.org/10.1016/j.neuroimage.2017.01.066.

[46] Jean-Philippe Fortin, Elizabeth M Sweeney, John Muschelli, Ciprian M Crainiceanu, Russell T Shinohara,
Alzheimer’s Disease Neuroimaging Initiative, et al. Removing inter-subject technical variability in magnetic
resonance imaging studies. NeuroImage, 132:198–212, 2016.

[47] Joanne C Beer, Nicholas J Tustison, Philip A Cook, Christos Davatzikos, Yvette I Sheline, Russell T Shinohara,
Kristin A Linn, Alzheimer’s Disease Neuroimaging Initiative, et al. Longitudinal combat: A method for
harmonizing longitudinal multi-scanner imaging data. Neuroimage, 220:117129, 2020.

[48] Kiyana Zarnani, Thomas E. Nichols, Fidel Alfaro-Almagro, Birgitte Fagerlund, Martin Lauritzen, Egill Rostrup,
and Stephen M. Smith. Discovering markers of healthy aging: a prospective study in a Danish male birth cohort.
Aging, 11(16):5943–5974, 2019. ISSN 1945-4589. doi:10.18632/aging.102151.

[49] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image Style Transfer Using Convolutional Neural
Networks. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2414–2423,
2016. doi:10.1109/CVPR.2016.265.

[50] Harrison Nguyen, Richard W. Morris, Anthony W. Harris, Mayuresh S. Korgoankar, and Fabio Ramos. Correcting
differences in multi-site neuroimaging data using Generative Adversarial Networks, 2018. URL http://arxiv.
org/abs/1803.09375.

[51] Mengting Liu, Piyush Maiti, Sophia Thomopoulos, Alyssa Zhu, Yaqiong Chai, Hosung Kim, and Neda Jahanshad.
Style Transfer Using Generative Adversarial Networks for Multi-site MRI Harmonization. In Marleen de Bruijne,
Philippe C. Cattin, Stéphane Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, and Caroline Essert, editors,
Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, pages 313–322. Springer
International Publishing, 2021. ISBN 978-3-030-87199-4. doi:10.1007/978-3-030-87199-4_30.

[52] Elodie Germani, Camille Maumet, and Elisa Fromont. Mitigating analytical variability in fMRI results with style
transfer, 2024. URL http://arxiv.org/abs/2404.03703.

[53] Elodie Germani, Elisa Fromont, Pierre Maurel, and Camille Maumet. Software heritage archive for the
gitlab repository "hcp_pipelines", 2023. URL https://archive.softwareheritage.org/swh:1:dir:

16

https://doi.org/10.1002/(SICI)1097-0193(1996)4:1%3C58::AID-HBM4%3E3.0.CO;2-O
https://doi.org/10.1016/j.neuroimage.2012.07.012
https://doi.org/10.1002/0471722162
https://doi.org/10.11613/BM.2015.015
https://doi.org/10.1191/0962280203sm341ra
https://doi.org/https://doi.org/10.1016/j.neuroimage.2017.01.066
https://doi.org/10.18632/aging.102151
https://doi.org/10.1109/CVPR.2016.265
http://arxiv.org/abs/1803.09375
http://arxiv.org/abs/1803.09375
https://doi.org/10.1007/978-3-030-87199-4_30
http://arxiv.org/abs/2404.03703
https://archive.softwareheritage.org/swh:1:dir:67ce4a985abc2206169943486b91db7acb998a54;origin=https://gitlab.inria.fr/egermani/hcp_pipelines;visit=swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b;anchor=swh:1:rev:3cd5ecce2bbc7d5a38c89878435b0b526541b24d
https://archive.softwareheritage.org/swh:1:dir:67ce4a985abc2206169943486b91db7acb998a54;origin=https://gitlab.inria.fr/egermani/hcp_pipelines;visit=swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b;anchor=swh:1:rev:3cd5ecce2bbc7d5a38c89878435b0b526541b24d


PRIME AI paper

67ce4a985abc2206169943486b91db7acb998a54;origin=https://gitlab.inria.fr/egermani/hcp_
pipelines;visit=swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b;anchor=swh:1:rev:
3cd5ecce2bbc7d5a38c89878435b0b526541b24d.

[54] Public nEUro, 2023. URL https://public-neuro.github.io/index.html.

17

https://archive.softwareheritage.org/swh:1:dir:67ce4a985abc2206169943486b91db7acb998a54;origin=https://gitlab.inria.fr/egermani/hcp_pipelines;visit=swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b;anchor=swh:1:rev:3cd5ecce2bbc7d5a38c89878435b0b526541b24d
https://archive.softwareheritage.org/swh:1:dir:67ce4a985abc2206169943486b91db7acb998a54;origin=https://gitlab.inria.fr/egermani/hcp_pipelines;visit=swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b;anchor=swh:1:rev:3cd5ecce2bbc7d5a38c89878435b0b526541b24d
https://archive.softwareheritage.org/swh:1:dir:67ce4a985abc2206169943486b91db7acb998a54;origin=https://gitlab.inria.fr/egermani/hcp_pipelines;visit=swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b;anchor=swh:1:rev:3cd5ecce2bbc7d5a38c89878435b0b526541b24d
https://archive.softwareheritage.org/swh:1:dir:67ce4a985abc2206169943486b91db7acb998a54;origin=https://gitlab.inria.fr/egermani/hcp_pipelines;visit=swh:1:snp:17870c3d782aa25a7ffdd6165fe27ce6eac6c90b;anchor=swh:1:rev:3cd5ecce2bbc7d5a38c89878435b0b526541b24d
https://public-neuro.github.io/index.html


PRIME AI paper

Supplementary materials

Supplementary methods

Bland-Altman P-P plots For a given pair of pipelines, we have 1,000 group analyses, which makes a total of more
than 150M voxel values. Since the resulting list of voxels obtained is very large and using it for further observations
can be very time-consuming, for each between-group analysis using two given pipelines, on which we wanted to make
observations, we only took a random sample of 1,000,000 values from the concatenation of statistical values over the
1,000 corresponding group analyses.

To compute the p-values, we transformed the statistic values using the survival function of the Student’s t-distribution
with 98 degrees of freedom (50 participants + 50 participants - 2). This corresponds to 1-CDF (cumulative distribution
function) of the t-distribution. The confidence intervals were computed using a beta distribution for each kth value with
the lower bound being k and the upper bound being 1, 000, 000 - k + 1. After conversion to logarithmic scale, this gave
us the confidence intervals for the distribution of p-values.

Supplementary table

SPM
Smooth 5 mm Smooth 8 mm
No derivatives Derivatives No derivatives Derivatives

0 motion regressors 0.014 0.019 0.025 0.019
6 motion regressors 0.013 0.015 0.021 0.025

24 motion regressors 0.021 0.015 0.018 0.019

FSL
Smooth 5 mm Smooth 8 mm
No derivatives Derivatives No derivatives Derivatives

No motion regressors 0.01 0.013 0.014 0.014
6 motion regressors 0.015 0.017 0.017 0.022

24 motion regressors 0.017 0.02 0.014 0.012

Supplementary Table 1: False positive rates for between-groups analyses with the same pipeline in both groups, using
contrast maps without post-processing with SPM and FSL and for all possible sets of parameters (number of motion
regressors, smoothing kernel FWHM and presence or absence of HRF temporal derivatives). The rates were always
under 0.05.
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Supplementary figures for analyses within SPM

Supplementary Figure 1: Baseline for Figure 4. Bland-Altman P-P plots for pipelines with no differing parameters in
SPM. The grey shade corresponds to the 0.95 confidence interval. A curve above (respectively below) the confidence
interval indicates invalidity (respectively conservativeness). Default parameters: 5 mm smoothing, 24 motion regressors
and no HRF derivatives.
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Supplementary Figure 2: Baseline for Figure 5. Bland-Altman P-P plots for pipelines with no differing parameters
within SPM. The grey shade corresponds to the 0.95 confidence interval. A curve above (respectively below) the
confidence interval indicates invalidity (respectively conservativeness). Default parameters: 5 mm smoothing, 24 motion
regressors and no HRF derivatives.

Supplementary Figure 3: Distribution of statistical values for multiple between-group analyses under SPM, compared
to the expected distribution. Default parameters: 5 mm smoothing, 24 motion regressors and no HRF derivatives.
Pipelines which differ from the default pipeline are put in bold. The orange curve represents the Student distribution
with 98 degrees of freedom, which is the expected distribution in our case under null hypothesis.
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Supplementary figures for analyses within FSL

Supplementary Figure 4: False positive rates for pipelines with a single differing parameter in FSL: A) HRF derivatives,
B) smoothing and C and D) motion regressors. For each, we provide the false positive rates obtained for: 1/ Default >
Variation and Default < Variation (Red) and 2/ baseline analysis with default parameters, used as a reference (Green,
first column). The grey dashed line corresponds to the alpha level (0.05), and the grey band to the corresponding
confidence interval at 95%.

Supplementary Figure 5: False positive rates for pipelines with two differing parameters in FSL: A) Smoothing and
HRF, B) Smoothing and motion regressors. For each studied parameter, we provide the rates obtained for: 1/ Default >
Variation and Default < Variation (Red) and 2/ baseline analysis with default parameters, used as a reference (Green,
first column). The grey dashed line corresponds to the alpha level (0.05) and grey band to the corresponding confidence
interval at 95%.
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Supplementary Figure 6: Bland-Altman P-P plots for pipelines with a single differing parameter in FSL. The grey
shade corresponds to the 0.95 confidence interval. A curve above (respectively below) the confidence interval indicates
invalidity (respectively conservativeness). Default parameters: 5 mm smoothing, 24 motion regressors and no HRF
derivatives.
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Supplementary Figure 7: Baseline for Supplementary Figure 6. Bland-Altman P-P plots for pipelines with no differing
parameters in FSL. The grey shade corresponds to the 0.95 confidence interval. A curve above (respectively below)
the confidence interval indicates invalidity (respectively conservativeness). Default parameters: 5 mm smoothing,
24 motion regressors and no HRF derivatives.
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Supplementary Figure 8: Bland-Altman P-P plots for pipelines with a single differing parameter in SPM. The grey
shade corresponds to the 0.95 confidence interval. A curve above (respectively below) the confidence interval indicates
invalidity (respectively conservativeness). Default parameters values were modified to 5 mm smoothing, 0 motion
regressors and no HRF derivatives to explore the impact of fixed parameters on the validity of analyses.

Supplementary Figure 9: Bland-Altman P-P plots for pipelines with two differing parameters in FSL. The grey shade
corresponds to the 0.95 confidence interval. A curve above (respectively below) the confidence interval indicates
invalidity (respectively conservativeness). Default parameters: 5 mm smoothing, 24 motion regressors and no HRF
derivatives.

Supplementary Figure 10: Baseline for Figure 9. Bland-Altman P-P plots for pipelines with no differing parameters in
SPM. The grey shade corresponds to the 0.95 confidence interval. A curve above (respectively below) the confidence
interval indicates invalidity (respectively conservativeness). Default parameters: 5 mm smoothing, 24 motion regressors
and no HRF derivatives.
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Supplementary Figure 11: Distribution of statistical values for multiple between-group analyses under FSL, compared
to the expected distribution. Default parameters: 5 mm smoothing, 24 motion regressors and no HRF derivatives.
Pipelines which differ from the default pipeline are put in bold. The orange curve represents the Student distribution
with 98 degrees of freedom, which is the expected distribution in our case under null hypothesis.
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